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Reading for This Lecture

• Nemhauser and Wolsey Sections I.6.1, III.1.1-III.1.3

• Wolsey Chapter 3

• CCZ Chapter 4
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When is an IP Easy to Solve?

• We will consider a particular class of MILPs to be “easy” when we can
solve all instances in the class in polynomial time.

• We will see that there are a number of properties that indicate an IP is
easy:

1. Existence of an efficient optimization algorithm,
2. Existence of an efficient separation algorithm for the conv(S).
3. Existence of a complete description of conv(S) of polynomial size,
4. Existence of a short certificate of optimality, or
5. Existence of an efficiently solvable strong dual problem.

• We will see that under certain conditions, Properties 1 and 2 are
equivalent.

• Property 3 is, in some sense, the strongest—it implies all other properties.
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Polynomial Equivalence of Separation and Optimization

Separation Problem: Given a polyhedron P ⊆ Rn and x∗ ∈ Rn, determine
whether x∗ ∈ P and if not, determine (π, π0), a valid inequality for P such
that πx∗ > π0.

Optimization Problem: Given a polyhedron P, and a cost vector c ∈ Rn,
determine x∗ such that cx∗ = max{cx : x ∈ P}.
Theorem 1. For a family of rational polyhedra P(n, T ) whose input length
is polynomial in n and log T , there is a polynomial-time reduction of the
linear programming problem over the family to the separation problem
over the family. Conversely, there is a polynomial-time reduction of the
separation problem to the linear programming problem.

• The parameter n represents the dimension of the space.

• The parameter T represents the largest numerator or denominator of any
coordinate of an extreme point of P (the vertex complexity).

• The ellipsoid algorithm provides the reduction of linear programming
separation to separation.

• Polarity provides the other direction.
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The Ellipsoid Algorithm

• The ellipsoid algorithm is an algorithm for solving linear programs.

• The implementation requires a subroutine for solving the separation
problem over the feasible region (see next slide).

• We will not go through the details of the ellipsoid algorithm.

• However, its existence is very important to our study of integer
programming.

• Each step of the ellipsoid algorithm, except that of finding a violated
inequality, is polynomial in

– n, the dimension of the space,
– log T , where is the largest numerator or denominator of any coordinate

of an extreme point of P, and
– log ‖c‖, where c ∈ Rn is the given cost vector.

• The entire algorithm is polynomial if and only if the separation problem
is polynomial.
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The Membership Problem

• The membership problem is to determine whether x∗ ∈ P, for x∗inRn

and a polyhedron P.

• The membership problem is a decision problem and is closely related to
the separation problem.

• Consider the following approach to solving the membership problem.

– We try to express x∗ as a convex combination of extreme points of P.
– This problem can be formulated as a linear program with a column for

each extreme point.
– If this linear program is infeasible, the certificate is a separating

hyperplane.
– This linear program can be solved by column generation.
– Note that the column generation subproblem is the separation problem

in the dual.
– Thus, we can solve this linear program in polynomial time if and only

if we can optimize over P.
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Example: Minimum Weight s–t Cut

• Consider the problem of finding a minimum weight s− t cut in a graph
G = (V,E) with edge weights c ∈ RE.

• One formulation of this problem as a linear program is

min
∑
e∈E

ceye∑
e∈K

ye ≥ 1 ∀K ∈ K

0 ≤ ye ≤ 1 ∀e ∈ E
where K is the family of s− t paths in G.

• Questions:

– Can we solve this linear program efficiently?
– Will the solution to the linear program be integral?

• The first question above amounts to whether we can solve the separation
problem efficiently.

• Given a y∗ ∈ RE satisfying the bound constraints, can we determine
efficiently whether it satisfies the remaining constraints?
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Example: Minimum Weight s–t Cut (cont.)

• We already know that the minimum cut problem is polynomially solvable.

• However, this formulation of the problem is not of polynomial size.

• Since the separation problem is equivalent to the shortest path problem,
we can conclude that the linear program is polynomially solvable.

• The question still remains whether the solution to this linear program
will be integral.
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Integral Polyhedra

• The theory of integral polyhedra in this lecture applies primarily in the
context of pure integer programs.

• In this setting, an integral point is just a member of Zn.

Definition 1. A nonempty polyhedron P is said to be integral if each
of its nonempty faces contains an integral point.

Proposition 1. A nonempty polyhedron P = {x ∈ Rn | Ax ≥ b} with
rank(A) = n is integral if and only if all of its extreme points are
integral.

• We will assume for the remainder of the section on integral polyhedra
that all nonempty polyhedra have extreme points.

• Why do we care about integral polyhedra?
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Integral Polyhedra

Consider the linear programming problem zLP = max{cx | x ∈ P} for a
given polyhedron P.
Proposition 2. The following statements are equivalent:

1. P is integral

2. The associated LP has an integral optimal solution for all c ∈ Rn for
which an optimal solution exists.

3. The associated LP has an integral optimal solution for all c ∈ Zn for
which an optimal solution exists.

4. zLP is integral for all c ∈ Zn for which an optimal solution exists.

If a polyhedron is integral, then we can optimize over it using linear
programming techniques.
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Total Dual Integrality
Definition 2. A system of linear inequalities Ax ≤ b is called totally dual
integral (TDI) if, for all c ∈ Zn such that zLP = max{cx | Ax ≤ b}
is finite, the dual min{yb | yA = c, y ∈ Rm

+} has an integral optimal
solution.

• Note that this definition does not pertain to polyhedra, but to systems
of inequalities.

• The importance of this definition is that if Ax ≤ b is TDI and b is
integral, then P = {x ∈ Rn | Ax ≤ b} must be integral (why?).

• Note that the property of being TDI is sensitive to scaling.

• Every polyhedron has a representation that is TDI.

• In fact, a polyhedron is integral if and only if it has a TDI representation
where the right-hand side is integral.
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Total Unimodularity
Definition 3. An m × n integral matrix A is totally unimodular (TU) if
the determinant of every square submatrix is 0, 1, or -1.

• Obviously, only matrices with entries of 0, 1, and -1 can be TU.

• If A is TU, then P(b) = {x ∈ Rn
+ | Ax ≤ b} is integral for all b ∈ Zm.

• How could we go about proving this?

• TU is a very strong property.

• If the constraint matrix of an integer program is TU, then it can be
solved using linear programming techniques.
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Properties of Totally Unimodular Matrices

The following are equivalent:

1. A is TU.

2. The transpose of A is TU.

3. (A, I) is TU.

4. A matrix obtained by deleting a unit row/column from A is TU.

5. A matrix obtained by multiplying a row/column of A by -1 is TU.

6. A matrix obtained by interchanging two rows/columns of A is TU.

7. A matrix obtained by duplicating rows/columns of A is TU.

8. A matrix obtained by a pivot operation on A is TU.

• We can easily show that if A is TU, it remains so after adding slack
variables, adding simple bounds on the variables, or adding ranges on the
constraints (how?).

• We can also show that the polyhedron corresponding to the dual LP is
integral.
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The Converse

• We have just seen that if the constraint matrix is TU, then the polyhedron
is integral.

• In fact, the converse is true too!

Proposition 3. If P(b) = {x ∈ Rn
+ | Ax ≤ b} is integral for all b ∈ Zm,

then A is TU.
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Recognizing Totally Unimodular Matrices

• At this point, it appears difficult to recognize TU matrices.

• However, we have a characterization that will be useful.

Proposition 4. A is TU if and only if for every J ⊆ {1, . . . , n}, there
exists a partition J1, J2 of J such that∣∣∣∣∣∣

∑
j∈J1

aij −
∑
j∈J2

aij

∣∣∣∣∣∣ ≤ 1 for i = 1, . . . ,m.

Corollary 1. If the (0, 1, -1) matrix A has no more than two nonzero
entries in each column, and if

∑
i aij = 0 if column j contains two

nonzero coefficients, then A is TU.
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Examples of TU Matrices

• It follows easily from the corollary that the node-arc incidence matrix of
a directed graph is a TU matrix.

• This leads to easy proofs of integral min-max results such as the max
flow-min cut theorem.

• Another example of a TU matrix is the node-edge incidence matrix of a
bipartite graph.

Definition 4. A (0, 1) matrix A is called an interval matrix if in each
column, the 1’s appear consecutively.

• Interval matrices are also TU.

• It is interesting to note that any integer program with a (0, 1) constraint
matrix has a relaxation defined by an interval matrix (see page 545 of
Nemhauser and Wolsey).
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Network Matrices

• A network matrix is obtained from a node-arc incidence matrix of a
graph after deleting one (dependent) row and performing any number of
simplex pivots.

• In other words, it is any matrix that could appear as a tableau when
solving a minimum cost network flow problem.

• It is easy to see that all network matrices are TU.

• More surprising is the fact that “nearly all” TU matrices are network
matrices!
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The TU Recognition Problem
Proposition 5. Every TU matrix that is not a network matrix or one of
the two matrices below can be constructed from these matrices using the
rules of the Propositions 2.1 and 2.11 from Nemhauser and Wolsey.

1 −1 0 0 −1
−1 1 −1 0 0
0 −1 1 −1 0
0 0 −1 1 −1
−1 0 0 −1 1

 ,


1 1 1 1 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1


• This observation tells us that the TU recognition problem is in NP. What

is the certificate?

• In fact, the TU recognition problem is polynomially solvable.
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