Reading for This Lecture

- Nemhauser and Wolsey Sections I.6.1, III.1.1-III.1.3
- Wolsey Chapter 3
When is an IP Easy to Solve?

• We will consider a particular class of MILPs to be “easy” when we can solve all instances in the class in polynomial time.

• We will see that there are a number of properties that indicate an IP is easy:

 1. Existence of an efficient optimization algorithm,
 2. Existence of an efficient separation algorithm for the \(\text{conv}(S) \).
 3. Existence of a complete description of \(\text{conv}(S) \) of polynomial size,
 4. Existence of a short certificate of optimality, or
 5. Existence of an efficiently solvable strong dual problem.

• We will see that under certain conditions, Properties 1 and 2 are equivalent.

• Property 3 is, in some sense, the strongest—it implies all other properties.
Polynomial Equivalence of Separation and Optimization

Separation Problem: Given a polyhedron $\mathcal{P} \subseteq \mathbb{R}^n$ and $x^* \in \mathbb{R}^n$, determine whether $x^* \in \mathcal{P}$ and if not, determine (π, π_0), a valid inequality for \mathcal{P} such that $\pi x^* \geq \pi_0$.

Optimization Problem: Given a polyhedron \mathcal{P}, and a cost vector $c \in \mathbb{R}^n$, determine x^* such that $cx^* = \max\{cx : x \in \mathcal{P}\}$.

Theorem 1. For a family of rational polyhedra $\mathcal{P}(n, T)$ whose input length is polynomial in n and $\log T$, there is a polynomial-time reduction of the linear programming problem over the family to the separation problem over the family. Conversely, there is a polynomial-time reduction of the separation problem to the linear programming problem.

- The parameter n represents the dimension of the space.
- The parameter T represents the largest numerator or denominator of any coordinate of an extreme point of \mathcal{P} (the vertex complexity).
- The *ellipsoid algorithm* provides the reduction of linear programming separation to separation.
- *Polarity* provides the other direction.
The Ellipsoid Algorithm

- The ellipsoid algorithm is an algorithm for solving linear programs.
- The implementation requires a subroutine for solving the *separation problem* over the feasible region (see next slide).
- We will not go through the details of the ellipsoid algorithm.
- However, its existence is very important to our study of integer programming.
- Each step of the ellipsoid algorithm, except that of finding a violated inequality, is polynomial in
 - n, the dimension of the space,
 - $\log T$, where is the largest numerator or denominator of any coordinate of an extreme point of \mathcal{P}, and
 - $\log \|c\|$, where $c \in \mathbb{R}^n$ is the given cost vector.
- The entire algorithm is polynomial if and only if the separation problem is polynomial.
The Membership Problem

- The membership problem is to determine whether $x^* \in \mathcal{P}$, for $x^* \in \mathbb{R}^n$ and a polyhedron \mathcal{P}.

- The membership problem is a decision problem and is closely related to the separation problem.

- Consider the following approach to solving the membership problem.
 - We try to express x^* as a convex combination of extreme points of \mathcal{P}.
 - This problem can be formulated as a linear program with a column for each extreme point.
 - If this linear program is infeasible, the certificate is a separating hyperplane.
 - This linear program can be solved by column generation.
 - Note that the column generation subproblem is the separation problem in the dual.
 - Thus, we can solve this linear program in polynomial time if and only if we can optimize over \mathcal{P}.
Example: Minimum Weight s–t Cut

• Consider the problem of finding a minimum weight \(s - t \) cut in a graph \(G = (V, E) \) with edge weights \(c \in \mathbb{R}^E \).

• One formulation of this problem as a linear program is

\[
\begin{align*}
\min & \quad \sum_{e \in E} c_e y_e \\
\text{s.t.} & \quad \sum_{e \in K} y_e \geq 1 \quad \forall K \in \mathcal{K} \\
& \quad 0 \leq y_e \leq 1 \quad \forall e \in E
\end{align*}
\]

where \(\mathcal{K} \) is the family of \(s - t \) paths in \(G \).

• Questions:

 – Can we solve this linear program efficiently?

 – Will the solution to the linear program be integral?

• The first question above amounts to whether we can solve the separation problem efficiently.

• Given a \(y^* \in \mathbb{R}^E \) satisfying the bound constraints, can we determine efficiently whether it satisfies the remaining constraints?
Example: Minimum Weight s–t Cut (cont.)

- We already know that the minimum cut problem is polynomially solvable.
- However, this formulation of the problem is not of polynomial size.
- Since the separation problem is equivalent to the shortest path problem, we can conclude that the linear program is polynomially solvable.
- The question still remains whether the solution to this linear program will be integral.
Integral Polyhedra

• The theory of integral polyhedra in this lecture applies primarily in the context of pure integer programs.

• In this setting, an integral point is just a member of \mathbb{Z}^n.

Definition 1. A nonempty polyhedron P is said to be integral if each of its nonempty faces contains an integral point.

Proposition 1. A nonempty polyhedron $P = \{ x \in \mathbb{R}^n \mid Ax \geq b \}$ with $\text{rank}(A) = n$ is integral if and only if all of its extreme points are integral.

• We will assume for the remainder of the section on integral polyhedra that all nonempty polyhedra have extreme points.

• Why do we care about integral polyhedra?
Integral Polyhedra

Consider the linear programming problem $z_{LP} = \max\{cx \mid x \in \mathcal{P}\}$ for a given polyhedron \mathcal{P}.

Proposition 2. The following statements are equivalent:

1. \mathcal{P} is integral
2. The associated LP has an integral optimal solution for all $c \in \mathbb{R}^n$ for which an optimal solution exists.
3. The associated LP has an integral optimal solution for all $c \in \mathbb{Z}^n$ for which an optimal solution exists.
4. z_{LP} is integral for all $c \in \mathbb{Z}^n$ for which an optimal solution exists.

If a polyhedron is integral, then we can optimize over it using linear programming techniques.
Total Dual Integrality

Definition 2. A system of linear inequalities $Ax \leq b$ is called **totally dual integral** (TDI) if, for all $c \in \mathbb{Z}^n$ such that $z_{LP} = \max \{cx \mid Ax \leq b\}$ is finite, the dual $\min \{yb \mid yA = c, y \in \mathbb{R}^m_+\}$ has an integral optimal solution.

- Note that this definition does not pertain to polyhedra, but to systems of inequalities.
- The importance of this definition is that if $Ax \leq b$ is TDI and b is integral, then $\mathcal{P} = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ must be integral (why?).
- Note that the property of being TDI is sensitive to scaling.
- Every polyhedron has a representation that is TDI.
- In fact, a polyhedron is integral *if and only if* it has a TDI representation where the right-hand side is integral.
Total Unimodularity

Definition 3. An $m \times n$ integral matrix A is **totally unimodular (TU)** if the determinant of every square submatrix is 0, 1, or -1.

- Obviously, only matrices with entries of 0, 1, and -1 can be TU.
- If A is TU, then $\mathcal{P}(b) = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}$ is integral *for all* $b \in \mathbb{Z}^m$.
- How could we go about proving this?
- TU is a very strong property.
- If the constraint matrix of an integer program is TU, then it can be solved using linear programming techniques.
Properties of Totally Unimodular Matrices

The following are equivalent:

1. A is TU.
2. The transpose of A is TU.
3. (A, I) is TU.
4. A matrix obtained by deleting a unit row/column from A is TU.
5. A matrix obtained by multiplying a row/column of A by -1 is TU.
6. A matrix obtained by interchanging two rows/columns of A is TU.
7. A matrix obtained by duplicating rows/columns of A is TU.
8. A matrix obtained by a pivot operation on A is TU.

- We can easily show that if A is TU, it remains so after adding slack variables, adding simple bounds on the variables, or adding ranges on the constraints (how?).
- We can also show that the polyhedron corresponding to the dual LP is integral.
The Converse

- We have just seen that if the constraint matrix is TU, then the polyhedron is integral.

- In fact, the converse is true too!

Proposition 3. If \(P(b) = \{ x \in \mathbb{R}_+^n \mid Ax \leq b \} \) is integral for all \(b \in \mathbb{Z}^m \), then \(A \) is TU.
Recognizing Totally Unimodular Matrices

- At this point, it appears difficult to recognize TU matrices.
- However, we have a characterization that will be useful.

Proposition 4. A is TU if and only if for every $J \subseteq \{1, \ldots, n\}$, there exists a partition J_1, J_2 of J such that

$$\left| \sum_{j \in J_1} a_{ij} - \sum_{j \in J_2} a_{ij} \right| \leq 1 \text{ for } i = 1, \ldots, m.$$

Corollary 1. If the $(0, 1, -1)$ matrix A has no more than two nonzero entries in each column, and if $\sum_i a_{ij} = 0$ if column j contains two nonzero coefficients, then A is TU.
Examples of TU Matrices

- It follows easily from the corollary that the node-arc incidence matrix of a directed graph is a TU matrix.

- This leads to easy proofs of integral min-max results such as the max flow-min cut theorem.

- Another example of a TU matrix is the node-edge incidence matrix of a bipartite graph.

Definition 4. A \((0, 1)\) matrix \(A\) is called an interval matrix if in each column, the 1’s appear consecutively.

- Interval matrices are also TU.

- It is interesting to note that any integer program with a \((0, 1)\) constraint matrix has a relaxation defined by an interval matrix (see page 545 of Nemhauser and Wolsey).
Network Matrices

• A *network matrix* is obtained from a node-arc incidence matrix of a graph after deleting one (dependent) row and performing any number of simplex pivots.

• In other words, it is any matrix that could appear as a tableau when solving a minimum cost network flow problem.

• It is easy to see that all network matrices are TU.

• More surprising is the fact that “nearly all” TU matrices are network matrices!
The TU Recognition Problem

Proposition 5. Every TU matrix that is not a network matrix or one of the two matrices below can be constructed from these matrices using the rules of the Propositions 2.1 and 2.11 from Nemhauser and Wolsey.

\[
\begin{pmatrix}
1 & -1 & 0 & 0 & -1 \\
-1 & 1 & -1 & 0 & 0 \\
0 & -1 & 1 & -1 & 0 \\
0 & 0 & -1 & 1 & -1 \\
-1 & 0 & 0 & -1 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1
\end{pmatrix}
\]

- This observation tells us that the TU recognition problem is in \mathcal{NP}. What is the certificate?
- In fact, the TU recognition problem is polynomially solvable.