Reading for This Lecture

• Achterburg “Constraint Integer Programming” (2007)

• M.W.P. Savelsbergh “Preprocessing and Probing for Mixed Integer Programming Problems.”

• T. Achterberg, R.E. Bixby, Z. Gu, E Rothberg, And D. Weninger, “Presolving Reductions in Mixed Integer Programming.”
Preprocessing and Probing

- Often, it is possible to simplify a model using logical arguments.
- Most commercial IP solvers have a built-in preprocessor.
- Effective preprocessing can pay large dividends.
- Let the upper and lower bounds on x_j be u_j and l_j.
- The most basic type of preprocessing is calculating implied bounds.
- Let (π, π_0) be a valid inequality.
- If $\pi_1 > 0$, then

 $$x_1 \leq (\pi_0 - \sum_{j: \pi_j > 0} \pi_j l_j - \sum_{j: \pi_j < 0} \pi_j u_j)/\pi_1$$

- If $\pi_1 < 0$, then

 $$x_1 \geq (\pi_0 - \sum_{j: \pi_j > 0} \pi_j l_j - \sum_{j: \pi_j < 0} \pi_j u_j)/\pi_1$$
Basic Preprocessing

• Again, let \((\pi, \pi_0)\) be any valid inequality for \(S\).

• The constraint \(\pi x \leq \pi_0\) is redundant if

\[
\sum_{j: \pi_j > 0} \pi_j u_j + \sum_{j: \pi_j < 0} \pi_j l_j \leq \pi_0.
\]

• \(S\) is empty (IP is infeasible) if

\[
\sum_{j: \pi_j > 0} \pi_j l_j + \sum_{j: \pi_j < 0} \pi_j u_j > \pi_0.
\]

• For any IP of the form \(\max\{cx | Ax \leq b, l \leq x \leq u\}, x \in \mathbb{Z}^n\),
 - If \(a_{ij} \geq 0\forall i \in [1..m]\) and \(c_j < 0\), then \(x_j = l_j\) in any optimal solution.
 - If \(a_{ij} \leq 0\forall i \in [1..m]\) and \(c_j > 0\), then \(x_j = u_j\) in any optimal solution.
Probing for Integer Programs

• It is also possible in many cases to fix variables or generate new valid inequalities based on logical implications.

• Consider \((\pi, \pi_0)\), a valid inequality for 0-1 integer program.

• If \(\pi_k > 0\) and \(\pi_k + \sum_{j: \pi_j < 0} \pi_j > \pi_0\), then we can fix \(x_k\) to zero.

• Similarly, if \(\pi_k < 0\) and \(\sum_{j: \pi_j < 0, j \neq k} \pi_j > \pi_0\), then we can fix \(x_k\) to one.

• **Example**: Generating logical inequalities
Generation of the Conflict Graph

• As describe earlier, a *conflict* is a pair of variables and associated values that are mutually incompatible.

• For example, we may derive that binary variables x_1 and x_2 cannot both take value 1 simultaneously.

• These conflicts can be generated in a number of ways:
 – during preprocessing;
 – during cut generation; or
 – when the LP relaxation is infeasible;

• The list of known conflicts can be stored in a *conflict graph* in which the nodes correspond to variable-value pairs and the edges correspond to conflicts.

• The graph can be used to guide branching decisions, fix variable values, etc.
Improving Coefficients

- Suppose again that \((\pi, \pi_0)\) is a valid inequality for a 0-1 integer program.
- Suppose that \(\pi_k > 0\) and \(\sum_{j: \pi_j > 0, j \neq k} \pi_j < \pi_0\).
- If \(\pi_k > \pi_0 - \sum_{j: \pi_j > 0, j \neq k} \pi_j\), then we can set
 - \(\pi_k \leftarrow \pi_k - (\pi_0 - \sum_{j: \pi_j > 0, j \neq k} \pi_j)\), and
 - \(\pi_0 \leftarrow \sum_{j: \pi_j > 0, j \neq k} \pi_j\).
- Similarly, suppose that \(\pi_k < 0\) and \(\pi_k + \sum_{j: \pi_j > 0, j \neq k} \pi_j < \pi_0\).
- Then we can again set \(\pi_k \leftarrow \pi_k - (\pi_0 - \pi_j - \sum_{j: \pi_j > 0, j \neq k} \pi_j)\).
Preprocessing and Probing in Branch and Bound

- In practice, these rules are applied *iteratively* until none applies.
- Applying one of the rules may cause a new rule to apply.
- Bound improvement by reduced cost can be reapplied whenever a new bound is computed.
- Furthermore, all rules can be *reapplied* after branching.
- These techniques can make a very big difference.
Preprocessing Based on Problem Structure

- **Example**: Preprocessing Methods in Set Partitioning
 - Duplicate columns
 - Dominated rows
 - Column is a sum of other columns
 - Extended row clique
 - Singleton row
 - Rows differ by two entries
Root Node Processing

• Typically, more effort is put into processing the root node than other nodes in the tree.

• Work done in the root node will impact the processing of every subsequent node.

• Dual bounding
 – Cut generation in the root node can be thought of as an additional pre-processing step to strengthen the formulation before enumeration.
 – Cut generation in the root node can also be used to predict effectiveness of such techniques elsewhere in the tree.

• Primal bounding
 – Primal bounds found in the root node can have a big impact on the search.
 – They help to improve variable bounds by reduced cost and can also lead to more effective/efficient search strategies.
 – As with cut generation, we use performance in the root node as an indicator of efficacy throughout the tree.
Node Pre/Post-Processing: Bound Improvement by Reduced Cost

- Consider an integer program $\max_{x \in \mathbb{Z}^n} \{ cx \mid Ax \leq b, 0 \leq x \leq u \}$.
- Suppose the linear programming relaxation has been solved to optimality and row zero of the tableau looks like
 \[z = \bar{a}_{00} + \sum_{j \in NB_1} \bar{a}_{0j} x_j + \sum_{j \in NB_2} \bar{a}_{0j} (x_j - u_j) \]
 where NB_1 are the nonbasic variables at 0 and NB_2 are the nonbasic variables at their upper bounds u_j.
- In addition, suppose that a lower bound z on the optimal solution value for IP is known.
- Then in any optimal solution
 \[
 x_j \leq \left\lfloor \frac{\bar{a}_{00} - z}{-\bar{a}_{0j}} \right\rfloor \quad \text{for } j \in NB_1, \quad \text{and} \\
 x_j \geq u_j - \left\lceil \frac{\bar{a}_{00} - z}{\bar{a}_{0j}} \right\rceil \quad \text{for } j \in NB_2.
 \]
Node Pre/Post-Processing: Other Techniques

- Bound improvement in the root node
 - Whenever a new lower bound is found by a heuristic or otherwise, we can apply bound improvement in the root node.
 - To do so, we save the reduced costs of the variables in the root node.
 - We can do this for multiple bases obtained during the processing of the root node.
 - The bound improvements found in this way can be immediately applied to all candidate and active nodes.

- Techniques similar to those applied in the root node can also be applied during the processing of individual nodes.

- New implications may be available once branching constraints are applied.
Node Pre/Post-Processing: Conflict Analysis

- Whenever a node is found to be infeasible, we derive a conflict.
- The branching constraints imposed to arrive at that node cannot all be imposed simultaneously.
- These conflicts can be used to derive cuts and may also contribute to enhancement of the conflict graph.