Reading for This Lecture

- Wolsey, Chapters 10 and 11
- Nemhauser and Wolsey Sections II.3.1, II.3.6, II.3.7, II.5.4
- CCZ Chapter 8
- “Selected Topics in Column Generation,” Lübbecke and Desrosiers
The Decomposition Bound

By exploiting our knowledge of $\text{conv}(S_R)$, we wish to compute the so-called decomposition bound.

$$z_D = \max_{x \in \text{conv}(S_R)} \left\{ c^\top x \mid A''x \geq b'' \right\}$$

$$z_{IP} \leq z_D \leq z_{LP}$$

This can be done using three different basic approaches:

- Lagrangian relaxation (dynamic generation of extreme points of $\text{conv}(S_R)$)
- Dantzig-Wolfe decomposition (dynamic generation of extreme points of $\text{conv}(S_R)$)
- Cutting plane method (dynamic generation of facets of $\text{conv}(S_R)$).
Lagrangian Relaxation

• Suppose as before that our IP is defined by

\[
\begin{align*}
\max & \quad c^\top x \\
\text{s.t.} & \quad A'x \leq b' \text{ (the “nice” constraints)} \\
& \quad A''x \leq b'' \text{ (the “complicating” constraints)} \\
& \quad x \in \mathbb{Z}^n
\end{align*}
\]

where optimizing over $S_R = \{x \in \mathbb{Z}^n \mid A'x \leq b'\}$ is “easy.”

• **Lagrangian Relaxation** (for $u \geq 0$):

\[
LR(u) : z_{LR}(u) = ub'' + \max_{x \in S_R} \{(c^\top - uA'')x\}.
\]
The Lagrangian Dual

- The next step is to obtain a dual problem formed by allowing u to vary.
- We are looking for the value of $u \geq 0$ that yield the lowest upper bound.
- The Lagrangian dual problem, LD, is

$$z_{LD} = \min_{u \geq 0} z_{LR}(u)$$

- The Lagrangian dual can be rewritten as the following LP

$$z_{LD} = \min_{\eta, u} \{ \eta + ub'' \mid \eta \geq (c^\top - uA'')s, s \in \mathcal{E}, u \geq 0 \}$$

- This can be solved using a cutting plane algorithm where the separation problem is an optimization problem over the set $\text{conv}(\mathcal{S}_R)$.
Solving the Lagrangian Dual with Subgradient Optimization

• Note that \((c^\top - uA'')x\) is an affine function of \(u\) for a fixed \(x\).
• This tells us that \(z_{LR}(u)\), when viewed as a function of \(u\), is the maximum of a finite number of affine functions.
• Hence, it is piecewise linear and convex on the domain over which it is finite.
• We can easily minimize any convex function which we can evaluate and subdifferentiate using a technique called subgradient optimization.
• The procedure iteratively adjusts the weights according to the degree of violation of each constraint.
• There are a wide range of implementations of this basic idea.
Geometry of the Lagrangian Dual

LD iteratively produces single extreme points of $\text{conv}(S_R)$ and uses the violation of the relaxed constraints to adjust the dual solution.

- **Master:** $z_{LD} = \min_{u \in \mathbb{R}_+^{m''}} \{ \max_{s \in \mathcal{E}} \{ c^\top s + u^\top (b'' - A'' s) \} \}$

- **Subproblem:** $\text{LR}(c^\top - u^\top A'')$
Geometry of the Lagrangian Dual

LD iteratively produces single extreme points of $\text{conv}(S_R)$ and uses the violation of the relaxed constraints to adjust the dual solution.

- **Master:** $z_{LD} = \min_{u \in \mathcal{R}_+^{m''}} \{ \max_{s \in \mathcal{E}} \{ c^\top s + u^\top (b'' - A'' s) \} \}$
- **Subproblem:** $LR(c^\top - u^\top A'')$
Geometry of the Lagrangian Dual

LD iteratively produces single extreme points of $\text{conv}(S_R)$ and uses the violation of the relaxed constraints to adjust the dual solution.

- **Master**: $z_{LD} = \min_{u \in \mathbb{R}^m''} \{ \max_{s \in \mathcal{E}} \{ c^\top s + u^\top (b'' - A'' s) \} \}$

- **Subproblem**: $LR(c^\top - u^\top A'')$
Textbook Subgradient Algorithm

- The idea of the subgradient algorithm is to first fix \(u \) and determine \(x \) by optimzing over \(S_R \).
- Then update \(u \) according to the observed violations.
- Here is a basic subgradient algorithm for solving the Lagrangian dual:
 1. Choose initial Lagrange multipliers \(u_0 \geq 0 \) and set \(t = 0 \).
 2. Solve the Lagrangian subproblem \(LR(u^t) \) to obtain \(x^t \).
 3. Calculate the current violation of the complicating constraints \(\gamma^t = b'' - A''x^t \).
 4. Set \(u_{j+1}^t \leftarrow \max\{u_j^t - \theta^t \gamma^t, 0\} \) where \(\theta^t \) is the chosen step size.
 5. Set \(t \leftarrow t + 1 \) and go to step 2.
- This algorithm is guaranteed to converge to the optimal solution as long as \(\theta^t \) approaches 0 and \(\sum_{t=0}^{\infty} \theta^t = \infty \)
- In practice, one usually uses a geometric progression for the step sizes.
- Sometimes, it’s difficult to know when the optimal solution has been reached.
Performing the Updates

• Suppose we have an estimate L^* of the optimal value.
• We can choose u^{t+1} such that the Lagrangian objective of x^t is L^*.
• In other words, we want

$$c^\top x^t + u^{t+1} \gamma^t = L^*$$

• At the same time, we have that $u^{t+1} = u^t - \theta_k \gamma^t$ (in the equality constrained case), so we have

$$c^\top x^t + [u^t - \theta_t \gamma^t] \gamma^t = L^*$$
Performing the Updates (cont.)

• Finally, solving and putting it all together, we obtain

\[\theta_t = \frac{L(u^t) - L^*}{\|\gamma^t\|^2} \]

• Since we do not usually know a good value for the new target, we can instead use the value of the best know solution.

• We also scale by a small factor that we reduce as the algorithm progresses.

• We then finally have

\[\theta_t = \frac{\alpha^t[L(u^t) - LB]}{\|\gamma^t\|^2} \]

• Here \(\alpha^t \) is an additional factor used to reduce the step size over time.

• Typically, we start with \(\alpha^0 = 2 \) and reduce \(\alpha^t \) by half when the Lagrangian objective does not improve for a specified number of iterations.
Example: Knapsack Problem

- We consider a binary knapsack problem \(\max_{x \in \{0,1\}^n} \{ c^\top x \mid a^\top x \leq b \} \) for \(a, c \in \mathbb{Z}_+^n \) and \(b \in \mathbb{Z}_+ \).

- If we relax the knapsack constraint, we have only bound constraints left.

- The relaxation can be solved simply by setting any variable with a positive coefficient to its upper bound and variable with negative coefficient to its lower bound.

- Thus,
 \[
 LR(u) = \sum_{i=1}^{n} \max\{0, c_i - ua_i\} + ub
 \]

- Note that the feasible region in this case has all integral extreme points, so \(z_{LD} = z_{LP} \).
Example: Knapsack Problem (cont.)

- Let us assume from here on that the variables are arranged in non-increasing order by the ratio \(c_i/a_i \).

- Under this assumption, we can rewrite (??) equivalently as:

\[
LR(u) = \sum_{i=j}^{n} c_i + u(b - \sum_{i=j}^{n} a_i)
\]

where \(j = \text{argmin}\{i \mid c_i - ua_i \geq 0\} = \text{argmin}\{i \mid c_i/a_i \geq u\} \).

- We know \(LR(u) \) will be minimized when it has a zero subgradient, which will occur for \(u = c_j/a_j \), where \(\sum_{i=1}^{j} a_i \leq b \leq \sum_{i=1}^{j+1} a_i \).

- Note that this optimal solution is exactly the same as the optimal dual solution to the LP relaxation, derived from LP duality.
Example: Knapsack Problem (cont.)

• Let us now consider an instance with $n = 3$ described by the data $a = [3 \ 1 \ 4], \ c = [10 \ 4 \ 14], \ and \ b = 4$.

• Since the cost vector c is non-negative, the first solution will be to choose all items, i.e., set all variables to value 1.

• If we don’t normalize the residuals, then we have $u_1 = u_0 + \theta_0 \gamma_0 = \sum_{i=1}^{n} a_i - b$.

• Here is the sequence of iterates:

<table>
<thead>
<tr>
<th>t</th>
<th>x^t</th>
<th>γ_t</th>
<th>u_t</th>
<th>θ_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[1 1 1]</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>[0 1 0]</td>
<td>−3</td>
<td>4</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>2</td>
<td>[1 1 1]</td>
<td>4</td>
<td>$\frac{5}{2}$</td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>3</td>
<td>[0 1 1]</td>
<td>1</td>
<td>$\frac{7}{2}$</td>
<td>$\frac{1}{8}$</td>
</tr>
<tr>
<td>4</td>
<td>[0 1 0]</td>
<td>−3</td>
<td>$\frac{29}{8}$</td>
<td>$\frac{1}{16}$</td>
</tr>
<tr>
<td>5</td>
<td>[0 1 1]</td>
<td>1</td>
<td>$\frac{55}{16}$</td>
<td>$\frac{1}{32}$</td>
</tr>
<tr>
<td>6</td>
<td>[0 1 1]</td>
<td>1</td>
<td>$\frac{111}{32}$</td>
<td>$\frac{1}{64}$</td>
</tr>
</tbody>
</table>

• The same solution is now repeated and the sequence will converge to the optimal value of $7/2$.
Example: Knapsack Problem (cont.)

- Note that the optimal solution was reached in the fourth iteration on the previous slide, but this was prior to convergence.

- The sequence above is not actually unique because of the fact that there is an alternative optimal solution to the Lagrangian subproblem in iteration 3.

- Here is an alternative sequence:

<table>
<thead>
<tr>
<th>t</th>
<th>x^t</th>
<th>γ_t</th>
<th>u_t</th>
<th>θ_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$[1 \ 1 \ 1]$</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>$[0 \ 1 \ 0]$</td>
<td>-3</td>
<td>4</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>2</td>
<td>$[1 \ 1 \ 1]$</td>
<td>4</td>
<td>$\frac{5}{2}$</td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>3</td>
<td>$[0 \ 1 \ 0]$</td>
<td>-3</td>
<td>$\frac{7}{2}$</td>
<td>$\frac{1}{8}$</td>
</tr>
<tr>
<td>4</td>
<td>$[0 \ 1 \ 0]$</td>
<td>1</td>
<td>$\frac{25}{8}$</td>
<td>$\frac{1}{16}$</td>
</tr>
<tr>
<td>5</td>
<td>$[0 \ 1 \ 1]$</td>
<td>1</td>
<td>$\frac{51}{16}$</td>
<td>$\frac{1}{32}$</td>
</tr>
<tr>
<td>6</td>
<td>$[0 \ 1 \ 1]$</td>
<td>1</td>
<td>$\frac{103}{32}$</td>
<td>$\frac{1}{64}$</td>
</tr>
</tbody>
</table>

- We can see that this sequence will converge to $\frac{104}{32} = 3.25$ rather than to the optimum.
Dantzig-Wolfe Decomposition

• In this technique, we utilize the fact that every point in \(\text{conv}(S_R) \) can be written as the convex combination of extreme points of \(\text{conv}(S_R) \).

• Here is the Dantzig-Wolfe LP:

\[
\begin{align*}
\text{max} & \quad c^\top x \\
\text{s.t.} & \quad \sum_{s \in \mathcal{E}} \lambda_s s = x \\
& \quad A''x \leq b'' \\
& \quad \sum_{s \in \mathcal{E}} \lambda_s = 1 \\
& \quad \lambda \in \mathbb{R}^\mathcal{E}_+
\end{align*}
\]

where \(\mathcal{E} \) is the set of extreme points of \(\text{conv}(S_R) \).

• As we observed previously, if we enforce integrality of \(x \), this is a reformulation of the IP.

• This is a relaxation of \(IP \); solving yields an upper bound on \(z_{DW} \).

• Typically, \(x \) is not explicitly present in the formulation.
Dantzig-Wolfe LP

We can rewrite the Dantzig-Wolfe LP in the following two forms

\[\text{max } c^\top \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \]

\[\text{s.t. } A'' \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \leq b'' \]

\[\sum_{s \in \mathcal{E}} \lambda_s = 1 \]

\[\lambda \in \mathbb{R}_{+}^{\mathcal{E}} \]

\[\text{max } \sum_{s \in \mathcal{E}} (c^\top s) \lambda_s \]

\[\text{s.t. } \sum_{s \in \mathcal{E}} (A'' s) \lambda_s \leq b'' \]

\[\sum_{s \in \mathcal{E}} \lambda_s = 1 \]

\[\lambda \in \mathbb{R}_{+}^{\mathcal{E}} \]
Solving the Dantzig-Wolfe LP

• We solve this Dantzig-Wolfe LP (often called the *master problem*) using column generation.

• We begin with a restricted set of columns generated heuristically.
 – Start with a subset of “promising” columns.
 – Solve the *restricted master problem* (RMP) with just these columns.
 – *Price* the remaining columns and add those with positive reduced costs.
 – Iterate.
Column Generation

• In each iteration, we need to find a column with the most positive reduced cost or prove that there is no such column.

• This is an optimization problem!

• If we can solve this optimization problem, then we can solve the LP without explicitly listing the columns.

• This is nothing more than the cutting plane method applied to the dual.

• There are many variants of this basic algorithm, which we will discuss in more detail later.

• All are based in the ability to generate a column with positive reduced cost, given the current dual prices.

• In Dantzig-Wolfe, the column generation subproblem is an optimization problem over S_R, which we know how to solve efficiently.

• In fact, it is precisely the Lagrangian subproblem!
The Dantzig-Wolfe Subproblem

- In Dantzig-Wolfe, we have a column for each member of \(\mathcal{E} \).
- For \(s \in \mathcal{E} \), if we take

\[
\begin{align*}
 c_s &= c^\top s \\
 A_s &= A'' s,
\end{align*}
\]

then the reduced cost of the column associated with \(s \) with respect to a given dual solution \(u \) is

\[
 c_s - uA_s - \alpha = c^\top s - u(A'' s) - \alpha = (c^\top - uA'') s - \alpha,
\]

where \(\alpha \) is the dual multiplier on the convexity constraint.

- Since \(\alpha \) is a constant with respect to this subproblem, the column generation subproblem is equivalent to \(LR(u) \).
Geometry of Dantzig-Wolfe Decomposition

DW utilizes an *inner* approximation of $\text{conv}(S_R)$

- **Master:**

 $$z_{\text{DW}} = \max_{\lambda \in \mathbb{R}_+^E} \left\{ c^\top \left(\sum_{s \in \mathcal{E}} s\lambda_s \right) \mid A'' \left(\sum_{s \in \mathcal{E}} s\lambda_s \right) \leq b'', \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$$

- **Subproblem:** $LR(c^\top - u^\top A'')$

![Diagram of Dantzig-Wolfe Decomposition](image)
Geometry of Dantzig-Wolfe Decomposition

DW utilizes an *inner* approximation of \(\text{conv}(S_R) \)

- **Master:**
 \[
 z_{DW} = \max_{\lambda \in R^E_+} \left\{ c^\top \left(\sum_{s \in E} s \lambda_s \right) \mid A'' \left(\sum_{s \in E} s \lambda_s \right) \leq b'', \sum_{s \in E} \lambda_s = 1 \right\}
 \]

- **Subproblem:** \(LR(c^\top - u^\top A'') \)

\[
(2, 1) \quad \mathcal{P}_I^1 = \text{conv}(E_1) \subset \mathcal{P}' \\
Q'' \\
x_{DW}^1 = (2.64, 1.86) \\
\bar{s} = (3, 4)
\]
Geometry of Dantzig-Wolfe Decomposition

DW utilizes an *inner* approximation of $\text{conv}(S_R)$

- **Master:**

 $$z_{DW} = \max_{\lambda \in \mathbb{R}_+^E} \left\{ c^\top \left(\sum_{s \in E} s \lambda_s \right) \mid A'' \left(\sum_{s \in E} s \lambda_s \right) \leq b'', \sum_{s \in E} \lambda_s = 1 \right\}$$

- **Subproblem:** $LR(c^\top - u^\top A'')$

\[x_{DW}^2 = (2.42, 2.25)\]
Block Structure and Dantzig-Wolfe

- When the problem has block structure, the single subproblem may decompose into independent blocks.
- In this case, we can use a separate convexity constraint for each block.
- In some cases, these blocks are *identical*.
- In this case, we use a convexity constraints, but with right-hand side K, where K is the number of blocks.
Example: The Generalized Assignment Problem

- The problem is to assign m tasks to n machines subject to capacity constraints.

- An IP formulation of this problem is

$$\max \sum_{i=1}^{m} \sum_{j=1}^{n} p_{ij} z_{ij}$$

s.t.
$$\sum_{j=1}^{n} z_{ij} = 1, \quad i = 1, \ldots, m,$$

$$\sum_{i=1}^{m} w_{ij} z_{ij} \leq d_j, \quad j = 1, \ldots, n,$$

$$z_{ij} \in \{0, 1\}, i = 1, \ldots, m, j = 1, \ldots, n,$$

- The variable z_{ij} is one if task i is assigned to machine j.

- The “profit” associated with assigning task i to machine j is p_{ij}.
Applying Dantzig-Wolfe to the GAP

- Let’s apply Dantzig-Wolfe to obtain a stronger bound for the GAP.
- Note that if we relax the constraint that each item be assigned to a different machine, the problem decomposes by machine.
- This allows us to use a separate convexity constraint for each machine.
- Then we have

\[
\max \sum_{j=1}^{n} \sum_{i=1}^{m} p_{ij} \left(\sum_{k=1}^{K_j} \lambda_{jk}^i a_{ik}^j \right) \\
\text{s.t.} \quad \sum_{i=1}^{n} \sum_{k=1}^{K_j} \lambda_{jk}^i a_{ik}^j = 1, \quad i = 1, \ldots, m, \\
\sum_{k=1}^{K_j} \lambda_{jk}^i = 1, \quad j = 1, \ldots, n, \\
\lambda_{jk}^i \in \{0, 1\}, \ j = 1, \ldots, n, \ k = 1, \ldots, K_j,
\]
Applying Dantzig-Wolfe to the GAP (cont.)

• The columns are subsets of the tasks that can be assigned to one of the machines (called *assignments*).

• The coefficient a_{ik}^j is 1 if task i is assigned to machine j in the k^{th} assignment.
Examining the Dantzig-Wolfe Master for the GAP

- The columns represent feasible assignments of tasks to machines.
- Note that one feasible assignment is to assign no tasks, which would correspond to a column of all zeros.
- Therefore, we could also write the convexity constraints as inequalities.
- Finding an initial feasible set of columns is trivial.
- The relaxation decomposes into a set of knapsack problems.
- Note that the master problem is a relaxation of a set partitioning problem.
The Cutting Plane Method as a Decomposition Method

• Finally, it is possible to exploit our ability to optimize over S_R in a more traditional cutting plane method.

• Recall the algorithm for separating using an optimization oracle from Lecture 12.

• We can use this algorithm as a means of separating (possibly infeasible) solutions from S_R in the context of a cutting plane method.
Lagrange Cuts

- Boyd observed that for $u \in \mathbb{R}_+^m$, a *Lagrange cut* of the form

 $$(c - uA'')^\top x \geq LR(u) - ub''$$

 (LC)

 is valid for \mathcal{P}.

- If we take u^* to be the optimal solution to the Lagrangian dual, then this inequality reduces to

 $$(c - u^*A'')^\top x \geq z_D - ub''$$

 (OLC)

- If we now take

 $$x^D \in \arg\min \{ c^\top x \mid A''x \leq b'', (c - u^*A'')^\top x \geq z_D - ub'' \} ,$$

 then we have $c^\top x^D = z_D$.

- Such cuts can be generated using an optimization-based oracle.
Geometry of the Cutting Plane Method

CPM utilizes an optimization-based oracle to separate from $\text{conv}(S_R)$

- **Master:**
 $$z_{CP} = \max_{x \in \mathbb{R}^n_+} \{ c^T x \mid A'' x \leq b'', (\alpha^k)^T x \leq \beta^k, 1 \leq k \leq L \}$$

- **Subproblem:** $OPT(S_R)$
Geometry of the Cutting Plane Method

CPM utilizes an optimization-based oracle to separate from \(\text{conv}(S_R) \)

- **Master:**
 \[
 z_{CP} = \max_{x \in \mathbb{R}^n_+} \{ c^\top x \mid A''x \leq b'', (\alpha^k)^\top x \leq \beta^k, 1 \leq k \leq L \}\]

- **Subproblem:** \(OPT(S_R) \)
Comparing the Methods

• Recall that the Lagrangian dual can be rewritten as the following LP

\[z_{LD} = \min_{\eta, u} \{ \eta + ub'' \mid \eta \geq (c^T - uA'')s, s \in \mathcal{E}, u \geq 0 \} \]

• It is easy to show that this LP is the dual of the Dantzig-Wolfe LP.

• Thus, both these method produce the same bound (in principle).

\[z_D = z_{LD} = z_{DW} \]

• The cutting plane method just described is yet another method for computing the same bound.

• In practice, there are great differences between these three methods, both algorithmically and numerically.

 – Conceptually, the Lagrangian dual produces only a dual solution and does not include any explicit primal solution information.
 – The Dantzig-Wolfe LP produces a primal solution, which can be used to perform generate valid inequalities and tighten the relaxation.

• Naive implementations are slow to converge and numerical difficulties may prevent the calculation of an exact bound.
Choosing a Decomposition

• Typically, there are multiple choices for decomposing a given IP.
• The definition of the set S_R determines the strength of the bound.
• However, it is important to choose a relaxation that can be solved relatively easily (but not too easily).
• The relaxation must be solved iteratively in order to solve the Lagrangian dual.
• Recall the TSP example.
• Other Examples
 – Flow Problem with Budget Constraints
 – Facility Location Problem
 – Generalized Assignment Problem
Comparing Decomposition-based Bounding to LP-based Bounding

- The class of methods we have just discussed are called *decomposition-based methods* because they decompose the problem into two parts.

- Up until the mid-1970’s, these methods were very popular for solving integer programming problems.

- They can effectively strengthen the bound obtained by LP relaxation alone.

- However, after methods based on strengthening the LP relaxation using *valid inequalities* were introduced, they fell out of favor.

- It is possible to combine these two approaches.

- This is one of the current frontiers of research in integer programming.