Reading for This Lecture

• Wolsey Section 9.6

• Nemhauser and Wolsey Section II.6

• Martin “Computational Issues for Branch-and-Cut Algorithms” (2001)

• Linderoth and Ralphs “Noncommercial Software for Mixed-Integer Linear Programming”

• M.W.P. Savelsbergh “Preprocessing and Probing for Mixed Integer Programming Problems.”

• T. Berthold “Primal Heuristics for Mixed Integer Programs.”

• K. Wolter “Implementations of Cutting Plane separators for Mixed Integer Programs.”

Branch and Cut

- **Branch and cut** is an LP-based branch-and-bound scheme in which the linear programming relaxations are augmented by valid inequalities.

- The valid inequalities are generated dynamically using separation procedures.

- We iteratively try to improve the current bound by adding valid inequalities.

- In practice, branch and cut is the method typically used for solving difficult mixed-integer linear programs.

- It is a very complex amalgamation of techniques whose application must be balanced very carefully.
Computational Components of Branch and Cut

- Modular algorithmic components
 - Initial preprocessing and root node processing
 - Bounding
 - Cut generation
 - Primal heuristics
 - Node pre/post-processing (bound improvement, conflict analysis)
 - Node pre-bounding

- Overall algorithmic strategy
 - Search strategy
 - Bounding strategy
 * What cuts to generate and when
 * What primal heuristics to run and when
 * Management of the LP relaxation
 - Branching strategy
 * When to branch
 * How to branch (which disjunctions)
 * Relative amount of effort spent on choosing branch
Tradeoffs

• Control of branch and cut is about *tradeoffs*.

• We are combining many techniques and must adjust levels of effort of each to accomplish an end goal.

• Algorithmic control is an optimization problem in itself!

• Many algorithmic choices can be formally cast as optimization problems.

• What is the objective?

 – Time to optimality
 – Time to first “good” solution
 – Balance of both?
Preprocessing and Probing

• Often, it is possible to simplify a model using logical arguments.
• Most commercial IP solvers have a built-in preprocessor.
• Effective preprocessing can pay large dividends.
• Let the upper and lower bounds on \(x_j \) be \(u_j \) and \(l_j \).
• The most basic type of preprocessing is calculating implied bounds.
• Let \((\pi, \pi_0)\) be a valid inequality.

- If \(\pi_1 > 0 \), then
 \[
x_1 \leq (\pi_0 - \sum_{j: \pi_j > 0} \pi_j l_j - \sum_{j: \pi_j < 0} \pi_j u_j) / \pi_1
 \]

- If \(\pi_1 < 0 \), then
 \[
x_1 \geq (\pi_0 - \sum_{j: \pi_j > 0} \pi_j l_j - \sum_{j: \pi_j < 0} \pi_j u_j) / \pi_1
 \]
Basic Preprocessing

• Again, let \((\pi, \pi_0)\) be any valid inequality for \(S\).

• The constraint \(\pi x \leq \pi_0\) is redundant if

\[
\sum_{j: \pi_j > 0} \pi_j u_j + \sum_{j: \pi_j < 0} \pi_j l_j \leq \pi_0.
\]

• \(S\) is empty (IP is infeasible) if

\[
\sum_{j: \pi_j > 0} \pi_j l_j + \sum_{j: \pi_j < 0} \pi_j u_j > \pi_0.
\]

• For any IP of the form \(\max\{cx | Ax \leq b, l \leq x \leq u\}, x \in \mathbb{Z}^n\),

 – If \(a_{ij} \geq 0 \forall i \in [1..m]\) and \(c_j < 0\), then \(x_j = l_j\) in any optimal solution.

 – If \(a_{ij} \leq 0 \forall i \in [1..m]\) and \(c_j > 0\), then \(x_j = u_j\) in any optimal solution.
Probing for Integer Programs

• It is also possible in many cases to fix variables or generate new valid inequalities based on logical implications.

• Consider \((\pi, \pi_0)\), a valid inequality for 0-1 integer program.

• If \(\pi_k > 0\) and \(\pi_k + \sum_{j \in A_k} \pi_j > \pi_0\), then we can fix \(x_k\) to zero.

• Similarly, if \(\pi_k < 0\) and \(\sum_{j \in A_k} \pi_j < 0\), then we can fix \(x_k\) to one.

• **Example**: Generating logical inequalities
Generation of the Conflict Graph
Improving Coefficients

- Suppose again that \((\pi, \pi_0)\) is a valid inequality for a 0-1 integer program.
- Suppose that \(\pi_k > 0\) and \(\sum_{j: \pi_j > 0, j \neq k} \pi_j < \pi_0\).
- If \(\pi_k > \pi_0 - \sum_{j: \pi_j > 0, j \neq k} \pi_j\), then we can set

 - \(\pi_k \leftarrow \pi_k - (\pi_0 - \sum_{j: \pi_j > 0, j \neq k} \pi_j)\), and
 - \(\pi_0 \leftarrow \sum_{j: \pi_j > 0, j \neq k} \pi_j\).
- Similarly, suppose that \(\pi_k < 0\) and \(\pi_k + \sum_{j: \pi_j > 0, j \neq k} \pi_j < \pi_0\).
- Then we can again set \(\pi_k \leftarrow \pi_k - (\pi_0 - \pi_j - \sum_{j: \pi_j > 0, j \neq k} \pi_j)\)
Preprocessing and Probing in Branch and Bound

• In practice, these rules are applied iteratively until none applies.
• Applying one of the rules may cause a new rule to apply.
• Bound improvement by reduced cost can be reapplied whenever a new bound is computed.
• Furthermore, all rules can be reapplied after branching.
• These techniques can make a very big difference.
Preprocessing Based on Problem Structure

- **Example:** Preprocessing Methods in Set Partitioning
 - Duplicate columns
 - Dominated rows
 - Column is a sum of other columns
 - Extended row clique
 - Singleton row
 - Rows differ by two entries
Root Node Processing

• Typically, more effort is put into processing the root node than other nodes in the tree.

• Work done in the root node will impact the processing of every subsequent node.

• Dual bounding
 – Cut generation in the root node can be thought of as an additional pre-processing step to the formulation before enumeration.
 – Cut generation in the root node can also be used to predict effectiveness of such techniques elsewhere in the tree.

• Primal bounding
 – Primal bounds found in the root node can have a big impact on the search.
 – They help to improve variable bounds by reduced cost and can also lead to more effective/efficient search strategies.
 – As with cut generation, we use performance in the root node as an indicator of efficacy throughout the tree.
Node Pre/Post-Processing: Bound Improvement by Reduced Cost

- Consider an integer program $\max_{x \in \mathbb{Z}^n} \{ cx \mid Ax \leq b, 0 \leq x \leq u \}$.

- Suppose the linear programming relaxation has been solved to optimality and row zero of the tableau looks like

$$z = \bar{a}_{00} + \sum_{j \in NB_1} \bar{a}_{0j} x_j + \sum_{j \in NB_2} \bar{a}_{0j} (x_j - u_j)$$

where NB_1 are the nonbasic variables at 0 and NB_2 are the nonbasic variables at their upper bounds u_j.

- In addition, suppose that a lower bound z on the optimal solution value for IP is known.

- Then in any optimal solution

$$x_j \leq \left[\frac{\bar{a}_{00} - z}{-\bar{a}_{0j}} \right] \text{ for } j \in NB_1, \text{ and}$$

$$x_j \geq u_j - \left[\frac{\bar{a}_{00} - z}{\bar{a}_{0j}} \right] \text{ for } j \in NB_2.$$
Node Pre/Post-Processing: Other Techniques

- Bound improvement in the root node
 - Whenever a new lower bound is found by a heuristic or otherwise, we can apply bound improvement in the root node.
 - To do so, we save the reduced costs of the variables in the root node.
 - We can do this for multiple bases obtained during the processing of the root node.
 - The bound improvements found in this way can be immediately applied to all candidate and active nodes.

- Techniques similar to those applied in the root node can also be applied during the processing of individual nodes.

- New implications may be available once branching constraints are applied.
Node Pre/Post-Processing: Conflict Analysis

- Whenever a node is found to be infeasible, we derive a *conflict*.
- The branching constraints imposed to arrive at that node cannot all be imposed simultaneously.
- These conflicts can be used to derive cuts and may also contribute to enhancement of the conflict graph.
Bounding

• For now, we focus on the use of cutting plane methods for bounding.
• We will discuss decomposition-based bounding in a later lecture.
• The bounding loop is essentially a cutting plane method for solving the subproblem, but with some kind of early termination criteria.
• After termination, branching is performed to continue the algorithm.
• The bounding loop consists of several steps applied iteratively (not necessarily in this order).
 – Solve the current LP relaxation.
 – Decide whether node can be fathomed (by infeasibility or bound).
 – Generate inequalities violated by the solution to the LP relaxation.
 – Perform primal heuristics.
 – Apply node pre/post-processing.
 – Manage/improve LP relaxation (add/remove cuts, change bounds)
 – Decide whether to branch
Solving the LP Relaxation

- The LP relaxation is typically solved using a simplex-based algorithm.
 - This yields the advantage of efficient warm-starting of the solution process.
 - Many standard cut generation techniques require a basic solution.
- Interior point methods may be useful in some cases where they are much more effective (set packing/partitioning is one case in which this is typical).
- It may also be fruitful in some cases to explore the use of alternatives, such as the Volume Algorithm.
Cut Generation

• Standard methods for generating cuts
 – Gomory, GMI, MIR, and other tableau-based disjunctive cuts.
 – Cuts from the node packing relaxation (clique, odd hole)
 – Knapsack cuts (cover cuts).
 – Single node flow cuts (flow cover).
 – Simple cuts from pre-processing (probing, etc).

• We must choose from among these various method which ones to apply in each node.

• We must in general decide on a general level of effort we want to put into cut generation.
Managing the LP Relaxations

• In practice, the number of inequalities generated can be **HUGE**.

• We must be careful to keep the size of the LP relaxations small or we will sacrifice efficiency.

• This is done in two ways:
 – Limiting the number of cuts that are added each iteration.
 – Systematically deleting cuts that have become *ineffective*.

• How do we decide which cuts to add?

• And what do we do with the rest?

• What is an ineffective cut?
 – One whose dual value is (near) zero.
 – One whose slack variable is basic.
 – One whose slack variable is positive.
Managing the LP Relaxations

- Below is a graphical representation of how the LP relaxation is managed in practice.
- Newly generated cuts enter a buffer (the *local cut pool*).
- Only a limited number of what are predicted to be the most effective cuts from the local are added in each iteration.
- Cuts that prove effective locally may eventually sent to a global pool for future use in processing other subproblems.
Cut Generation and Management

- A significant question in branch and cut is what classes of valid inequalities to generate and when?
- It is generally not a good idea to try all cut generation procedures on every fractional solution arising.
- For generic mixed-integer programs, cut generation is most important in the root node.
- Using cut generation *only* in the root node yields a procedure called *cut and branch*.
- Depending on the structure of the instance, different classes of valid inequalities may be effective.
- Sometimes, this can be predicted ahead of time (knapsack inequalities).
- In other cases, we have to use past history as a predictor of effectiveness.
- Generally, each procedure is only applied at a dynamically determined frequency.
Deciding Which Cuts to Add

• Predicting what cuts will be effective is difficult in general.

• Degree of violation is an easy-to-apply criteria, but may not be the most natural or intuitive measure.

• Other measures
 – Bound improvement (difficult to predict/calculate)
 – Euclidean distance from point to be cut off.

• It is possible to generate cuts using a different measure than that which is used to add them from the local pool.

• This might be done because generation by a criteria other than degree of violation is difficult.
Deciding When to Branch

- Because the cutting plane algorithm is a finite algorithm in itself (at least in the pure integer case), there is no strict requirement to branch.

- The decision to branch is thus a practical matter.

- Typically, branching is undertaken when “tailing off” occurs, i.e., bound improvement slows.

- Detecting when this happens is not straightforward and there are many ways of doing it.

- Ultimately, branching and cutting (using the same disjunction) have the same impact on the bound.

- Tailing off may simply be a result of numerical issues.

- We will consider the numerics of the solution process in a later lecture.
Balancing the Effort of Branching and Bounding

• To a large extent, the more effort one puts into branching, the smaller the search tree will be.

• Branching effort can be tuned by adjusting
 – How many branching candidates to consider.
 – How much effort should be put into estimating impact (pseudo-cost estimates versus strong branching, etc.).
 – The same can be said about efforts to improve both primal and dual bounds.
 * For dual bounds, we need to determine how much effort to spend generating various classes of inequalities.
 * For primal bounds, we need to determine how much effort to put into primal heuristics.
 – One of the keys to making the overall algorithm work well is to tune the amount of effort allocated to each of these techniques.
 – This is a very difficult thing to do and the proper balance is different for different classes of problems.
Primal Bounding Strategy

- The strategy space for primal heuristics is similar to that for cuts.
- We have a collection of different heuristics that can be applied.
- We need to determine which heuristics to apply and how often.
- Generally speaking, we do this dynamically based on the historical effectiveness of each method.
Computational Aspects of Search Strategy

- The search must find the proper balance between several factors.
 - Primal bound improvement versus dual bound improvement.
 - The savings accrued by diving versus the effectiveness of best first.
- When we are confident that the primal bound is near optimal, such as when the gap is small, a diving strategy is more appropriate.
- We can also adjust our strategy based on what the user’s desire is.
Adjusting Strategy Based on User Desire

• In general, there is always a tradeoff between improvement of the dual and the primal bound.

• The user may have particular desires about which of these is more important.

• Some solvers change their strategy according to the emphasis preferred by the user.

 – Proving optimality
 – Finding good solution quickly