Reading for This Lecture

• “Computational Study of Search Strategies for Mixed Integer Programming,” Linderoth and Savelsbergh.

• “Constraint Integer Programming,” Achterberg, Chapter II
Putting it All Together: Search Strategies

• In the last lecture, we discussed how to *branch*, i.e., divide the feasible region of a subproblem into two pieces.

• After branching, we still have to face the question of what node to process next.

• The strategy for deciding what node to work on next is called the *search strategy*.

• In choosing a search strategy, we might consider our goal:
 – Minimize the time required to find a provably optimal solution.
 – Find the best possible solution in a limited amount of time.

• In practice, we may want some of each.
Basic Strategies: Best First

- A reasonable approach to minimizing overall solution time is to try to minimize the size of the search tree.

- In theory, we can do this by choosing the subproblem with the *best bound* (highest upper bound, if we are maximizing).

- A candidate node is said to be *critical* if its bound exceeds the value of an optimal solution to the IP.

- Every critical node will be processed no matter what the search order.

- Under mild conditions, best first is guaranteed to examine only critical nodes, thereby minimizing the size of the search tree (*why*?).

- However, it has some drawbacks:
 - Doesn’t find feasible solutions quickly (*why*?).
 - Node setup costs.
 - Memory usage.
 - Fewer variables fixed by reduced cost (more about this later).
Basic Strategies: Depth First

• The depth first approach is to always choose the “deepest” node to process next.

• This avoids most of the problems with best first:
 – The number of candidate nodes is minimized (saving memory).
 – The node set-up costs are minimized.
 – Feasible solutions are found more quickly (why?).

• Unfortunately, if the initial lower bound is not very good, then we may end up processing lots of non-critical nodes.

• We want to avoid this extra expense if possible.
Estimate-based Strategies: Finding Feasible Solutions

• Let’s focus on a strategy for finding feasible solutions quickly.

• One approach is to try to estimate the value of the optimal solution to each subproblem and pick the best.

• For any subproblem S_i, let

 $s^i = \sum_j \min(f_j, 1 - f_j)$ be the sum of the integer infeasibilities,

 z^i_U be the upper bound, and

 z_L the global lower bound.

• Also, let S_0 be the root subproblem.

• The best projection criterion is

 \[E_i = z^i_U + \left(\frac{z_L - z^0_U}{s^0} \right) s^i \]

• The best estimate criterion uses the pseudo-costs to obtain

 \[E_i = z^i_U + \sum_j \min(P^-_j f_j, P^+_j (1 - f_j)) \]
Advanced Strategies: Proving Optimality

- For many combinatorial problems, we can find a “good” solution heuristically.
- In such cases, we are more concerned with minimizing the time to prove optimality.
- To retain the advantages of both best first and depth first search, we can use a combined strategy.
 \- Proceed depth-first until the bound in the current node falls below the best bound by more than a given percentage.
 \- Proceed depth-first until the difference between the current bound and the best bound is more than a given percentage of the “global gap.”
- Note that if we actually knew the value of the optimal solution, then we could simply do pure depth-first search.
- Hence, another strategy is to estimate the optimal solution value and proceed depth-first until the bound falls below the estimate.
Hybrid Strategy

• In cases where we do not have a good feasible solution going, we might also try a *hybrid strategy*.
 – First try to find good feasible solutions.
 – Then switch to proving optimality.
Measuring Progress

• An important question is how we know if we’re making progress?
• How much longer will it be until completion?
• The traditional measures of progress are
 – Optimality gap
 – Number of candidate nodes
• These measures are not ideal in many respects.
• Current research is being conducted into what measures are more appropriate.