Advanced Mathematical Programming
IE417

Lecture 2

Dr. Ted Ralphs
Reading for This Lecture

• Primary Reading
 – Chapter 2, Sections 1-3

• Secondary Reading
 – Chapter 1
 – Appendix A
Preliminaries
Real Vector Spaces

• A real vector space is a set V, along with

 – an addition operation that is closed, commutative, and associative.
 – an element $0 \in V$ such that $a + 0 = a$, $\forall a \in V$.
 – an additive inverse operation such that $\forall a \in V, \exists a' \in V$ such that $a + a' = 0$.
 – a closed, scalar multiplication operation such that $\forall \lambda, \mu \in \mathbb{R}, a, b \in V$
 * $\lambda(a + b) = \lambda a + \lambda b$
 * $(\lambda + \mu)a = \lambda a + \mu a$
 * $\lambda(\mu a) = (\lambda \mu)a$
 * $1a = a$
Norms on Vector Spaces

- A **norm** on a vector space is a function \(\| \cdot \| : V \rightarrow \mathbb{R} \) satisfying
 - \(\| v \| \geq 0 \ \forall v \in V \)
 - \(\| v \| = 0 \) if and only if \(v = 0 \)
 - \(\| v + w \| \leq \| v \| + \| w \| , \ \forall v, w \in V \)
 - \(\| \lambda v \| = |\lambda| \cdot \| v \| \)

- Norms are used for measuring the “size” of an object or the “distance” between two objects in a vector space.

- These are the normal properties you would expect such a measure to have.
Examples of Vector Spaces

- \mathbb{R}^n
- \mathbb{Z}^n
- $\mathbb{R}^{n \times n}$
- $\{y \in \mathbb{R}^m : Ax = y, \exists x \in \mathbb{R}^n\}$
- Unless otherwise noted, we will be dealing with \mathbb{R}^n
Matrix and Vector Norms

- Unless otherwise indicated, we will use the L_2 norm for vectors and the corresponding norm for matrices.

- We will denote this by $\| \cdot \|$.

- The L_2 norm for matrices is defined as follows:

$$
\| A \| = \max\{\| Ax \| / \| x \|, x \neq 0\}
$$

- Note the following properties:
 - $| x^T y | \leq \| x \| \cdot \| y \|$
 - $\| Ax \| \leq \| A \| \cdot \| x \|$
 - $\| AB \| \leq \| A \| \cdot \| B \|$
Types of Optimization Problems

• **Unconstrained Optimization**

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad x \in X,
\end{align*}
\]

• **Constrained Optimization**

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad g_i(x) \leq 0, \quad i = 1, \ldots, l, \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, m, \\
& \quad x \in X
\end{align*}
\]
Constrained Optimization Problems

• If f, g_i, and h_i are linear functions, then we have a *linear program* (by convention, X is \mathbb{R}^n in this case).

• If some of f, g_i, and h_i are nonlinear functions, then we have a *nonlinear program* (again, X is \mathbb{R}^n by convention).

• If X is a discrete set, then we have a *discrete optimization problem* (DOP).

• If $X = \mathbb{Z}^n$, then we have an *integer program* (this terminology usually refers only to linear models).
Some Terms

- Feasible point
- Ball of radius ε, denoted $N_\varepsilon(x)$
- (Strict) local minimum
- (Strict) local maximum
- (Strict) global minimum/maximum
Where We’re Going

- Given an optimization problem, the end goal is to determine a **globally optimal solution**.
- For nonlinear problems, we will sometimes have to settle for **local optima**.
- First, we will look at theoretical conditions that help us determine whether a given point is a local/global optimum.
- Then, we will look at algorithms which help us get there.
- We start by studying **convexity**.
Convex Analysis
Convex Sets

A set S is *convex*

\[x_1, x_2 \in S, \lambda \in [0, 1] \Rightarrow \lambda x_1 + (1 - \lambda)x_2 \in S \]

- If $y = \sum \lambda_i x_i$, where $\lambda_i \geq 0$ and $\sum \lambda_i = 1$, then y is a *convex combination* of the x_i’s.
- If the positivity restriction on λ is removed, then y is an *affine combination* of the x_i’s.
- If we further remove the restriction that $\sum \lambda_i = 1$, then we have a *linear combination*.
Convex Hull

- The *convex hull* of a set \(S \), \(\text{conv}(S) \), is the set of all convex combinations of the members of \(S \).

- The convex hull of \(S \) is
 - The smallest convex set containing \(S \)
 - The intersection of all convex sets containing \(S \)

- If \(S_1 \) and \(S_2 \) are convex sets, then so are the following:
 - \(S_1 \cap S_2 \)
 - \(S_1 + S_2 \)
 - \(S_1 - S_2 \)
Some More Terms

• We can similarly define the affine hull of a set S, $\text{aff}(S)$.

• A set of points x_1, \ldots, x_k in \mathbb{R}^n are affinely independent if $x_i \notin \text{aff}\{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_k\}$ $\forall i \in 1 \ldots k$.

• Note that x_1, \ldots, x_k are affinely independent if and only if $x_2 - x_1, \ldots, x_n - x_1$ are linearly independent.

• A polytope is the convex hull of a set S containing a finite number of points.

• If the set of points in S are affinely independent, then the polytope is called a simplex and the points in S are its vertices.
Carathéodory’s Theorem

Theorem 1. If S is an arbitrary set in \mathbb{R}^n and $x \in \text{conv}(S)$, then x is the convex combination of at most $n + 1$ points.

Idea of Proof:
Closure and Interior

- A point x is in the **closure** of a set S, denoted $cl(S)$, if $S \cap N_\varepsilon(x) \neq \emptyset, \forall \varepsilon > 0$.

- A set is **closed** if $S = cl(S)$.

- A point x is in the **interior** of a set S, denoted $int(S)$, if $\exists \varepsilon > 0$ such that $N_\varepsilon(x) \subset S$.

- A set is **open** if $S = int(S)$.

- A point x is on the **boundary** of a set S if . . .

- A set S is **bounded** if . . .

- A set S is **compact** if it is closed and bounded.
Weierstrass’s Theorem

Theorem 2. Let S be a nonempty, compact set, and let $f : S \to \mathbb{R}$ be continuous on S. Then there exists a solution to the optimization problem

$$\begin{align*}
\min & \ f(x) \\
\text{s.t.} & \ x \in S,
\end{align*}$$

Idea of Proof: