Advanced Mathematical Programming
IE417

Lecture 17

Dr. Ted Ralphs
Reading for This Lecture

• Sections 8.6-8.8
Conjugate Directions

- If $H \in \mathbb{R}^{n \times n}$ is symmetric, the linearly independent vectors d_1, \ldots, d_n are called **H-conjugate** if $d_i^T H d_j = 0$ for $i \neq j$.

- Minimizing the quadratic function $f(x) = c^T x + x^T H x$.
 - Given x_1, any $x \in \mathbb{R}^n$ can be represented as $x_1 + \sum \lambda_j d_j$.
 - $f(x)$ can be rewritten as a function F of λ.

 $$F(\lambda) = c^T x_1 + \sum \lambda_j c^T d_j + (x_1 + \sum \lambda_j d_j)^T H (x_1 + \sum \lambda_j d_j)$$

 $$= \sum \left[c^T (x_1 + \lambda_j d_j) + (x_1 + \lambda_j d_j)^T H (x_1 + \lambda_j d_j) \right]$$
Comments on Conjugate Directions

• The function F is separable so we can minimize over each direction sequentially using line search.

• Hence, we can minimize any quadratic function in n steps.

• At the k^{th} step, we end up at the minimum of f over the subspace spanned by d_1, \ldots, d_k.

• Also, $\nabla f(x_k)^T d_j = 0$ for $j = 1, \ldots, k - 1$.
Quasi-Newton Methods

Davidon-Fletcher-Powell

• **Idea 1**: Use a search direction \(d_j = -D_j \nabla f(x) \) where \(D_j \) is symmetric positive definite and approximates \(H^{-1} \).

• **Idea 2**: Update \(D_j \) at each step so that \(d_{j+1} \) is a conjugate direction.

• **DFP Update**

 \[
 D_{j+1} = D_j + \frac{p_j p_j^T}{p_j^T q_j} - D_j q_j q_j^T D_j / q_j^T D_j q_j
 \]

 \[
 p_j = \lambda_j d_j = x_{k+1} - x_k
 \]

 \[
 q_j = \nabla f(x_k) - \nabla f(x_{k+1})
 \]
Quasi-Newton Methods

• Typical Quasi-Newton Algorithm
 – Start with D_1 symmetric p.d., and initial point $y_1 = x_1, k = 1$.
 – For $j = 1$ to n
 * If $\|\nabla f(y_j)\| < \varepsilon$, then STOP.
 * Otherwise, perform a line search in direction $d_j = -D_j \nabla f(y_j)$ to find y_{j+1}.
 * Update D_j to D_{j+1}.
 – Set $x_{k+1} = y_n, k = k + 1$.

• If the inner loop exits after only $n' < n$ iterations, we have a partial quasi-Newton method.
Comments on the DFP update

• As long as D_1 is symmetric p.d. each D_j is also symmetric p.d.
• This means that each search direction is a descent direction.
• For quadratic functions, the search directions are conjugate to the Hessian.
• Furthermore, for quadratic functions, $D_{n+1} = H^{-1}$.
Basis of Quasi-Newton Methods

• Note that for quadratic functions, the vectors p_1, \ldots, p_{j-1} in the DFP procedure are linearly independent eigenvectors of $D_{j+1}H$ with unit eigenvalues.

• Hence, we are essentially building up H^{-1} as the sum of rank 2 matrices.

• Requirements for quasi-Newton update
 – Maintain symmetry and positive definiteness
 – Maintain the quasi-Newton condition for the correction C_j
 $$C_j q_j = p_j - D_j q_j$$
Other Updates

• Broyden Update
 – A parameterized family of quasi-Newton updates

• Broyden-Fletcher-Goldfarb-Shanno
 – One of the Broyden updates, discovered independently
 – Dominant updating scheme computationally

• Updating the Hessian directly
 – Note that the previous updates worked on H^{-1}.
 – It is also possible to approximate H with B_j.
 – In this case, maintain a Cholesky factorization of B_j.
Computational Issues

- Obviously, there are many computational issues to be addressed with these methods.
- We must take care to avoid ill-conditioned, nearly-singular matrices.
- Cholesky factorization is the central tool for solving systems $Bd = -\nabla f(x)$.
- Implementing these techniques efficiently is not easy.