Reading for This Lecture

• Primary Reading
 – Chapter 6, Sections 2-3
Saddle Point Optimality
Lagrangian Saddle Points

• Recall the Lagrangian function

\[\Phi(x, \mu, v) = f(x) + \mu^T g(x) + v^T h(x) \]

• A point \((x^*, \mu^*, v^*)\) with \(x^* \in X, \mu^* \geq 0\) is a \textit{saddle point} for \(\Phi(x, \mu, v)\) if

\[\Phi(x^*, \mu, v) \leq \Phi(x^*, \mu^*, v^*) \leq \Phi(x, \mu^*, v^*), \forall x \in X, (\mu, v), \mu \geq 0. \]
Saddle Point Optimality

- A point \((x^*, \mu^*, v^*)\) with \(x^* \in X, \mu^* \geq 0\) is a saddle point for \(\Phi(x, \mu, v)\) if and only if
 - \(\Phi(x^*, \mu^*, v^*) = \min\{\Phi(x, \mu^*, v^*) : x \in X\}\)
 - \(g(x^*) \leq 0, h(x^*) = 0\), and
 - \(\mu^*^T g(x^*) = 0\).

- Furthermore, \((x^*, \mu^*, v^*)\) is a saddle point if and only if \(x^*\) and \((\mu^*, v^*)\) are the optimal solutions to \(P\) and \(D\) with no duality gap, i.e., \(f(x^*) = \Theta(\mu^*, v^*)\).
Corollary 1. Suppose

1. $X, f, \text{ and } g$ are convex, and h is affine,
2. $0 \in \text{int } h(X)$, and
3. $\exists x' \in X$ such that $g(x') < 0$ and $h(x') = 0$.

If x^* is an optimal solution to the primal problem P, then there exists a vector (μ^*, v^*) with $\mu^* \geq 0$ such that (x^*, μ^*, v^*) is a saddle point.
Corollary 2. Suppose

1. x^* is a KKT point with multipliers (μ^*, v^*),
2. f, g_i for $i \in I$ are convex at x^*, and
3. h_i is affine if $v^*_i \neq 0$.

Then (x^*, μ^*, v^*) is a Lagrangian saddle point.

Conversely, if (x^*, μ^*, v^*) is a Lagrangian saddle point with $x^* \in \text{int}(X)$, then x^* is feasible for P and (x^*, μ^*, v^*) satisfies the KKT conditions.
Saddle Points and the Perturbation Function

• Recall the perturbation function

\[\nu(y, z) = \min \{ f(x) : g(x) \leq y, h(x) = z, x \in X \} \]

• The following are equivalent:
 – the absence of a duality gap,
 – the existence of a saddle point solution, and
 – The existence of a supporting hyperplane for the epigraph of \(\nu \) at the point \((0, \nu(0))\).
Properties of the Dual Function
Properties of the Dual Function

Theorem 1. If X is a nonempty compact set in \mathbb{R}^n and $f : \mathbb{R}^n \to \mathbb{R}$ and $\beta : \mathbb{R}^n \to \mathbb{R}^{m+l}$ are continuous, then

$$\Theta(w) = \inf\{f(x) + w^T\beta(x) : x \in X\}$$

is concave.

- This means we should be able to maximize Θ.
Differentiability of Θ

Consider the following set of optimal solutions

$$X(w) = \{ y : y \text{ minimizes } \Theta(w) \}$$

Theorem 2. Suppose X is a nonempty compact set in \mathbb{R}^n and $f : \mathbb{R}^n \to \mathbb{R}$ and $\beta : \mathbb{R}^n \to \mathbb{R}^{m+l}$ are continuous. Let $w^* \in \mathbb{R}^{m+l}$ be given such that $X(w^*) = \{ x^* \}$. Then Θ is differentiable at w^* with $\nabla \Theta(w^*) = \beta(x^*)$.
Subgradients of Θ

Theorem 3. Suppose X is a nonempty compact set in \mathbb{R}^n and $f : \mathbb{R}^n \to \mathbb{R}$ and $\beta : \mathbb{R}^n \to \mathbb{R}^{m+l}$ are continuous. If $x^* \in X(w^*)$, then $\beta(x^*)$ is a subgradient of Θ at w^*.

Theorem 4. Under the same conditions as above, ξ is a subgradient of Θ at w^* if and only if ξ belongs to the convex hull of $\{\beta(y) : y \in X(w^*)\}$.
Ascent Directions for Θ

- A vector d is called an *ascent direction* of Θ at w if there exists $\delta > 0$ such that
 \[\Theta(w + \lambda d) > \Theta(w), \forall \lambda \in (0, \delta) \]

- A vector d^* is called a *steepest ascent direction* of Θ at w if
 \[\Theta'(w; d^*) = \max\{\Theta'(w; d) : \|d\| \leq 1\} \]

Direction of Steepest Ascent for \(\Theta \)

Theorem 5. Suppose \(X \) is a nonempty compact set in \(\mathbb{R}^n \) and \(f : \mathbb{R}^n \to \mathbb{R} \) and \(\beta : \mathbb{R}^n \to \mathbb{R}^{m+l} \) are continuous. The direction of steepest ascent \(d^* \) of \(\Theta \) at \(w \) is given by

\[
d^* = \begin{cases}
0 & \text{if } \xi^* = 0 \\
\xi^*/\|\xi^*\| & \text{if } \xi^* \neq 0
\end{cases}
\]

where \(\xi^* \) is the subgradient of \(\Theta \) at \(w \) with the smallest norm.