References for Today’s Lecture

• Required reading
 – Sections 18.1–18.6, 19.2, 19.6, 19.8

• References
 – AMO Section 3.4
 – CLRS Chapter 22
Search Algorithms

- **Search algorithms** are fundamental techniques applied to solve a wide range of optimization problems.

- Search algorithms attempt to find all the nodes in a network satisfying a particular property.

- **Examples**
 - Find nodes that are reachable by directed paths from a source node.
 - Find nodes that can reach a specific node along directed paths.
 - Identify the connected components of a network.
 - Identify directed cycles in network.

- Let us again consider undirected graphs to start.

- We will first generalize the algorithm from last time for finding a simple path in a graph.
Labeling a Component

- The set of all nodes connected to a given node by a path is called a component.
- How easy is it to determine all of the nodes in the same component as a given node?

```python
def DFSRecursion(G, v, pred, component_num = 0):
    G.set_node_attr(v, 'component', component_num)
    for n in G.get_neighbors(v):
        if G.get_node_attr(n, 'component') == None:
            pred[n] = v
            DFS(G, n, pred, component_num)
    return

def DFS(G, v, component_num = 0):
    for n in G.get_node_list():
        G.set_node_attr(n, 'component', None)
        DFSRecursion(G, v, [], component_num)
    return
```
The algorithm we have just seen is known as depth-first search.

We will see why it is called this shortly.

Associated with the search is a search tree that can be used to visualize the algorithm.

At the time a node \(n \) is discovered, we can record \(v \) as its predecessor.

The set of edges consisting of each node and its predecessor forms a tree rooted at \(v \).

- We call the edges in the tree tree edges.
- The remaining edges connect a vertex with an ancestor in the tree that is not its parent and are called back edges.

Why must every edge be either a tree edge or a back edge?
Complexity of Depth-first Search

• How do we analyze a DFS algorithm?
• How many recursive calls are there?
• How does the graph data structure affect the running time?
 – Adjacency matrix
 – Adjacency list
Node Ordering

• The nodes can be ordered in two ways during the depth-first search.
 – Preorder: The order in which the nodes are first *discovered* (discovery time).
 – Postorder: The order in which the nodes *finished* (the recursive calls on all neighbors return).

• These orders will be referred to in various algorithms we’ll study.
Labeling All Components

- To label all components, we loop through all the nodes in the graph and start labeling the component of any node we find that has not already been labeled.

```python
def label_component(G):
    component_num = 0
    for n in G.get_node_list():
        G.set_node_attr(n, 'component', None)
    for n in G.get_node_list():
        if G.get_node_attr(n, 'component') is None:
            DFS(G, n, component_num)
            component_num += 1
    return
```

- What is the complexity of this algorithm?
Depth-first Search in Directed Graphs

- DFS in a directed graph is very similar to DFS in an undirected graph.
- The main difference is that each arc is only encountered once during the search.
- Also, note that the notion of a component is different here.

```python
def DFSRecursion(G, v, pred):
    G.set_node_attr(v, 'color', 'green')
    for n in G.get_neighbors(v):
        if G.get_node_attr(n, 'color') == 'red':
            pred[n] = v
            DFS(G, n, pred)
    return

def DFS(G, v):
    for n in G.get_node_list():
        G.set_node_attr(n, 'color', 'red')
        DFSRecursion(G, v, [])
    return
```

- What nodes will this search reach?
Depth-first Search in Directed Graphs

• As with undirected graphs, DFS in directed graphs produces a search tree that is directed out from the initial node (an out tree).

• At the time a node \(n \) is discovered, we record \(v \) as its predecessor.

• The set of arcs consisting of each node and its predecessor forms a tree rooted at \(v \).
 – We call the arcs in the tree tree arcs.
 – The remaining arcs can be either
 * **Back arcs**: Those connecting a vertex to an ancestor
 * **Down arcs**: Those connecting a vertex to a descendant
 * **Cross arcs**: Those connecting a vertex to a vertex that is neither a descendant nor an ancestor.
Node Order and Arc Type

• Also as with undirected graphs, we can order the nodes in two different ways: postorder and preorder.

• As before, we refer to the preorder number of a node as its discovery time and the postorder number as its finishing time.

• We can identify the type of an arc as follows.
 – It is a back arc if it leads to a node with a later finishing time.
 – Otherwise, it is a cross arc if it leads to a node with an earlier discovery time and a down arc if it leads to a node with a later discovery time.
Problems Solvable With DFS (Undirected Graphs)

- **Cycle Detection**: The discovery of a back edge indicates the existence of a cycle.
- **Simple Path**
- **Connectivity**
- **Component Labeling**
- **Spanning Forest**
- **Two-colorability, bipartiteness, odd cycle**
Edge Connectivity

• Suppose we want to know whether there exists an edge whose removal would disconnect the graph.

• Such an edge is called a \textit{bridge}.

• A graph with no bridges is called \textit{2-edge-connected}.

• In DFS tree, an edge \{v, w\} is a bridge if and only if there is no back edge connecting an descendant of w to an ancestor of w.

• We can find all the bridges in a graph by doing a DFS (How?).
Biconnectivity

• Suppose now that we want to know whether there exists at least two disjoint (w.r.t. vertices and edges) paths between every pair of vertices.

• A graph with this property is called biconnected.

• A vertex whose removal (along with incident edges) disconnects the graph is called an articulation point.

• A graph is biconnected if and only if it has no articulation points.

• We can find the articulation points using an algorithm very similar to the one for finding bridges.
Directed Acyclic Graphs

- A directed acyclic graph (DAG) is a directed graph containing no directed cycles.
- DAGs can be interpreted as specifying precedence relations or a (partial) order on the nodes.
- Directed cycles can be detected in directed graphs by using DFS.
- A graph is a DAG if and only if it contains no back arc.
Topological Ordering

- In a DAG, we interpret the arcs as representing \textit{precedence constraints}.
- In other words, an arc \((i, j)\) represents the constraint that node \(i\) must come before node \(j\).
- Given a graph \(G = (N, A)\) with the nodes labeled with distinct numbers \(1\) through \(n\), let \(\text{order}(i)\) be the label of node \(i\).
- Then, this labeling is a \textit{topological ordering} of the nodes if for every arc \((i, j) \in A\), \(\text{order}(i) < \text{order}(j)\).
- Can all graphs be topologically ordered?
Topological Ordering

The following algorithm will detect presence of a directed cycle or produce a topological ordering of the nodes.

Input: Directed acyclic graph $G = (N, A)$
Output: The array order is a topological ordering of N.

1. $\text{count} \leftarrow 1$
2. while $\{ v \in N : I(v) = 0 \} \neq \emptyset$ do
 1. let v be any vertex with $I(v) = 0$
 2. $\text{order}[v] \leftarrow \text{count}$
 3. $\text{count} \leftarrow \text{count} + 1$
 4. delete v and all outgoing arcs from G
3. end while
4. if $N = \emptyset$ then
 1. return \text{success}
5. else
 1. report \text{failure}
6. end if

Can this be implemented efficiently?
Topological Ordering Algorithm

• Correctness of algorithm
 1. If G has a cycle...
 2. If G is acyclic...

• Running time of the algorithm
Topological Ordering with DFS

• How might we topologically order a graph using DFS?
Connectivity in Directed Graphs

- Determining connectivity in directed graphs is more involved than in undirected graphs.

- Although it is not obvious how to do it, we can find the strongly connected components of a graph in linear time.
 - Use DFS to compute the finishing time for each vertex
 - Compute the reverse (transpose) of the graph.
 - Do DFS on the transpose, but explore each vertex in decreasing order of finish time.

- This can be implemented very efficiently.