Graphs and Network Flows
IE411

Lecture 2

Dr. Ted Ralphs
References for Today’s Lecture

• Required reading
 – Sections 17.2-17.5

• References
 – AMO Sections 2.3
 – CLRS Section 22.1
Network Representation

- Our goal is to develop “efficient” algorithms → reasonable computation time.

- The main factors affecting efficiency are
 - The underlying algorithm
 - Data structure for storing the network

- The same algorithm may behave much differently with different graph data structure.

- What information do we need to store?
 - network topology (structure of nodes and arcs)
 - associated data (costs, capacities, supplies/demands)

- What are the important operations we might need to perform with a network data structure?
Common Representations

• Data structures
 – Node-Arc Incidence Matrix
 – Node-Node Adjacency Matrix
 – Adjacency List
 – Forward Star (Reverse Star)

• How do we evaluate a data structure?
Aside: Multiarcs and Loops

- **Multiarcs** are two or more arcs with the same tail and head nodes.
- A **loop** is an arc with the property that its tail and head nodes are the same.
- Generally we will assume that our networks do not contain parallel arcs or loops.
- The existence of such arcs can cause problems with standard data structures.
(Node-Arc) Incidence Matrix

- $n \times m$ matrix denoted \mathcal{N}.
- One row for each node and one column for each arc.
- For each arc (i, j), put $+1$ in row i and -1 in row j.

\begin{align*}
\begin{array}{cccccccc}
(1, 2) & (1, 3) & (2, 3) & (2, 4) & (3, 2) & (3, 4) & (3, 5) & (4, 5) \\
1 & 2 & 3 & 4 & 5 & 6 & \end{array}
\end{align*}
(Node-Arc) Incidence Matrix

- What is the size of the matrix?
- How many entries are non-zero?
- What information do we get by reading across a row?
- Is this a space efficient representation?
- How about other operations?
(Node-Node) Adjacency Matrix

- $n \times n$ matrix denoted H
- one row for each node and one column for each node
- entry $h_{ij} = 1$ if arc $(i, j) \in A$ (0 otherwise)
(Node-Node) Adjacency Matrix

- What is the size of the matrix?
- How many entries are non-zero?
- What data structures might we use to store arc costs and capacities?
- Is this a space efficient representation?
- What operations are most efficient with this data structure?
Adjacency List

- Adjacency list of node i, $A(i)$, is a list of the nodes j for which $(i, j) \in A$
- List stored as a *linked list*.
- Need one linked list of length $|A(i)|$ for each node.
- Cell can store additional fields such as arc cost and capacity
- Is this a space efficient representation?
- What operations are most efficient with this data structure?
Forward Star

- Stores node adjacency list of each node in one large array
- Associates a unique sequence number with each arc using a specific order starting with arcs outgoing from node 1, then node 2, etc.
- Stores tail information about each arc in tail array, head information in head array, etc.
- Maintains a pointer for each node that indicates the smallest numbered arc in the arc list for that node.
- For consistency, set pointer(1) to 1 and pointer($n + 1$) to $m + 1$.
- What are the advantages of this representation?
Reverse Star

- Similar to a forward start except that arcs are sequenced starting with arcs incoming from node 1.
- The two representations can be maintained side-by-side if necessary.
Miscellaneous Issues

- Parallel Arcs
 - Why would we need parallel arcs?
 - Which representation(s) could accommodate them?
- Undirected Network
 - What needs to change?
 - Node-Arc Incidence Matrix
 - Node-Node Adjacency Matrix
 - Adjacency List
 - What needs to happen when we update \((i, j)\)?
Summary of Representations

<table>
<thead>
<tr>
<th>Representation</th>
<th>Storage Space</th>
<th>Features</th>
</tr>
</thead>
</table>
| Incidence Matrix | nm | 1. Space inefficient
 | | 2. Expensive to manipulate
 | | 3. MCFP constraint matrix |
| Adjacency Matrix | kn^2 | 1. Suited to dense networks
 | | 2. Easy to implement |
| Adjacency List | $k_1n + k_2m$ | 1. Space efficient
 | | 2. Efficient to manipulate |
| | | 3. Suited to dense and sparse |
| Forward Star | $k_3n + k_4m$ | 1. Space efficient
 | | 2. Efficient to manipulate |
| | | 3. Suited to dense and sparse |

Table 1: From Ahuja et al. Figure 2.25