• Minimum Spanning Trees
 – Optimality Conditions
 – Kruskal’s Algorithm
 – Prim’s Algorithm
Combinatorial Optimization

• A *combinatorial optimization problem* consists of
 – a ground set of elements E,
 – an associated set \mathcal{F} of subsets of E called the *feasible subsets*.
 – A cost vector \mathbb{R}^E.

• The cost $c(S)$ of a feasible subset is $\sum_{s \in S} c_s$.

• The goal is to find a subset of minimum cost.
Minimum Spanning Trees

• Recall that a spanning tree T of G is a connected acyclic subgraph that spans all the nodes of G.

• The total cost of a spanning tree is the sum of the costs of the arcs in the tree.

• Given an undirected graph $G = (N, A)$ with n nodes and m arcs and with a length or cost c_{ij} associated with each arc $(i, j) \in A$, the minimum spanning tree problem is to find a spanning tree with the smallest total cost (length).

• This is a combinatorial optimization problem.
Optimality Conditions

- Cut Optimality Conditions
- Path Optimality Conditions

Properties of a Spanning Tree

- For every non-tree arc \((k, l)\), a spanning tree \(T\) contains a unique path from node \(k\) to node \(l\). The arc \((k, l)\) together with the unique path defines a cycle.

- If we delete any tree arc \((i, j)\) from a spanning tree, we partition the node set into two subsets, which define a cut in the graph.
Cut Optimality Conditions

Theorem 1. [13.1] A spanning tree T^* is a minimum spanning tree if and only if for every tree arc $(i, j) \in T^*$, $c_{ij} \leq c_{kl}$ for every arc (k, l) contained in the cut formed by deleting arc (i, j) from T^*.

![Graph diagram with edge weights]
Proof of Theorem 13.1

1. Show if T^* is a MST, then T^* must satisfy the Cut Optimality Conditions.

2. Show if any tree T^* satisfies the Cut Optimality Conditions, then T^* is a MST.
Path Optimality Conditions

Theorem 2. [13.3] A spanning tree T^* is a MST if and only if for every non-tree arc (k, l) of G, $c_{ij} \leq c_{kl}$ for every arc (i, j) contained in the path in T^* connecting nodes k and l.
Proof of Theorem 13.3

1. Show if T^* is a MST, then T^* satisfies the Path Optimality Conditions.

2. Show if for every non-tree arc (k, l) of G, $c_{ij} \leq c_{kl}$ for every arc (i, j) contained in the path in T^* connecting nodes k and l, then T^* is a MST.
Algorithm Based on Cut Optimality

- Prim’s algorithm is motivated by the cut optimality conditions.
- We build up the tree one edge at a time as one connected component.
- In each iteration, we will connect one more node to the current tree.
- We do this by adding the edge that is the minimum length edge across the cut induced by the current set of connected nodes.
- Why does this guarantee optimality?
- How do we do this?
Prim’s Algorithm

algorithm Prim

\[T = \emptyset \]

\[S = \{1\}; \quad \bar{S} = N - \{1\} \]

while (\(|S| < n\)) do

find arc \((i, j)\) in \([S, \bar{S}]\) with minimum cost

\[T = T \cup \{(i, j)\} \]

\[S = S \cup \{j\}; \quad \bar{S} = \bar{S} - \{j\} \]
Complexity

• Number of iterations?
• Dominant step of each iteration?
• What algorithm is similar?
Prim’s Algorithm

• For each node $j \in \bar{S}$

 - $d(j) = \min$ cost of arcs in the cut incident to a node $j \notin S$

 - $d(j) = \min \{c_{ij} : (i, j) \in [S, \bar{S}]\}$

 - $\text{pred}(j) = i$ such that $c_{ij} = \min \{c_{ij} : (i, j) \in [S, \bar{S}]\}$

• To find min cost arc, compute $\min \{d(j) : j \in \bar{S}\}$.

• Suppose \hat{j} is the min, then $(\text{pred}(\hat{j}), \hat{j})$ is min cost arc.

• Move \hat{j} to S and update distance and predecessor labels for nodes adjacent to \hat{j}.

• The complexity is the same as Dijkstra’s Algorithm. With a heap implementation, it is $O(m \log(n))$.
Algorithm Based on Path Optimality

• Kruskal’s algorithm motivated by path optimality conditions.

• We build up the tree one edge at a time, but this time we build multiple components simultaneously.

• In each step, we will add the minimum edge that does not form a cycle with the edges already added.

• Why does this guarantee optimality?

• How do we implement it?
Kruskal’s Algorithm

algorithm Kruskal
 sort edges in non-decreasing order of length
 LIST := ∅
 while (|LIST| < |N| − 1 and ∃ unexamined edges) do
 e := unexamined edge with minimum length
 if adding e to LIST does not create a cycle
 add e to LIST
 else discard e
Kruskal’s Algorithm: Complexity

• The algorithm has two steps.
 – Sorting the edge list: $O(m \log m) = O(m \log n)$
 – Building the tree: ??

• To determine which edges we are allowed to add in each step requires a data structure for storing connected components.

• The data structure must support two operations.
 – $\text{find}(i, j)$: Are i and j in the same component?
 – $\text{union}(i, j)$: Merge the components i and j.
Quick Find Implementation of Union-Find

- The simplest implementation involves an array of length n.
- We will maintain the array such that two items are in the same subset if and only if the array entries are equal.
- This makes the $\text{find}(i, j)$ constant time, so we call this implementation *quick find*.
- How do we implement $\text{union}(i, j)$?
- What is the running time?
- Note that this could also be implemented using linked lists.
Quick Union Implementation of Union-Find

• To speed up the union operation, we maintain the array in a different fashion.

• We will consider the \(i^{\text{th}} \) entry of the array to be a pointer to another item.

• To perform \(\text{find}(i, j) \),
 – Follow the pointers from nodes \(i \) and \(j \) until reaching a node that points to itself, called the \textit{representative}
 – If the same representative is reached from both nodes \(i \) and \(j \), then they are in the same subset.

• To perform \(\text{union}(i, j) \), perform the find operation and then point the representative for \(i \) to the representative for \(j \).

• What is the performance now?
Weighted Quick Union

- Note that the quick union algorithm essentially builds a tree out of the nodes in each component, with the root begin the representative.

- As in a heap, the running time of the find operation depends on the depth of the trees.

- Each union operation essentially connects two trees together by pointing the root of one tree to the root of the other.

- One way to limit the depth of the tree is to always point the smaller tree to the larger one.

- This ensures that each find takes less than \(\log n \) steps.

- Note that we must now keep track of the number of nodes in each tree, but that’s easy to do.

- Another approach is to keep track of the height of each tree and always point the shorter tree to the taller one.
Path Compression

• Ideally, we would like each item to point directly to the representative of its subset.

• One possibility is to simply keep track of all the nodes encountered in the path to the root.

• After reaching the root, set all the nodes on the path to point to the root.

• This is easy to implement recursively and doesn’t change the asymptotic running time.

• An easier method to implement is compression by halving, which is setting each node to point to its grandparent.