Review: Labeling Algorithm

• Pros
 – Guaranteed to solve any max flow problem with integral arc capacities
 – Provides constructive tool for establishing max-flow min-cut theorem

• Cons
 – $O(mnU)$ complexity is unattractive for large U values
 – Might converge to non-optimal solution with irrational arc capacities
 – Requires too much time for large problems
Reducing the Complexity

How can we reduce the number of augmentations?

- Augment in large increments of flow
 Maximum Capacity Augmenting Path

- Use combinatorial strategy to limit types of augmenting paths
 Shortest Augmenting Path

- Relax mass balance constraints at intermediate steps
 Preflow-Push Algorithm
Distance Labels

A distance function \(d : N \rightarrow Z^+ \cup \{0\} \) with respect to the residual capacity \(r_{ij} \) is valid with respect to a flow \(x \) if it satisfies:

\[
\begin{align*}
 d(t) &= 0 \\
 d(i) &\leq d(j) + 1 \ \forall (i, j) \in G(x)
\end{align*}
\]

Property 1. [7.1] If the distance labels are valid, \(d(i) \) is a lower bound on the length of the shortest (directed) path from node \(i \) to node \(t \) in the residual network.

Property 2. [7.2] If \(d(s) \geq n \), then the residual network contains no directed path from \(s \) to \(t \).

Distance labels are exact if \(d(i) \) equals the length of the shortest path from \(i \) to \(t \) in \(G(x) \) for all \(i \in N \).
Admissible Arcs and Paths

An arc \((i, j) \in G(x)\) is *admissible* if it satisfies \(d(i) = d(j) + 1\).

An *admissible path* is a path from \(s\) to \(t\) consisting entirely of admissible arcs.

Property 3. [7.3] An admissible path is a shortest augmenting path from the source to the sink.
Shortest Augmenting Path Algorithm

• Always augments flow along a shortest path from s to t in $G(x)$
• Proceeds by augmenting flows along admissible paths
• Constructs an admissible path incrementally – adding one arc at a time
• Maintains a partial admissible path and iteratively performs advance or retreat operations from current node
• Repeats operations until partial admissible path reaches sink node
Shortest Augmenting Path (SAP) Algorithm

Input: A network $G = (N, A)$ and a vector of capacities $u \in \mathbb{Z}^A$

Output: x represents the maximum flow from node s to node t

$x \leftarrow 0$

obtain exact distance labels $d(i)$

$i \leftarrow s$

while $d(s) < n$ do

if i has an admissible arc then

advance(i)

if $i = t$ then

augment and set $i = s$

end if

else

retreat(i)

end if

end while
SAP Algorithm Details

procedure advance(i)
 let (i, j) be an admissible arc in $A(i)$
 $\text{pred}(j) := i$ and $i := j$

procedure retreat(i)
 $d(i) := \min\{d(j) + 1 : (i, j) \in A(i), r_{ij} > 0\}$
 if $i \neq s$ then $i := \text{pred}(i)$

procedure augment
 identify an augmenting path P using the $\text{pred}()$ indices
 $\delta := \min\{r_{ij} : (i, j) \in P\}$
 augment δ units of flow along path P
SAP Algorithm Example
Correctness of SAP Algorithm

Lemma 1. [7.5] The SAP Algorithm maintains valid distance labels at each step. Moreover, each relabel (or retreat) operation strictly increases the distance label of a node.

Proof:
Validity of labels:

1. **After augmentation**: Arcs that are removed from the residual graph don't affect validity. Arcs \((i, j)\) that get added must satisfy \(d(j) = d(i) + 1\).

2. **After relabeling**: The new label on each node is larger than the old label. Therefore, incoming arcs are not affected. Further, all outgoing arcs are inadmissible.
Complexity of SAP Algorithm

Lemma 2. [7.7] The total spent in checking for admissible arcs is at most m times the number of relabeling operations.

Proof: Result depends on the fact once an arc becomes inadmissible, it remains that way until there is a relabel operation. We maintain a pointer to the “current arc” and only start checking for admissible arcs from there. The pointer is reset after relabeling.

Lemma 3. [7.8] The number of times an arc is “saturated” is at most m times the number of relabeling operations.

Proof: Between two consecutive saturations of an arc, (i, j), $d(i)$ and $d(j)$ must both be relabeled.
Complexity of SAP Algorithm

Lemma 4. [7.9] Each distance label increases at most \(n \) times.

Proof:
Each relabel increases the label by at least one unit. Labels cannot go above \(n \).

Theorem 1. [7.10] The SAP Algorithm runs in \(\mathcal{O}(n^2m) \) time.

Proof:
SAP maintains valid distance labels at each step and each relabel strictly increases the distance label of a node. There can be at most \(n^2 \) relabel operations before \(d(s) \geq n \), after which there is no augmenting path from \(s \) to \(t \). There are \(\mathcal{O}(m) \) steps per relabel operation.
Practical Improvement

• Terminates when $d(s) \geq n$.

• May spend lots of time relabeling after finding maximum flow.

• Can we detect the presence of a min-cut before $d(s) \geq n$?

• Suppose we maintain a n-dimensional array, numb. Let $\text{numb}(k)$ denote the number of nodes whose distance label equals k.
Tanker Scheduling Problem

- A steamship company has contracted to deliver perishable goods between several different origin-destination cities.
- Since the cargo is perishable, it must be delivered to its destination on its delivery date.
- The objective is to determine the minimum number of ships required to meet the delivery dates of the shiploads.