Graphs and Network Flows
IE411

Lecture 11

Dr. Ted Ralphs
References for Today’s Lecture

- Required reading
 - Sections 21.3

- References
 - AMO Chapter 5
 - CLRS Chapter 25
Label-Correcting Algorithms

• Generic
 – $O(n^2C)$ iterations (recall $d(j)$ bounded by nC and $-nC$)
 – No specified method for selecting an arc violating optimality conditions

• Modified
 – By repeatedly scanning arcs in a fixed order, we can get a strongly polynomial time algorithm.
 – **Practical improvement**: Maintain a list of arcs that *might* violate optimality conditions
 ✴ If we decrease $d(j)$, what do we know about reduced lengths of incoming arcs? outgoing arcs?
 ✴ Which arcs could violate optimality conditions after a label is modified?
Special Implementations of Modified Label-Correcting

• FIFO Label-Correcting
 – $O(mn)$ is best strongly polynomial-time implementation
 – Maintain a queue and examine nodes in FIFO order

• Dequeue Implementation
 – a `dequeue` allows elements to be added or deleted from both front and back
 – always select nodes from front; add previously seen nodes to front, all others to back
 – $O(nmC)$ but performs well in practice for sparse networks
FIFO Label-Correcting Algorithm

Input: A network $G = (N, A)$ and a vector of arc lengths $c \in \mathbb{Z}^A$

Output: $d(i)$ is the length of a shortest path from node s to node i and $\text{pred}(i)$ is the immediate predecessor of i in an associated shortest paths tree.

$d(s) \leftarrow 0$ and $\text{pred}(s) \leftarrow 0$

$d(j) \leftarrow \infty$ for each $j \in N \setminus \{s\}$

$Q \leftarrow \{s\}$

while $Q \neq \emptyset$ do

 Remove the first element i from Q

 for $(i, j) \in A(i)$ do

 if $d(j) > d(i) + c_{ij}$ then

 $d(j) \leftarrow d(i) + c_{ij}$

 $\text{pred}(j) \leftarrow i$

 if $j \notin Q$ then

 add j to the end of Q

 end if

 end if

 end for

end while
All-Pairs Shortest Path Problem

• Determine the shortest path distance between every pair of nodes in the network.
 – Assume underlying network is *strongly connected*
 – Assume network does not contain a negative cost cycle

• Algorithms
 – Repeated Shortest Path
 – All-Pairs Label-Correcting
Repeated Shortest Path Algorithm (Non-Negative Arc Lengths)

• For each node $i \in N$, solve a single-source shortest path problem with node i as the source using any appropriate algorithm.

• Complexity: Let $S(n, m, C)$ denote the time required to solve a shortest path problem with non-negative arc lengths. Then, the complexity is $O(n \cdot S(n, m, C))$.

Repeated Shortest Path Algorithm (Negative Arc Lengths)

- Transform the network into one with non-negative arc lengths.
- For each node $i \in N$, solve a single-source shortest path problem with node i as the source using any appropriate algorithm.
- Compute the shortest path distances in the original network from the shortest path distances in the transformed network.
- **Complexity**: $O(nm + n \cdot S(n, m, C)) = O(n \cdot S(n, m, C))$.
Shortest Path Optimality Conditions

Theorem 1. For every pair of nodes \([i, j] \in N \times N\), let \(d[i, j]\) represent the length of some directed path from node \(i\) to node \(j\) satisfying \(d[i, i] = 0 \ \forall i \in N\) and \(d[i, j] \leq c_{ij} \ \forall (i, j) \in A\). These distances represent shortest path distances if and only if they satisfy

\[d[i, j] \leq d[i, k] + d[k, j] \ \forall i, j, k \in N. \]

PROOF:

⇒ If these distances represent shortest path distances, they satisfy \(d[i, j] \leq d[i, k] + d[k, j] \ \forall i, j, k \in N\).

⇌ If a set of distance labels satisfy \(d[i, j] \leq d[i, k] + d[k, j] \ \forall i, j, k \in N\), then they represent shortest path distances.

All-Pairs Label-Correcting Algorithm

Input: A network \(G = (N, A) \) and a vector of arc lengths \(c \in \mathbb{Z}^A \)
Output: \(d[i, j] \) is the length of a shortest path from node \(i \) to node \(j \) for pairs \(i \) and \(j \).

\[
\begin{align*}
&d[i, j] \leftarrow \infty \text{ for all } [i, j] \in N \times N \\
&d[i, j] \leftarrow 0 \text{ for all } i \in N \\
&\text{for } (i, j) \in A \text{ do} \\
&\quad d[i, j] \leftarrow c_{ij} \\
&\text{end for} \\
&\text{while } \exists (i, j, k) \text{ satisfying } d[i, j] > d[i, k] + d[k, j] \text{ do} \\
&\quad d[i, j] := d[i, k] + d[k, j] \\
&\text{end while}
\end{align*}
\]
Floyd-Warshall Algorithm

- $O(n^3C)$ iteration complexity of algorithm is not appealing(!)
- Given matrix of distances $d[i,j]$, we need to perform n^3 comparisons just to test optimality
- Floyd-Warshall cleverly obtains matrix of shortest path distances within $O(n^3)$ computations
Floyd-Warshall Algorithm

Input: A network $G = (N, A)$ and a vector of arc lengths $c \in \mathbb{Z}^A$

Output: $d[i, j]$ is the length of a shortest path from node i to node j for pairs i and j.

for $(i, j) \in N \times N$ do
 $d[i, j] \leftarrow \infty$ and $pred[i, j] \leftarrow 0$
end for

for $i \in N$ do
 $d[i, i] \leftarrow 0$
end for

for $(i, j) \in A$ do
 $d[i, j] \leftarrow c_{ij}$ and $pred[i, j] := i$
end for

for $k = 1$ to n do
 for $[i, j] \in N \times N$ do
 if $d[i, j] > d[i, k] + d[k, j]$ then
 $d[i, j] \leftarrow d[i, k] + d[k, j]$
 $pred[i, j] \leftarrow pred[k, j]$
 end if
 end for
end for
Proof of Correctness

Claim 1. After iteration k, $d[i, j]$ is the shortest path distance from node i to node j subject to the condition that the path uses only nodes $1, 2, \ldots, k$ as internal nodes.

PROOF: (by induction)
Floyd-Warshall Algorithm

• Complexity?
Detecting Negative Cost Cycles

• Network contains negative cost cycle if
 – $d[i, i] < 0$ for some $i \in N$
 – $d[i, j] < -nC$ for some $[i, j] \in N \times N$

• For F-W, simply check $d[i, i] < 0$ when updating $d[i, i]$.

• How else could we check?