References for Today’s Lecture
References for Today’s Lecture

• Required reading
 – Sections 21.1–21.2

• References
 – AMO Chapter 6
 – CLRS Sections 26.1–26.2
Labeling Algorithm (Ford and Fulkerson (1956))

- Fill in details of generic augmenting path algorithm
 - how to identify augmenting path (or show no path exists)
 - whether algorithm terminates in finite number of iterations
 - whether final flow value is maximal

- The labeling algorithm is the most straightforward variant.

- The cost to find the augmenting path is low, but the number of augmentations can be high.

- Depth-first search is a special case.
Identifying an Augmenting Path

- Use search technique to find a directed path in $G(x)$ from s to t
 - At any step, partition nodes into labeled and unlabeled
 - Iteratively select a labeled node and scan its arc adjacency list in $G(x)$ to reach and label additional nodes
 - When sink becomes labeled, augment flow, erase labels and repeat
 - Terminate when all labeled nodes have been scanned and sink remains unlabeled
Labeling Algorithm

Input: A network $G = (N, A)$ and a vector of capacities $u \in \mathbb{Z}^A$
Output: x represents the maximum flow from node s to node t
 label node t
 while t is labeled do
 unlabel all nodes
 \[\text{pred}(j) \leftarrow 0 \ \forall j \in N \]
 label node s and set $LIST \leftarrow \{s\}$
 while $LIST \neq \emptyset$ and t is unlabeled do
 remove a node i from $LIST$
 for each arc (i, j) in the residual network do
 if node j is unlabeled then
 $\text{pred}(j) \leftarrow i$
 label node j and add j to $LIST$
 end if
 end for
 end while
 if t is labeled then
 augment
 end if
end while
Example of Labeling Algorithm
Correctness of Labeling Algorithm

Claim 1. When the algorithm terminates, the current flow x is a maximum flow.

Proof:
Note that in each iteration of the while loop, the algorithm either (i) performs an augmentation or (ii) terminates. Therefore, we need to show that the current flow x is a maximum flow when (ii) occurs.
Max-Flow Min-Cut Theorem

Theorem 1. [6.3] The maximum value of the flow from a source node s to a sink node t in a capacitated network equals the minimum capacity among all $s - t$ cuts.

Proof: Follows from the Correctness of the Labeling Algorithm.
Augmenting Path Theorem

Theorem 2. [6.4] A flow x^* is a maximum flow if and only if the residual network $G(x^*)$ contains no augmenting path.

Proof:
Integrality Theorem

Theorem 3. [6.5] *If all arc capacities are integer, the maximum flow problem has an integer maximum flow.*

Proof:
Complexity of the Labeling Algorithm

Proof:
At each iteration of the while loop, how much work is done?

How many augmentations are done?
Flows with Lower Bounds

• Suppose that we add non-negative lower bounds on the arc flows to the maximum flow problem:

\[l_{ij} \leq x_{ij} \leq u_{ij}, \forall (i, j) \in A. \]

• Zero flow is no longer always a feasible solution.

• Objective: determine if the problem is feasible and, if so, establish a maximum flow.

• Approach: first, determine a feasible flow and then determine a maximum flow.
Determining a Feasible Flow

- Transform max flow into circulation (max flow has feasible flow if and only if circulation has feasible flow)

- Identify an infeasible arc \((p, q)\) (one that violates lower bound).

- Start with the zero flow and then augment flow around cycles with \((p, q)\) as a forward arc.

- The algorithm terminates with either a feasible circulation or a proof that no such circulation exists.

Theorem 5. [6.11] A circulation problem with non-negative lower bounds on the arc flows is feasible if and only if, for every set \(S\) of nodes,

\[
\sum_{(i,j) \in (\bar{S}, S)} l_{ij} \leq \sum_{(i,j) \in (S, \bar{S})} u_{ij}.
\]
Determining a Maximum Flow

• Suppose that we have a feasible flow x in the network.

• To obtain a maximum flow, we can modify any maximum flow algorithm to accommodate non-negative lower bounds.

• Define the residual capacity of an arc (i, j) to be

$$r_{ij} = (u_{ij} - x_{ij}) + (x_{ji} - l_{ji})$$

• From optimal residual capacities, we can construct a maximum flow.

• Theorem 6.10 is a generalized version of the Max-Flow Min-Cut Theorem for networks with both lower bounds and upper bounds on the arc flows.
Application: Network Connectivity

- Two directed paths from s to t are *arc disjoint* if they do not have any arc in common.

- Given a directed network $G = (N, A)$ and two specified nodes s and t:
 - What is the maximum number of arc-disjoint directed paths from node s to node t?
 - What is the minimum number of arcs that we should remove from the network so that it contains no directed paths from s to t?

Theorem 6. [6.7] *The maximum number of arc-disjoint paths from node s to node t equals the minimum number of arcs whose removal from the network disconnects all paths from s to $t.*
Application: Matchings and Covers in a Bipartite Network

Given a directed bipartite network \(G = (N, A) \), where \(N = N_1 \cup N_2 \):

- A subset \(A' \subseteq A \) is a matching if no two arcs in \(A' \) are incident to the same node.
- A subset \(N' \subseteq N \) is a node cover if every arc in \(A \) is incident to one of the nodes in \(N' \).

Theorem 7. [6.9] In a bipartite network \(G = (N_1 \cup N_2, A) \), the maximum cardinality of any matching equals the minimum cardinality of any node cover of \(G \).