Readings for Today’s Lecture

• Miller and Boxer, Chapters 2 and 3.
• Aho, Hopcroft, and Ullman, Sections 2.5–2.9.
Recursion

• A recursive function is one that calls itself.

• There are two basic types of recursive functions.
 – A linear recursion calls itself once.
 – A branching recursion calls itself two or more times.

• Examples of linear recursion
 – Euclid’s algorithm
 – Binary search
Properties of Recursive Algorithms

• Generally speaking, recursive algorithms should have the following two properties to be guarantee well-defined termination.
 – They should solve an explicit base case.
 – Each recursive call should be made with a smaller input size.

• All recursive algorithms have an associated tree that can be used to diagram the function calls.

• Execution of the program essentially requires traversal of the tree.

• By adding up the number of steps at each node of the tree, we can compute the running time.

• We will revisit trees later in the course.
Divide, Conquer, and Combine

• Many recursive algorithms arise from employment of a divide-and-conquer approach.

• This means breaking a larger problem into pieces that can be solved independently.

• The solutions to the various pieces may then have to recombined in some way.

• More accurately, these are divide, conquer, and combine algorithms.

• Such algorithms have natural implementations using branching recursions.

• Example: Merge sort
 – Divide the list in half.
 – Sort each half (recursively).
 – Merge the two halves together.

• The running time depends on how we do the merging.
Implementing Merge Sort

- Here is the subroutine for implementing a basic merge sort.
- To sort an entire array the call would be `MergeSort(array, 0, length)`.

```
MergeSort(list, beg, end)
    if beg < end:
        mid = (beg + end)/2
        MergeSort(list, beg, mid)
        MergeSort(list, mid + 1, end - mid)
        Merge(list, beg, mid, end)
```
Implementing Merge

- There are many ways to implement the merge, but here is one simple one.

- Note that this involves copying over the elements of the array.

```python
def Merge(list, beg, end, mid):
    temp1 = list[beg:mid + 1]
    temp2 = list[mid + 1:end]
    i, j = 0, 0
    for k in range(end - beg):
        if i == mid - beg:
            list[k] = temp1[i]; i+=1
            continue
        if j == end - mid:
            list[k] = temp2[j]; j+=1
            continue
        if temp1[i] < temp2[j]:
            list[k] = temp1[i]; i+=1
        else:
            list[k] = temp2[j]; j+=1
```
Proving Correctness of a Recursive Algorithm

- There is a natural connection between induction and recursion.
- Most recursive algorithms can be proven by induction in a very natural way.
- Example: Merge Sort
 - Assuming the merge is done correctly, correctness of the main subroutine is “obvious.”
 - It can be shown formally by induction.
 - To show the merge works correctly, we can use a loop invariant.
 - What is the loop invariant in the merge subroutine?
Some Simple Optimization

- Handling small arrays
- Eliminating copying (reduce memory requirements)
- Using sentinels

```python
Merge(list, beg, end, mid)
    temp1 = list[beg:mid + 1]
    temp2 = list[mid + 1:end]
    temp1[mid - beg +1 ] = MAXINT
    temp2[end - mid] = MAXINT
    i, j = 0, 0
    for k in range(end - beg)
        if temp1[i] < temp2[j]:
            list[k] = temp1[i]; i+=1
        else:
            list[k] = temp2[j]; j+=1
```
Analyzing Merge Sort

• Suppose the running time of merge sort is given by T.

• We analyze each piece of the algorithm separately.

 – **Divide**: This operation involves finding the midpoint of the array, which is in $\Theta(1)$.

 – **Conquer**: We recursively solve two subproblems, each of size $n/2$, which is $2T(n/2)$.

 – **Combine**: The running time of the merge subroutine is in $\Theta(n)$.

• So T satisfies the following recurrence.

$$T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
2T(n/2) + \Theta(n) & \text{if } n > 1
\end{cases}$$

• How do we figure out what T is?
Analyzing Recurrences

• In the last slide, we analyzed merge sort using two different methods.

• General methods for analyzing recurrences
 – Telescoping
 – Build a recursion tree.
 – Solve analytically.
 – Make a guess and prove that it’s right (usually with induction).
 – Use the Master Theorem.

• Note that when we analyze a recurrence, we may not get or need an exact answer.

• We may prove the running time is in \(O(f) \) or \(\Theta(f) \) for some simpler function \(f \).

• When taking the ratio of two integers, it usually doesn’t matter whether we round up or down.
A Few Examples

• This recurrence arises in algorithms that loop through the input to eliminate one item.

\[
T(n) = \begin{cases}
1 & n = 1 \\
T(n - 1) + n & n > 1
\end{cases}
\]

• This recurrence arises in algorithms that halve the input in one step.

\[
T(n) = \begin{cases}
1 & n = 1 \\
T(n/2) + 1 & n > 1
\end{cases}
\]

• This recurrence arises in algorithms that halve the input in one step, but have to scan through the data at each step.

\[
T(n) = \begin{cases}
1 & n = 1 \\
T(n/2) + n & n > 1
\end{cases}
\]
The Master Theorem

- Most recurrences that we will be interested in are of the form

\[T(n) = \begin{cases}
1 & n = 1 \\
 aT(n/b) + f(n) & n > 1
\end{cases} \]

- The Master Theorem tells us how to analyze recurrences of this form.
 - If \(f \in O(n^\log_b a - \varepsilon) \), for some constant \(\varepsilon > 0 \), then \(T \in \Theta(n^\log_b a) \).
 - If \(f \in \Theta(n^\log_b a) \), then \(T \in \Theta(n^\log_b a \lg n) \).
 - If \(f \in \Omega(n^\log_b a + \varepsilon) \), for some constant \(\varepsilon > 0 \), and if \(af(n/b) \leq cf(n) \)
 for some constant \(c < 1 \) and \(n > n_0 \), then \(T \in \Theta(f) \).

- How do we interpret this?
A Few More Examples

- This recurrence arises in algorithms that partition the input in one step, but then make recursive calls on both pieces.

\[
T(n) = \begin{cases}
1 & n = 1 \\
2T(n/2) + 1 & n > 1
\end{cases}
\]

- This recurrence arises in algorithms that scan through the data at each step, divide it in half and then make recursive calls on each piece.

\[
T(n) = \begin{cases}
1 & n = 1 \\
2T(n/2) + n & n > 1
\end{cases}
\]

- We can analyze these using the Master Theorem.
The Call Stack

• The call stack of a program keeps track of the current sequence of function calls.

• When a new function call is made, data for the current one is saved on the call stack.

• When a function call returns, it returns to the next function on the top of the stack.

• The stack depth is the maximum number of functions on the stack at any one time.

• In a recursive program, the stack depth can be very large.

• This can create memory problems, even for simple recursive programs.

• There is also an overhead associated with each function call.
Iterative Algorithms

• All recursive algorithms have iterative counterparts.

• In the case of linear recursion, the conversion is usually easy.
 – Example: Binary search.

• In the case of a branching recursion, it’s not as easy.
 – Example: Merge sort.

• The advantage of the iterative counterpart is that it usually saves memory and the overhead of function calls.

• Generally, the iterative version is much more complex, however.