Reading for This Lecture

• Bertsimas 3.2-3.4
Linear Programming

- We consider solution of a *linear program* in standard form:

\[
\begin{align*}
\min & \quad c^\top x \\
\text{s.t.} & \quad Ax = b \\
& \quad x \geq 0
\end{align*}
\]

where \(A \in \mathbb{R}^{m \times n} \), \(c \in \mathbb{R}^n \), and \(b \in \mathbb{R}^m \).

- The most commonly used algorithm for solving this problem is the *simplex algorithm*.
Implementing the Simplex Method

“Naive” Implementation

1. Start with a basic feasible solution \(\hat{x} \) with indices \(B(1), \ldots, B(m) \) corresponding to the current basic variables.

2. Form the basis matrix \(B \) and compute \(p^\top = c_B^\top B^{-1} \) by solving \(p^\top B = c_B^\top \).

3. Compute the reduced costs by the formula \(\bar{c}_j = c_j - p^\top A_j \). If \(\bar{c} \geq 0 \), then \(\hat{x} \) is optimal.

4. Select the entering variable \(j \) and obtain \(u = B^{-1}A_j \) by solving the system \(Bu = A_j \). If \(u \leq 0 \), the LP is unbounded.

5. Determine the step size \(\theta^* = \min\{i | u_i > 0\} \frac{\hat{x}_{B(i)}}{u_i} \).

6. Determine the new solution and the leaving variable \(i \).

7. Replace \(i \) with \(j \) in the list of basic variables.

8. Go to Step 1.
Calculating the Basis Inverse

- Note that most of the effort in each iteration of the Simplex algorithm is spent solving the systems

\[p^\top B = c_B \]
\[Bu = A_j \]

- If we knew \(B^{-1} \), we could solve both of these systems.

- Calculating \(B^{-1} \) quickly and accurately is the biggest challenge of implementing the simplex algorithm.

- The full details of how to do this are beyond the scope of this course.

- We will take a cursory look at these issues in the rest of the chapter.
Efficiency of the Simplex Method

- To judge efficiency, we calculate the number of arithmetic operations it takes to perform the algorithm.

- To solve a system of m equations and m unknowns, it takes *on the order of* m^3 operations, denoted $O(m^3)$.

- To take the inner product of two n-dimensional vectors takes $O(n)$ operations (n multiplications and n additions).

- Hence, each iteration of the naive implementation of the Simplex method takes $O(m^3 + mn)$ operations.

- We'll try to improve upon this.
Improving the Efficiency of Simplex

- Again, the matrix B^{-1} plays a central role in the simplex method.
- If we had B^{-1} available at the beginning of each iteration, we could easily compute everything we need.
- Recall that B changes in only one column during each iteration.
- How does B^{-1} change?
- It may change a lot, but we can update it instead of recomputing it.
Updating the Basis Inverse

• We have $B^{-1}B = I$, so that $B^{-1}A_{B(i)}$ is the ith unit vector e_i.

• If B is the old basis and \bar{B} is the new one, then

$$B^{-1}\bar{B} = \begin{bmatrix} e_1 & \cdots & e_{i-1} & u_{i+1} & \cdots & e_m \end{bmatrix}$$

$$= \begin{bmatrix} 1 & u_1 \\ \vdots & \vdots \\ u_l & \vdots \\ \vdots & \ddots \\ u_m & 1 \end{bmatrix}$$

• We want to turn this matrix into I using elementary row operations.

• If we apply these same row operations to B^{-1}, we will turn it into \bar{B}^{-1}.
Representing Elementary Row Operations

- Performing an elementary row operation is the same as left-multiplying by a specially constructed matrix.

- To multiply the jth row by β and add it to the ith row, take I and change the (i, j)th entry to β.

- A sequence of row operations can similarly be represented as a matrix.

- Hence, we can change B^{-1} into \bar{B}^{-1} by left-multiplying by a matrix Q which looks like

$$Q = \begin{bmatrix}
1 & \frac{-u_1}{u_l} \\
\vdots & \ddots \\
\frac{1}{u_l} & \ddots & \ddots \\
\frac{-u_m}{u_l} & \cdots & 1
\end{bmatrix}$$
The Revised Simplex Method

A typical iteration of the revised simplex method:

1. Start with a specified BFS \hat{x} and the associated basis inverse B^{-1}.
2. Compute $p^\top = c_B B^{-1}$ and the reduced costs $\bar{c}_j = c_j - p^\top A_j$.
3. If $\bar{c} \geq 0$, then the current solution is optimal.
4. Select the entering variable j and compute $u = B^{-1} A_j$.
5. If $u \leq 0$, then the LP is unbounded.
6. Determine the step size $\theta^* = \min\{i | u_i > 0\} \frac{\hat{x}_B(i)}{u_i}$.
7. Determine the new solution and the leaving variable i.
8. Update B^{-1}.
9. Go to Step 1.
Some Notes on the Simplex Method

• One key element not described above is how to construct an initial feasible basis.

• If we start with a feasible basis, each iteration of the simplex methods ends with a new basic feasible solution (assuming nondegeneracy).

• This is all we need to prove the following result:

Theorem 1. Consider a linear program over a nonempty polyhedron \mathcal{P} and assume every basic feasible solution is nondegenerate. Then the simplex method terminates after a finite number of iterations in one of the following two conditions:

- We obtain an **optimal** basis and a corresponding optimal basic feasible solution.
- We obtain a vector $d \in \mathbb{R}^n$ such that $Ad = 0$, $d \geq 0$, and $c^\top d < 0$, and the LP is unbounded.
Pivot Selection

• The process of removing one variable and replacing from the basis and replacing it with another is called *pivoting*.

• We have the freedom to choose the entering variable from among a list of candidates.

• How do we make this choice?

• The reduced cost tells us the cost in the objective function for each unit of change in the given variable.

• Intuitively, c_j is the cost for the change in the variable itself and $-c_B^T B^{-1} A_j$ is the cost of the compensating change in the other variables.

• This leads to the following possible rules:
 – Choose the column with the most negative reduced cost.
 – Choose the column for which $\theta^*|\bar{c}_j|$ is largest.
Other Pivoting Rules

• In practice, sophisticated pivoting rules are used.

• Most try to estimate the change in the objective function resulting from a particular choice of pivot.

• For large problems, we may not want to compute all the reduced costs.

• Remember that all we require is some variable with negative reduced cost.

• It is not necessary to calculate all of them.

• There are schemes that calculate only a small subset of the reduced costs each iteration.
Simplex for Degenerate Problems

- If the current BFS is degenerate, then the step size might be limited to zero (why?).
 - This means that the next feasible solution is the same as the last.
 - We can still form a new basis, however, as before.

- Even if the step-size is positive, we might end up with one or more basic variables at level zero.
 - In this case, we have to decide arbitrarily which variable to remove from the basis.
 - The new solution will be degenerate.

- Degeneracy can cause cycling, a condition in which the same feasible solution is reached more than once.

- If the algorithm doesn’t terminate, then it must cycle.
Anticycling and Bland’s Rule

• Bland’s pivoting rule:
 – The entering variable is the one with the smallest subscript among those whose reduced costs are negative.
 – The leaving variable is the one with the smallest subscript among those that are eligible to leave the basis.

• Bland’s rule guarantees that cycling cannot occur.

• We also don’t need to compute all the reduced costs.
Numerical Considerations

• In the simplex algorithm, we are solving a sequence of closely related systems of equations.

• The factorization we are using to solve each of these systems is updated and round-off error accumulates.

• In practice, it is common to periodically discard the basis factorization and re-compute it from scratch to combat this problem.

• What factors affect the accuracy of solving just one of these systems from scratch?

• Naturally, the condition number of the current basis is important.

• Can we interpret the condition number of the basis in geometric terms?
The Geometry of Conditioning

• Consider again the geometric interpretation of condition number of a matrix A.

• Roughly speaking, it is the ratio of the largest to smallest axes of the ellipsoid we get by pre-multiplying the points on a unit ball by A:

$$\{Ax \mid x \in \mathbb{R}, \|x\| = 1\}$$

• **Question**: What affects the geometry of this ellipsoid?
The Geometry of Conditioning

• Factors affecting the shape of the set \(\{ Ax \mid x \in \mathbb{R}, \|x\| = 1 \} \).
 – The (relative) magnitude of the norms of the rows of \(A \).
 – The “angles” between the rows.

• This is essentially because

\[
|x^\top y| = \|x\| \|y\| \cos \beta
\]

where \(\beta \) is the angle between \(x \) and \(y \).

• Note that condition number is just the “worst case.”

• Using the formula, we can say something about how individual components of the solution to a systems are affected by perturbation.
The Geometry of Conditioning

• Let r_i be the i^{th} row of A^{-1}.

• Then it is straightforward to see that if $Ax = b$, we have

$$x_i = r_i^\top b = \|r_i\|\|b\| \cos \beta_i$$

where β_i is the angle between r_i and b.

• Let \tilde{x} be the solution to $Ax = b + f$ for a given preturbation f.

• If ψ_i is the angle between r_i and f, then we have

$$\tilde{x}_i = x_i + r_i^\top f = x_i + \|r_i\|\|f\| \cos \psi_i$$

• Further, if $x_i \neq 0$ and $\epsilon_b = \|f\|/\|b\|$, we have

$$\frac{\tilde{x}_i - x_i}{x_i} = \frac{1}{\cos \beta_i} \epsilon_b \cos \psi_i$$

$$= \frac{\|b\|}{\|A\||x|} \frac{\|x\|}{x_i} \frac{\|r_i\|\|A\| \epsilon_b \cos \psi_i}{\|x\|}$$
The Geometry of Conditioning

• The results on the previous slide tell us how to assess the conditioning of the problem of finding individual components of the solution.

• Note that just because a matrix A is ill-conditioned does not mean that the problem of finding each individual component of the solution is ill-conditioned.

 – The condition number of the matrix is a worst-case measure over all the component-wise problems.

 – There is always one component that exhibits this worst-case behavior.

• The formula on the previous slide tells us that the relative condition of the problem for component i is affected by

 – the angle between r_i and f

 – the angle between r_i and b
The Geometry of Conditioning