Computational Optimization
ISE 407

Lecture 17

Dr. Ted Ralphs
Search Algorithms

• Search algorithms are fundamental techniques applied to solve a wide range of optimization problems.

• Search algorithms attempt to find all the nodes in a network satisfying a particular property.

• Examples

 – Find nodes that are reachable by directed paths from a source node.
 – Find nodes that can reach a specific node along directed paths
 – Identify the connected components of a network
 – Identify directed cycles in network

• Let us consider undirected graphs to start.

• We will first generalize the algorithm from last time for finding a simple path in a graph.
Connectivity in Graphs

• An undirected graph is said to be *connected* if there is a path between any two vertices in the graph.

• A graph that is not connected consists of a set of *connected components* that are the maximal connected subgraphs.

• Given a graph, one of the most basic questions one can ask is whether vertices i and j are in the same component.

• In other words, is there a path from i to j?

• Such questions might arise in the design of a network or circuit.

• They may not be that easy to answer!

• One approach is to use a data structure for storing *disjoint sets*.

Finding a Simple Path

• We now revisit the question of whether there is a path connecting a given pair of vertices in a graph.

• Using the operations in the Graph class, we can answer this question directly using a recursive algorithm.

• We must pass in a vector of bools to track which nodes have been visited.

```python
def SPath(G, v, w, visited = {})
    if v == w:
        return True
    visited[v] = True
    for n in v.get_neighbors():
        if not visited[n]:
            if SPath(G, n, w, visited):
                return True
    return False
```
Labeling Components

• The set of all nodes connected to a given node by a path is called a \textit{component}.

• How easy is it to determine all of the nodes in the same component as a given node?

```python
def DFSRecursion(G, v, pred, component_num = 0):
    G.set_node_attr(v, 'component', component_num)
    for n in G.get_neighbors(v):
        if G.get_node_attr(n, 'component') == None:
            pred[n] = v
            DFS(G, n, pred, component_num)
    return

def DFS(G, v, component_num = 0):
    for n in G.get_node_list():
        G.set_node_attr(n, 'component', None)
    DFSRecursion(G, v, [], component_num)
    return
```
Depth-first Search for General Graphs

• The algorithm we have just seen is a generalization of the depth-first search method we saw earlier for trees.

• We will see why it is called this shortly.

• Associated with the search is a search tree that can be used to visualize the algorithm.

• At the time a node \(n \) is discovered, we can record \(v \) as its predecessor.

• The set of edges consisting of each node and its predecessor forms a tree rooted at \(v \).

 – We call the edges in the tree tree edges.
 – The remaining edges connect a vertex with an ancestor in the tree that is not its parent and are called back edges.

• Why must every edge be either a tree edge or a back edge?
Complexity of Depth-first Search

- How do we analyze a DFS algorithm?
- How many recursive calls are there?
- How does the graph data structure affect the running time?
 - Adjacency matrix
 - Adjacency list
Node Ordering

- As in depth-first search for trees, the nodes can be ordered in two ways.
 - Preorder: The order in which the nodes are first discovered (discovery time).
 - Postorder: The order in which the nodes finished (the recursive calls on all neighbors return).

- These orders will be referred to in various algorithms we’ll study.

Labeling All Components

- To label all components, we loop through all the nodes in the graph and start labeling the component of any node we find that has not already been labeled.

```python
def label_component(G):
    component_num = 0
    for n in G.get_node_list():
        G.set_node_attr(n, 'component', None)
    for n in G.get_node_list():
        if G.get_node_attr(n, 'component') is None:
            DFS(G, n, component_num)
            component_num += 1
    return
```

- What is the complexity of this algorithm?
Depth-first Search in Directed Graphs

- DFS in a directed graph is very similar to DFS in an undirected graph.
- The main difference is that each arc is only encountered once during the search.
- Also, note that the notion of a component is different here.

```python
def DFSRecursion(G, v, pred):
    G.set_node_attr(v, 'color', 'green')
    for n in G.get_neighbors(v):
        if G.get_node_attr(n, 'color') == 'red':
            pred[n] = v
            DFS(G, n, pred)
    return

def DFS(G, v):
    for n in G.get_node_list():
        G.set_node_attr(n, 'color', 'red')
        DFSRecursion(G, v, [])
    return
```

- What nodes will this search reach?
Depth-first Search in Directed Graphs

• As with undirected graphs, DFS in directed graphs produces a search tree that is directed out from the initial node (an out tree).

• At the time a node n is discovered, we record v as its predecessor.

• The set of arcs consisting of each node and its predecessor forms a tree rooted at v.

 – We call the arcs in the tree tree arcs.
 – The remaining arcs can be either
 * Back arcs: Those connecting a vertex to an ancestor
 * Down arcs: Those connecting a vertex to a descendant
 * Cross arcs: Those connecting a vertex to a vertex that is neither a descendant nor an ancestor.
Node Order and Arc Type

• Also as with undirected graphs, we can order the nodes in two different ways: postorder and preorder.

• As before, we refer to the preorder number of a node as its discovery time and the postorder number as its finishing time.

• We can identify the type of an arc as follows.

 – It is a back arc if it leads to a node with a later finishing time.
 – Otherwise, it is a cross arc if it leads to a node with an earlier discovery time and a down arc if it leads to a node with a later discovery time.
Problems Solvable With DFS (Undirected Graphs)

- **Cycle Detection**: The discovery of a back edge indicates the existence of a cycle.
- **Simple Path**
- **Connectivity**
- **Component Labeling**
- **Spanning Forest**
- **Two-colorability, bipartiteness, odd cycle**
General Graph Search

• Depth-first search is so called because the node selected in each step is a neighbor of the node that is farthest from the root (in the tree).

• This is convenient because it allows a simple recursive implementation.

• Could we search the graph in a different “order”?
General Graph Search Algorithm

def search(self, root, q = Stack()):
 if display == None:
 display = self.display_mode
 if isinstance(q, Queue):
 addToQ = q.enqueue
 removeFromQ = q.dequeue
 elif isinstance(q, Stack):
 addToQ = q.push
 removeFromQ = q.pop
 visited = {}
 addToQ(root)
 while not q.isEmpty():
 current = removeFromQ()
 self.process_node(current, q)
 for n in current.get_neighbors():
 if not n in visited:
 visited[n] = True
 self.process_edge(current, n)
 addToQ(n)
General Search Algorithm

- The algorithm is a template for a whole class of algorithms.
 - If Q is a stack (LIFO), we are doing depth-first search, as before.
 - If Q is a queue (FIFO), we are doing breadth-first search.
 - In other cases, we will want to maintain Q as a priority queue.

- What problem does breadth-first search of a graph solve?
Complexity of Search Algorithm

- The search proceeds differently depending on which element v is selected from q in each iteration.

- q must be ordered in some way by storing it in an appropriate data structure.
 - If q is a *queue*, elements are inserted at one end and removed from the other and we get FIFO ordering.
 - If q is a *stack*, elements are inserted and deleted from the same end and we get LIFO ordering.

- The efficiency of the algorithm can be affected by
 - the data structure used to maintain q,
 - what additional steps are required in `process_node`, and
 - what additional steps are required in `process_edge`.
Aside: Finding a Hamiltonian Path

- Now let’s consider finding a path connecting a given pair of vertices that also visits every other vertex in between (called a Hamiltonian path).
- We can easily modify our previous algorithm to do this by passing an additional parameter \(d \) to track the path length.
- What is the change in running time?
Aside: Finding a Hamiltonian Path (code)

def HPath(G, v, w = None, d = None, visited = {}):
 if d == None:
 d = G.get_node_num()
 if v == w:
 return d == 0
 if w == None:
 w = v
 visited[v] = True
 for n in v.get_neighbors():
 if not visited[n]:
 if SPath(G, n, w, d-1, visited):
 return True
 visited[v] = False
 return False
Aside: Hard Problems

- We have just seen an example of two very similar problem, one of which is hard and one of which is easy.

- In fact, there is no known algorithm for finding a Hamiltonian path that takes less than an exponential number of steps.

- This is our first example of a problem which is easy to state, but for which no known efficient algorithm exists.

- Many such problems arise in graph theory and it’s difficult to tell which ones are hard and which are easy.

- Consider the problem of finding an **Euler path**, which is a path between a pair of vertices that includes every edge exactly once.

- Does this sound like a hard problem?