References for Today’s Lecture

- AMO Sections 2.3
- CLRS Section 22.1
Connectivity Relations

- So far, we have only considered sets of items that are related to each other through some kind of ordering (if at all).
- In other words, two items x and y are only related by their relative positions in the ordered list.
- We will now generalize this idea by considering additional connectivity relationships between items.
- To do so, we will specify that there is a direct link between certain pairs of items.
- This will allow us to ask questions such as the following.
 - Is x connected “directly” to y?
 - Is x connected to y “indirectly,” i.e., through a sequence of direct connections?
 - What is the set of all items connected to x, directly or indirectly?
 - What is the shortest number of connections needed to get from x to y?
Graphs

- A graph is an abstract object used to model such connectivity relations.
- A graph consists of a list of items, along with a set of connections between the items.
- The study of such graphs and their properties, called graph theory, is hundreds of years old.
- Graphs can be visualized easily by creating a physical manifestation.
- There are several variations on this theme.
 - The connections in the graph may or may not have an orientation or a direction.
 - We may not allow more than one connection between a pair of items.
 - We may not allow an item to be connected to itself.
- For now, we consider graphs that are
 - undirected, i.e., the connections do not have an orientation, and
 - simple, i.e., we allow only one connection between each pair of items and no connections from an item to itself.
Applications of Graphs

- Maps
- Social Networks
- World Wide Web
- Circuits
- Scheduling
- Communication Networks
- Matching and Assignment
Graph Terminology and Notation

- In an undirected graph, the “items” are usually called vertices (sometimes also called nodes).
- The set of vertices is denoted V and the vertices are indexed from 0 to $n - 1$, where $n = |V|$.
- The connections between the vertices are unordered pairs called edges.
- The set of edges is denoted E and $m = |E| \leq n(n - 1)/2$.
- An undirected graph $G = (V, E)$ is then composed of a set of vertices V and a set of edges $E \subseteq V \times V$.
- If $e = \{i, j\} \in E$, then
 - i and j are called the endpoints of e,
 - e is said to be incident to i and j, and
 - i and j are said to be adjacent vertices.
More Terminology

- Let $G = (V, E)$ be an undirected graph.
- A subgraph of G is a graph composed of an edge set $E' \subseteq E$ along with all incident vertices.
- A subset V' of V, along with all incident edges is called an induced subgraph.
- A path in G is a sequence of vertices such that each vertex is adjacent to the vertex preceding it in the sequence.
- A path is simple if no vertex occurs more than once in the sequence.
- A cycle is a path that is simple except that the first and last vertices are the same.
- A tour is a cycle that includes all the vertices.
Network Representation

• Our goal is to develop “efficient” algorithms \(\rightarrow\) reasonable computation time.

• The main factors affecting efficiency are
 – The underlying algorithm
 – Data structure for storing the network

• The same algorithm may behave much differently with different graph data structure.

• What information do we need to store?
 – network topology (structure of nodes and arcs)
 – associated data (costs, capacities, supplies/demands)

• What are the important operations we might need to perform with a network data structure?
Data Structures

We first consider the general case of a directed graph.

Common data structures

- Node-Arc Incidence Matrix
- Node-Node Adjacency Matrix
- Adjacency List
- Forward Star (Reverse Star)
Example Graph
(Node-Arc) Incidence Matrix

- $n \times m$ matrix denoted N.
- One row for each node and one column for each arc.
- For each arc (i, j), put +1 in row i and -1 in row j.

\[
\begin{pmatrix}
(1, 2) & (1, 3) & (2, 3) & (2, 4) & (3, 2) & (3, 4) & (3, 5) & (4, 5)
\end{pmatrix}
\]

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 \\
\end{array}
\]
(Node-Arc) Incidence Matrix

- What is the size of the matrix?
- How many entries are non-zero?
- What information do we get by reading across a row?
- Is this a space efficient representation?
- How about other operations?
(Node-Node) Adjacency Matrix

- $n \times n$ matrix denoted \mathcal{H}
- one row for each node and one column for each node
- entry $h_{ij} = 1$ if arc $(i, j) \in A$ (0 otherwise)

\[
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 \\
2 \\
3 \\
4 \\
5
\end{array}
\]
(Node-Node) Adjacency Matrix

- What is the size of the matrix?
- How many entries are non-zero?
- What data structures might we use to store arc costs and capacities?
- Is this a space efficient representation?
- What operations are most efficient with this data structure?
Adjacency List

- Adjacency list of node i, $A(i)$, is a list of the nodes j for which $(i, j) \in A$
- List stored as a *linked list*.
- Need one linked list of length $|A(i)|$ for each node.
- Cell can store additional fields such as arc cost and capacity
- Is this a space efficient representation?
- What operations are most efficient with this data structure?
Forward Star

- Stores node adjacency list of each node in one large array
- Associates a unique sequence number with each arc using a specific order starting with arcs outgoing from node 1, then node 2, etc.
- Stores tail information about each arc in `tail` array, head information in `head` array, etc.
- Maintains a pointer for each node that indicates the smallest numbered arc in the arc list for that node.
- For consistency, set `pointer(1)` to 1 and `pointer(n + 1)` to `m + 1`.
- What are the advantages of this representation?
Reverse Star

- Similar to a forward start except that arcs are sequenced starting with arcs incoming from node 1.
- The two representations can be maintained side-by-side if necessary.
Miscellaneous Issues

• Parallel Arcs
 – Why would we need parallel arcs?
 – Which representation(s) could accommodate them?

• Undirected Network
 – What needs to change?
 ∗ Node-Arc Incidence Matrix
 ∗ Node-Node Adjacency Matrix
 ∗ Adjacency List
 – What needs to happen when we update \((i, j)\)?
Summary of Representations

<table>
<thead>
<tr>
<th>Representation</th>
<th>Storage Space</th>
<th>Features</th>
</tr>
</thead>
</table>
| Incidence Matrix | nm | 1. Space inefficient
 | | 2. Expensive to manipulate
 | | 3. MCFP constraint matrix |
| Adjacency Matrix | kn^2 | 1. Suited to dense networks
 | | 2. Easy to implement |
| Adjacency List | $k_1n + k_2m$ | 1. Space efficient
 | | 2. Efficient to manipulate
 | | 3. Suited to dense and sparse |
| Forward Star | $k_3n + k_4m$ | 1. Space efficient
 | | 2. Efficient to manipulate
 | | 3. Suited to dense and sparse |

Table 1: From Ahuja et al. Figure 2.25
Basic Graph Interface in Python

class Graph:
 def __init__:
 self.nodes = {}
 self.edges = {}

 def add_node(v)
 def add_edge(v, w)
Node Class

class Node:
 def __init__(self, name):
 self.name = i
 self.neighbors = {}

 def get_neighbors(self):
 return self.neighbors
A Client Function for Printing a Graph

- Here’s an example of a standard way in which the graph interface class is used.
- Here, we print out a graph by enumerating all the edges incident to each vertex.

```python
def print(G):
    for n in G.get_node_list():
        print n, ":",
        for i in n.get_out_neighbors():
            print i
        print
```
Trees

- A *tree* is a set of items organized into a hierarchical structure (think of a family tree).
- We can think of this as a special case of a graph, and so we call the items *nodes*.
- Each node has a single designated *parent* and one or more *children*.
- There is a single designated node, called the *root*, with no parent.
- Any node with no children is called a *leaf*.
- Any node with children is called *internal*.
- A tree in which all nodes have 2 or fewer children is called a *binary tree*.
- Storing a list of items in a tree structure allows us to represent *additional relationships* among the items in the list.
- Trees occur naturally in a wide variety of applications.
Trees in Action

- File system
- Philogenic Trees
- Family Trees
- Call Trees
- Web page
Additional Terminology

• The *level* of a node in the tree is the number of recursive calls to `parent()` needed to reach the root.

• The *depth* of the tree is the maximum level of any of its nodes.

• A *balanced tree* is one in which all leaves are at levels k or $k - 1$, where k is the depth of the tree.

• Additional terms
 – Edge
 – Path
 – Siblings
 – Subtree
Tree Data Structures

• The tree ADT can be thought of as a list ADT with additional structure.

• One of the most important roles of the additional structure is to allow for the list to be traversed easily in various orders.

• We may also want to be able to query the relationships of a given node to others (parent/sibling/child).
Tree ADT

class Tree:
 def __init__(self, root)
 def get_root(self)
 def add_node(self, key, data, parent)
 def get_children(self, key) # return list of children
 def get_parent(self, key)
 def traverse(self, order) # print nodes in order
 def __contains__(self, key)
 def __iter__(self) # iterate over nodes in order
Additional Functionality

- Later, we’ll want to be able to “splice” nodes into the tree at particular places.
- We’ll also want to be able to do certain “rotations” in which we change the parent/child relationships in a systematic way.
- The goal of these operations will be to maintain a certain structure in the tree.
- This will make certain kinds of additions, deletions, and traversals efficient so we can implement additional operations.
Traversing a Tree

- Traversing a tree consists of visiting the nodes in a specified order, starting at the root node.
- As we encounter each node, we put all of its children on the list to be visited.
- The order in which we take nodes off this list determined the search order.
 - **Depth-first**: Last in, first out. This means that we visit the node in the list at the deepest level first.
 - **Breadth-first**: First in, first out. This means we visit the node in the list at the shallowest level first.
Traversing a Tree (Depth First)

Here is a recursive implementation of a depth-first search.

```python
def depth(self, root):
    print root
    for i in self.get_children(current):
        print i
        self.depth(root)
```

```python
for i in self.get_children(current):
    print i
    self.depth(root)
```
Traversing a Tree (Depth First)

We can also do depth-first search with a stack

def depth(self):
 s = Stack()
 s.push(self.get_root)
 while s.isEmpty() != True:
 current = s.pop()
 print current
 for i in self.get_children(current):
 s.push(i)
Traversing a Tree (Breadth First)

To get breadth first search, we can simply replace the stack with a queue:

```python
def depth(self):
    s = Queue()
    s.enqueue(self.get_root)
    while s.isEmpty() != True:
        current = s.dequeue()
        print current
        for i in self.get_children(current):
            s.enqueue(i)
```
Binary Trees

- In many applications, the trees that arise are binary by nature.
- The call tree in quicksort or mergesort is an example.
- When we know that there will be at most two children of a given node, we call them the right and left children.
- We can specialize the ADT by adding methods to access the right and left children directly.
 - `get_parent(index)`: return the parent of node index.
 - `get_right(index)`: return the “right” child of node index.
 - `get_left(index)`: return the “left” child of node index.
Binary Tree ADT

class BinaryTree(Tree):

 def get_left(self, index):
 get_children(index)[0]

 def get_right(self, self, index):
 get_children(index)[1]
Traversing a Tree (Pre-order)

When doing a depth first search, if we print each node before searching either of the children recursively, this produces an “pre-order” traversal.

def depth(self, root):
 print root
 self.depth(get_left(root))
 self.depth(get_right(root))
Traversing a Tree (In-order)

Alternatively, if we print each node in between searching the left and right subtrees, this produces an “in-order” traversal.

```python
def depth(self, root):
    self.depth(get_left(root))
    print root
    self.depth(get_right(root))
```
Traversing a Tree (In-order)

Finally, if we print each node after searching both the left and right subtrees, this produces an “in-order” traversal.

```python
def depth(self, root):
    self.depth(get_left(root))
    self.depth(get_right(root))
    print root
```
Running Time of Tree Traversal

• What is the running time of these tree traversal methods?