Reading for This Lecture

- Bertsimas 2.1-2.2
From Last Time

• Recall the Two Crude Petroleum example.

• In the example, the optimal solution was a “corner point.”

• We saw that the following are possible outcomes of solving an optimization problem:

 –
 –
 –
 –

• In fact, we will see that these are the only possibilities.

• We will also see that when there is an optimal solution and at least one “corner point,” there is an optimal solution that is a “corner point.”
Some Definitions

Definition 1. A polyhedron is a set of the form \(\{ x \in \mathbb{R}^n | Ax \geq b \} \), where \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \).

Definition 2. A set \(S \subset \mathbb{R}^n \) is bounded if there exists a constant \(K \) such that \(|x_i| < K \) for all \(x \in S \) and \(i \in [1, n] \).

Definition 3. Let \(a \in \mathbb{R}^n \) and \(b \in \mathbb{R} \) be given.

- The set \(\{ x \in \mathbb{R}^n | a^T x = b \} \) is called a hyperplane.
- The set \(\{ x \in \mathbb{R}^n | a^T x \geq b \} \) is called a half-space.

Notes:
Convex Sets

Definition 4. A set \(S \subseteq \mathbb{R}^n \) is convex if \(\forall x, y \in S \) and \(\lambda \in \mathbb{R} \) with \(0 \leq \lambda \leq 1 \), we have \(\lambda x + (1 - \lambda)y \in S \).

Definition 5. Let \(x^1, \ldots, x^k \in \mathbb{R}^n \) and \(\lambda \in \mathbb{R}^k \) be given such that \(\lambda^T 1 = 1 \).

- The vector \(\sum_{i=1}^{k} \lambda_i x^i \) is said to be a convex combination of \(x^1, \ldots, x^k \).
- The convex hull of \(x_1, \ldots, x_k \) is the set of all convex combinations of these vectors.

Notes:
Properties of Convex Sets

The following properties can be derived from the definitions:

• The intersection of convex sets is convex.
• Every polyhedron is a convex set.
• The convex combination of a finite number of elements of a convex set also belongs to the set.
• The convex hull of a finite number of vectors is a convex set.

How do we prove each of these?
Aside: Mathematical Proofs

• A mathematical proof shows the correctness of a given statement based on known definitions, axioms, and previously proven statements.

• Most proofs are for statements of the form \(A \Rightarrow B \) where \(A \) and \(B \) are both statements.

• **Example**: “If \(x > 2 \) is a real number, then there exists a real number \(y < 0 \) such that \(x = \frac{2y}{1+y} \).”

• **Proof**:

• What are \(A \) and \(B \) in this example?
Mathematical Proofs: Quantifying Variables

• **Quantifying** is specifying from which set and for which values of a variable a statement is true.

• **Example**: “For all real numbers x and y, $(x + y)^2 = x^2 + 2xy + y^2$.”

• This specifies that x and y can have any real value.

• **Example**: “For all real numbers $x \geq 0$, $x = |x|$.

• This specifies that the statement is true for nonnegative values of x.
Mathematical Proofs: Types of Quantifiers

• Universal Quantifiers
 – Statements that include “for all” or “for every.”
 – Example: “For all real numbers x, $\cos^2 x + \sin^2 x = 1$.”

• Existential Quantifiers
 – Statements that include “there exists” or “there is.”
 – Example: “For every real number $0 \leq x \leq 1$, there exists a real number $0 \leq y \leq \frac{\pi}{2}$ such that $\sin(y) = x$.”

• Notation: \forall means “for all” and \exists means “there exists”.

• Example: “$\forall x \in \mathbb{R}$ such that $0 \leq x \leq 1$, $\exists y \in \mathbb{R}$ such that $0 \leq y \leq \frac{\pi}{2}$ and $\sin(y) = x$."

Mathematical Proofs: Proofs with Universal Quantifiers

- To prove something about a universally quantified statement, first let an arbitrary set element *be given*.

- **Example**: “If \(C \in \mathbb{R}^{n \times n} \) and \(\det(C) \neq 0 \), then \(\exists C^{-1} \in \mathbb{R}^{n \times n} \) such that \(CC^{-1} = I \).”

- **Start of Proof**: “Let an arbitrary matrix \(C \in \mathbb{R}^{n \times n} \) be given and assume \(\det(C) \neq 0 \)...”

- Now prove that statement is true for the given element.

- Since the element was *arbitrary*, this proves the original statement.
Mathematical Proofs: Proofs with Existential Quantifiers

• If you are trying to prove something about an existentially quantified variable, the proof is usually *constructive*.

• The proof gives a technique for constructing an element of the set with the given property.

• **Example:** “If $C \in \mathbb{R}^{n \times n}$ and $\text{det}(C) \neq 0$, then $\exists C^{-1} \in \mathbb{R}^{n \times n}$ such that $CC^{-1} = I$.”

• **Proof Technique:** Construct C^{-1}.
Mathematical Proofs: Choosing an Element

• If you know from a previous theorem that an element of a set with a particular property exists, then you may "choose" it.

• Example: “Let r, a positive rational number be given. Then we may choose natural numbers p and q such that $r = \frac{p}{q}$.”

• This can be especially useful in constructive proofs.
Mathematical Proofs: Proof Techniques

• Prove the contrapositive.
• Proof by contradiction.
• Proof by induction.
• Proof by cases.
• Other types of proofs
 – Uniqueness proofs.
 – Either/or proofs.
 – If and only if proofs.
Back to Our Story

Let’s prove the following:

Proposition 1. The intersection of convex sets is convex.

Proof:

Proposition 2. Every polyhedron is convex.

Proof:
Extreme Points and Vertices

Let $\mathcal{P} \subseteq \mathbb{R}^n$ be a given polyhedron.

Definition 6. A vector $x \in \mathcal{P}$ is an extreme point of \mathcal{P} if $\forall y, z \in \mathcal{P}, \lambda \in (0, 1)$ such that $x = \lambda y + (1 - \lambda)z$.

Definition 7. A vector $x \in \mathcal{P}$ is an vertex of \mathcal{P} if $\exists c \in \mathbb{R}^n$ such that $c^T x < c^T y \forall y \in \mathcal{P}, x \neq y$.

Notes:
A Little Linear Algebra Review

Definition 8. A finite collection of vectors $x_1, \ldots, x_k \in \mathbb{R}^n$ is linearly independent if the unique solution to $\sum_{i=1}^{k} \lambda_i x^i = 0$ is $\lambda_i = 0, i = 1, \ldots, k$. Otherwise, the vectors are linearly dependent.

Let A be a square matrix. Then, the following statements are equivalent:

- The matrix A is invertible.
- The matrix A^T is invertible.
- The determinant of A is nonzero.
- The rows of A are linearly independent.
- The columns of A are linearly independent.
- For every vector b, the system $Ax = b$ has a unique solution.
- There exists some vector b for which the system $Ax = b$ has a unique solution.
A Little More Linear Algebra Review

Definition 9. A nonempty subset \(S \subseteq \mathbb{R}^n \) is called a subspace if \(\alpha x + \gamma y \in S \) \(\forall x, y \in S \) and \(\forall \alpha, \gamma \in \mathbb{R} \).

Definition 10. A linear combination of a collection of vectors \(x^1, \ldots, x^k \in \mathbb{R}^n \) is any vector \(y \in \mathbb{R}^n \) such that \(y = \sum_{i=1}^{k} \lambda_i x^i \) for some \(\lambda \in \mathbb{R}^k \).

Definition 11. The span of a collection of vectors \(x^1, \ldots, x^k \in \mathbb{R}^n \) is the set of all linear combinations of those vectors.

Definition 12. Given a subspace \(S \subseteq \mathbb{R}^n \), a collection of linearly independent vectors whose span is \(S \) is called a basis of \(S \). The number of vectors in the basis is the dimension of the subspace.
Subspaces and Bases

- A given subspace has an infinite number of bases.
- Each basis has the same number of vectors in it.
- If S and T are subspaces such that $S \subset T \subset \mathbb{R}^n$, then a basis of S can be extended to a basis of T.
- The span of the columns of a matrix A is a subspace called the column space or the range, denoted $\text{range}(A)$.
- The span of the rows of a matrix A is a subspace called the row space.
- The dimensions of the column space and row space are always equal. We call this number $\text{rank}(A)$.
- Clearly, $\text{rank}(A) \leq \min\{m, n\}$. If $\text{rank}(A) = \min\{m, n\}$, then A is said have full rank.
- The set $\{x \in \mathbb{R}^n | Ax = 0\}$ is called the null space of A (denoted $\text{null}(A)$) and has dimension $n - \text{rank}(A)$.
Some Conventions

If not otherwise stated, the following conventions will be followed for lecture slides during the course:

- \mathcal{P} will denote a polyhedron contained in \mathbb{R}^n.
- A will denote a matrix of dimension m by n.
- b will denote a vector of dimension m.
- x will denote a vector of dimension n.
- c will denote a vector of dimension n.
- \mathcal{P} will either be defined in *standard form* ($\{x \in \mathbb{R}^n | Ax = b, x \geq 0\}$) or *inequality form* ($\{x \in \mathbb{R}^n | Ax \geq b\}$).
- We will usually be *minimizing*.