Advanced Operations Research Techniques IE316

Lecture 2

Dr. Ted Ralphs

Reading for This Lecture

- Operations Research Methods and Models
- Bertsimas 1.1-1.2, 1.4-1.5, 1.3 (optional)

Review from Last Time

- Recall that a mathematical model consists of:
- Decision variables
- Constraints
- Objective Function
- Parameters and Data

The general form of a mathematical programming model is:

$$
\begin{array}{ll}
\min \text { or } \max & f\left(x_{1}, \ldots, x_{n}\right) \\
\text { s.t. } & g_{i}\left(x_{1}, \ldots, x_{n}\right)\left\{\begin{array}{l}
\leq \\
= \\
\geq
\end{array}\right\} b_{i}
\end{array}
$$

We might also want the values of the variables to belong to discrete set X.

Example of a Mathematical Program: The Diet Problem

- Goal: Choose the cheapest menu satisfying nutritional requirements.
- What is the input data?
- What is the formulation in words?

Critique of the Model

- What are the possible problems with this model?

A Little History

- George Dantzig is considered to be the father of linear programming.
- The diet problem was one of the first applications of linear programming.
- It took 120 man-days to solve a problem with 9 constraints and 77 variables by hand!
- Later, Dantzig tried to lose weight by designing his own diet.
- The first solution he came up with contained several gallons of vinegar.
- After deleting vinegar from the list of foods, the new solution contained approximately 200 bouillon cubes.
- This illustrates one of the potential hazards of math modeling.

Representing Math Models: Vectors and Matrices

- An $m \times n$ matrix is an array of $m n$ real numbers:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

- A is said to have n columns and m rows.
- An n-dimensional column vector is a matrix with one column.
- An n-dimensional row vector is a matrix with one row .
- By default, a vector will be considered a column vector.
- The set of all n-dimensional vectors will be denoted \mathbb{R}^{n}.
- The set of all $m \times n$ matrices will be denoted $\mathbb{R}^{m \times n}$.

Matrices

- The transpose of a matrix A is

$$
A^{T}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right]
$$

- If $x, y \in \mathbb{R}^{n}$, then $x^{T} y=\sum_{i=1}^{n} x_{i} y_{i}$.
- This is called the inner product of x and y.
- If $A \in \mathbb{R}^{m \times n}$, then A_{j} is the $j^{\text {th }}$ column, and a_{j} is the $j^{t h}$ row.
- If $A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}$, then $[A B]_{i j}=a_{i}^{T} B_{j}$.

Linear Functions

- A linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a weighted sum, written as

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} c_{i} x_{i}
$$

for given coefficients c_{1}, \ldots, c_{n}.

- We can write x_{1}, \ldots, x_{n} and c_{1}, \ldots, c_{n} as vectors $x, c \in \mathbb{R}^{n}$ to obtain:

$$
f(x)=c^{T} x
$$

- In this way, a linear function can be represented simply as a vector.
- We will consider only models defined by linear functions.

Back to the Diet Problem

- How do we write the diet problem mathematically?
- What are the decision variables?
- What is the objective function?
- What are the constraints?

Putting It All Together

- Using matrix notation, we can write our current formulation as

$$
\begin{aligned}
& \min \quad c^{T} x \\
& \text { s.t. } l \leq A x \leq u
\end{aligned}
$$

- What are we missing?

Linear Programs

- What we have just seen is an example of a linear program.
- In general, we can write a linear program as

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { s.t. } & a_{i}^{T} x \geq b_{i} \forall i \in M_{1} \\
& a_{i}^{T} x \leq b_{i} \forall i \in M_{2} \\
& a_{i}^{T} x=b_{i} \forall i \in M_{3} \\
& x_{j} \geq 0 \forall j \in N_{1} \\
& x_{j} \leq 0 \forall j \in N_{2}
\end{array}
$$

- This in turn can be written equivalently as

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { s.t. } & A x \geq b
\end{array}
$$

- How do we do this?

Standard Form

- To solve a linear program, we must put it in the following standard form:

$$
\begin{aligned}
& \min c^{T} x \\
& \text { s.t. } \quad A x=b \\
& x \geq 0
\end{aligned}
$$

- How do we do this?

Two Crude Petroleum Example

- Two Crude Petroleum distills crude from two sources:
- Saudi Arabia
- Venezuela
- They have three main products:
- Gasoline
- Jet fuel
- Lubricants
- Yields

	Gasoline	Jet fuel	Lubricants
Saudi Arabia	0.3 barrels	0.4 barrels	0.2 barrels
Venezuela	0.4 barrels	0.2 barrels	0.3 barrels

Two Crude Petroleum Example (cont.)

- Availability and cost

	Availability	Cost
Saudi Arabia	9000 barrels	$\$ 20 /$ barrel
Venezuela	6000 barrels	$\$ 15 /$ barrel

- Production Requirements (per day)

Gasoline	Jet fuel	Lubricants
2000 barrels	1500 barrels	500 barrels

- Objective: Minimize production cost.

Modeling the Two Crude Production Problem

- What are the decision variables?
- What is the objective function?
- What are the constraints?

Linear Programming Formulation of Two Crude Example

- This yields the following LP formulation:

$$
\begin{aligned}
& \min 20 x_{1}+15 x_{2} \\
& \text { s.t. } 0.3 x_{1}+0.4 x_{2} \geq 2.0 \\
& 0.4 x_{1}+0.2 x_{2} \geq 1.5 \\
& 0.2 x_{1}+0.3 x_{2} \geq 0.5 \\
& 0 \leq x_{1} \leq 9 \\
& 0 \leq x_{2} \leq 6
\end{aligned}
$$

- How can we solve this problem?
- What are the possible outcomes of solving such a problem?

