Algorithms in Systems Engineering
IE170

Final Review

Dr. Ted Ralphs
Textbook Sections Covered in Course

Introduction to Part I
Chapter 1, all sections
Chapter 2, all sections
Chapter 3, all sections
Chapter 4, intro and sections 1-3

Introduction to Part II
Chapter 6, all sections
Chapter 7, all sections

Introduction to Part III
Chapter 10, all sections
Chapter 11, intro and sections 1-4
Chapter 12, all sections
Chapter 21, intro and sections 1-3

Introduction to Part VI
Chapter 22, intro and sections 1-4.
Chapter 23, intro and section 3.
Chapter 28, intro and sections 1 and 3.
Chapter 31, intro and sections 2, 4, 6, 7, 8.
Chapter 32, intro and sections 1, 2, and 4.
Algorithms
Algorithms

- The main theme of the course has been the design, implementation, and analysis of algorithms and data structures for solving problems.

- A problem specifies the form of the output desired for a given set of inputs.

- An algorithm is a specific procedure for converting input to output.

- An algorithm is said to be correct for a given problem if it successfully converts each possible input into an output of the desired form, called a solution.

- Ultimately, we are interested in algorithms that are fast.

- We will judge the speed of an algorithm by the number of fundamental operations required to execute it, generally called the running time.

- This provides a measure that is independent of hardware.
Analyzing Algorithms

- The goal of analyzing an algorithm is to determine its running time.
- A *problem instance* is just a specific set of inputs.
- The running time of an algorithm is different for different instances.
- This creates difficulties for analysis and leads to two different summary measures of running time.
 - **Worst-case**
 - **Average-case**
- Worst-case is almost always easier to compute, but average-case is often a more useful measure.
- We can use either theoretical or empirical analysis, or a combination, to determine running time.
Models of Computation

• In order to analyze the number of steps necessary to execute an algorithm, we have to say what we mean by a “step.”

• To define this precisely is tedious and beyond the scope of this course.

• A precise definition depends on the exact hardware being used.

• Our analysis will assume a very simple model of a computer called a random access machine (RAM).

• In a RAM, the following operations take one step.
 – arithmetic (addition, subtraction, multiplication, division)
 – data movement (read from memory, store in memory, copy)
 – comparison
 – control (function calls, goto commands)

• This is a very idealized model, but it works in practice.

• We will sometimes need to simplify the model even further.
The Input Size

• The running time of an algorithm generally depends primarily on the number of input values, or the *size of the input*.

• We are interested in how the running time grows generally as the input size grows.
 – Because we are mainly interested in how the running time grows as the instances become larger, we won’t need “exact” running times.
 – We will allow some “sloppiness” and ignore constants and low order terms.
 – Because of our many simplifying assumptions, the low order terms may not be accurate anyway.

• The growth rate of algorithms gives us a basis for comparison.
 – Any algorithm can be used to solve a small problem.
 – It is the really large problems that require efficient algorithms.
Growth of Functions

• Consider algorithm A with running time given by f and algorithm B with running time given by g.

• We are interested in knowing

$$L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

• There are four possibilities.
 - $L = 0$: g grows faster than f.
 - $L = \infty$: f grows faster than g.
 - $L = c$: f and g grow at the same rate.
 - The limit doesn’t exist.
\textbf{Θ Notation}

- We now define the set

\[\Theta(g) = \{ f : \exists c_1, c_2, n_0 > 0 \text{ such that } c_1g(n) \leq f(n) \leq c_2g(n) \forall n \geq n_0 \} \]

- If \(f \in \Theta(g) \), then we say that \(f \) and \(g \) grow \textit{at the same rate} or that they are \textit{of the same order}.

- Note that

\[f \in \Theta(g) \iff g \in \Theta(f) \]

- We also know that if \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \) for some constant \(c \), then \(f \in \Theta(g) \).

- If the limit doesn’t exist, we don’t know.
Big-O Notation

- We now define the set

\[O(g) = \{ f : \exists c, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \forall n \geq n_0 \} \]

- If $f \in O(g)$, then we say that "f is big-O of g" or that g grows at least as fast as f.

- Note that if $f \in O(g)$, then either $f \in \Theta(g)$ or $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

- Some other notation
 - $f \in \Omega(g) \iff g \in O(f)$.
 - $f \in o(g) \iff f \in O(g) \setminus \Theta(g) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.
 - $f \in \omega(g) \iff g \in o(f) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.
Recursion

- A recursive function is one that calls itself.
- There are two basic types of recursive functions.
 - A *linear recursion* calls itself once.
 - A *branching recursion* calls itself two or more times.
- Generally speaking, recursive algorithms should have the following two properties to be guarantee well-defined termination.
 - They should solve an explicit *base case*.
 - Each recursive call should be made with a *smaller input size*.
- The use of recursion makes many algorithms easier to implement, but there are drawbacks.
- Recursive implementations usually use more memory and may not be quite as efficient as their nonrecursive counterparts.
- Every recursive algorithm has a nonrecursive counterpart.
Divide and Conquer

- Many common problems can be solved using a *divide-and-conquer* approach.
- This means breaking a larger problem into pieces that can be solved independently.
- The solutions to the various pieces may then have to recombined in some way.
- Divide-and-conquer algorithms have natural implementations using branching recursions.
 - **Divide**: Divide the input data into smaller pieces.
 - **Conquer**: Call the algorithm recursively on each piece.
 - **Combine**: Combine the results into a solution to the original problem.
Analyzing Recursive Algorithms

- The running times of many divide and conquer algorithms can be analyzed by solving a recurrence.
- For an input of size n, let the running times of the divide and combine steps be $f(n)$.
- Suppose that the divide step results in a smaller pieces of size n/b (there may be some overlap).
- If $T(n)$ is the overall running time of the algorithm, then $T(n)$ must satisfy the recurrence
 \[
 T(n) = aT\left(\frac{n}{b}\right) + f(n)
 \]
- The running times of other recursive algorithms also give rise to recurrences.
Analyzing Recurrences

• General methods for analyzing recurrences
 – Make a guess and prove that it’s right (usually with induction).
 – Build a recursion tree.
 – Use telescoping (generally used for linear recursions).
 – Use the Master Theorem (generally used for branching recursions).

• When we analyze a recurrence, we may not get or need an exact answer.

• We may prove the running time is in $O(f)$ or $\Theta(f)$ for some simpler function f.

• When taking the ratio of two integers, it usually doesn't matter whether we round up or down.
The Master Theorem

• We can use the Master Theorem to analyze a divide and conquer recurrence of the form

\[T(n) = aT(n/b) + f(n) \]

• We have to choose from one of three cases:

1. If \(f(n) \in O(n^{\log_b a - \varepsilon}) \), for some constant \(\varepsilon > 0 \), then \(T(n) \in \Theta(n^{\log_b a}) \).
2. If \(f(n) \in \Theta(n^{\log_b a}) \), then \(T(n) \in \Theta(n^{\log_b a \log n}) \).
3. If \(f(n) \in \Omega(n^{\log_b a + \varepsilon}) \), for some constant \(\varepsilon > 0 \) and if \(a f(n/b) \leq cf(n) \) for some constant \(c < 1 \), then \(T(n) \in \Theta(f(n)) \).

• If \(f \) is a polynomial, then deciding which case we are in is as simple as comparing the degree of \(f \) to \(\log_b a \).
Data Structures
Data Structures

- Algorithms use *data structures* to store and manipulate data during the course of execution.

- A data structure consists of a specified set of data and a set of algorithms for performing operations on the data.

- In C++, data structures have natural implementations as new *data types* (classes).

- A C++ class is composed of
 - *data members*, and
 - *member functions*.

- The *data members* are the values.

- The *member functions* are the operations to be performed on these values.

- The most important concept to remember is that of separating the *definition* (interface) from the *implementation*.
Lists

- A list is the most basic data structure.
- A list stores a set of elements and supports the following operations.
 - Get the number of elements in the list.
 - Get element j.
 - Set element j.
 - Add an element to the list just before element j.
 - Delete element j from the list.
- There are two basic implementations for lists
 - arrays
 - linked lists
Stacks and Queues

- A **stack** is a special kind of list in which items can only be removed in “last-in, first-out” (LIFO) order.
- A **queue** is a list in which items can only be removed in “first-in, first-out” (FIFO) order.
- The basic operations on a stack are
 - push a new item on the stack.
 - pop the most recently added item off the stack.
- The basic operations on a queue are
 - enqueue a new item.
 - dequeue the most recently added item.
- Stacks and queues can also be implemented using either arrays or linked lists.
Trees

- A tree is a set of items organized into a hierarchical structure.
- When organized in this way, we call the items nodes.
- Each node has a single designated parent and one or more children.
- There is a single designated node, called the root, with no parent.
- Any node with no children is called a leaf.
- Any node with children is called internal.
- A tree in which all nodes have 2 or fewer children is called a binary tree.
- Storing a list of items in a tree structure allows us to represent additional relationships among the items in the list.
Binary Tree Data Structures

- To store a tree, we need a node data structure supporting three basic operations.
 - `parent()`: return a pointer to the parent of a node.
 - `right()`: return a pointer to the “right” child of a node.
 - `left()`: return a pointer to the “left” child of a node.

- This allows us to traverse the tree and perform other operations on it.

- The level of a node in the tree is the number of recursive calls to `parent()` needed to reach the root.

- The depth of the tree is the maximum level of any of its nodes.

- A balanced tree is one in which all leaves are at levels k or $k - 1$, where k is the depth of the tree.
Data Structures for Storing Trees

- There are two primary data structures used for storing trees.

- **Array**
 - The root is stored in position 0.
 - The children of the node in position i are stored in positions $2i$ and $2i + 1$.
 - This determines a unique storage location for every node in the tree and makes it easy to find a node’s parent and children.
 - Using an array, the basic operations can be performed very efficiently.
 - If the tree is unbalanced or dynamic, a linked list may be better.

- **Linked List**
 - In a linked list, each item is stored along with explicit pointers to its parent and children.
 - This allows for easy addition and deletion of nodes from the tree.
Priority Queues

- A priority queue is a data structure for maintaining a list of items that have associated *priorities*.

- The usual operations are
 - *construct* a queue from a list of items.
 - *find* the item with the highest priority.
 - *insert* an item.
 - *delete* an item.
 - *change* the priority of an item.

- The most common implementation of priority queues is using a *heap*.

- A heap is a binary tree in which the record stored at each node has a higher priority than either of its children.
Sorting
The Sorting Problem

- The sorting problem is fundamental to the study of algorithms.
- Algorithms for sorting are used in a vast number of applications and much is known about them.
- Most often, the items to be sorted are individual records, usually consisting of a key and related satellite data.
- The sorting problem is defined as follows.
 Input: A sequence of n records a_1, a_2, \ldots, a_n.
 Output: A reordering a'_1, a'_2, \ldots, a'_n of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.
- Note that the records can be anything for which a “≤” operator can be defined (usually by comparing the specified key).
- It is known that the running time of any comparison-based sorting algorithm is in $\Omega(n \lg n)$.
Properties of Sorting Algorithms

• In addition to running time, there are a few important properties of sorting algorithm that we may need to consider.
 – A stable sorting algorithm is one that leaves duplicate keys in the same relative order that they were in the original list.
 – This is an important property if you want to be able to sort on multiple keys.
 – Another important consideration is whether the algorithm sorts in place, i.e., does not have to allocate too much extra memory.
 – Finally, we might consider how well the algorithm performs on arrays that are already sorted, or mostly sorted.

• The sorting algorithm you choose may depend on what you expect the data to look like, e.g., is it “almost sorted.”

• The basic operations performed in sorting are comparison and exchange.

• The relative cost of these operations may also help determine the type of sort that is most appropriate.
Basic Sorting Algorithms

- Most straightforward sorting algorithms have a running time in $O(n^2)$.
- Nonadaptive algorithms perform the same sequence of steps for any input and have running times that are very consistent.
 - Selection sort
 - Bubble sort
- Adaptive algorithms can have dramatically different running times for different inputs.
 - Insertion sort: Fast for data that is “almost sorted.”
 - Quicksort: Fast for “random” data.
Commonly Used Sorting Algorithms

• Insertion Sort
 – Very efficient for “almost sorted” data.
 – Can be implemented in place and is stable.
 – Slow on average.

• Merge Sort
 – Asymptotically optimal and stable.
 – Cannot be implemented in place.

• Heap Sort
 – Heap sort is asymptotically optimal and can be implemented in place, but it is unstable.
 – Heap sort is based on the construction of a priority queue.

• Quicksort
 – Randomized quicksort has excellent average case performance ($\Theta(n \log n)$) and can be implemented in place.
 – However, it is unstable and can result in a large call stack and poor performance if not implemented carefully.
Searching
Symbol Tables and Dictionaries

- In the last few lectures, we discussed various methods for sorting a list of items by a specified key.

- We now consider further operations on such lists.

- A **symbol table** is a data structure for storing a list of items, each with a **key** and **satellite data**, supporting the following basic operations.
 - **construct** a symbol table.
 - **search** for an item (or items) having a specified key.
 - **insert** an item.
 - **remove** a specified item.
 - **count** the number of items.
 - **print** the list of items.

- Symbol tables are also called **dictionaries** because of the obvious comparison with looking up entries in a dictionary.

- Note that the keys may not have an ordering.
Additional Operations on Symbol Tables

• If the items can be ordered, e.g., by `operator<` and `operator==`, we may support the following additional operations.

 – **Sort** the items (print them in sorted order).
 – Return the **maximum** or **minimum** item.
 – **Select** the k^{th} item.
 – Return the **successor** or **predecessor** of a given item.

• We may also want to be able to **join** two symbol tables into one.

• These operations may or may not be supported in various implementations.

• The easiest implementation is using an **array**.
Binary Search Trees

- A BST can be used to implement a symbol table when the keys have an order.

- As with heaps, a binary search tree is a binary tree with additional structure.

- In a binary tree, the key value of any node is
 - greater than or equal to the key value of all nodes in its left subtree;
 - less than or equal to the key value of all nodes in its right subtree.

- With this simple structure, we can implement all functions efficiently.
Performance of BSTs

- Efficiency of the basic operations depends on the depth of the tree.
- The best case is to make the same comparisons as in binary search.
- However, this can only happen if the root of each subtree is the median element of that subtree, i.e., the tree is balanced.
- Fortunately, if keys are added at random, this should be the case “on average.”
 - Like quicksort, the average performance is very good, but worst case behavior is easy to find (where?).
 - In fact, quicksort and BSTs exhibit worst case behavior on the same inputs!
 - As with quicksort, one can show that for a random sequence of keys, the average depth of the tree is $2\ln n \approx 1.39 \lg n$.
 - Again, the average depth is only 40% higher than the best possible.
 - Building a binary search tree has the same running time as quicksort!
Hash Tables

- **Hash tables** are a data structure for storing a dictionary that supports only the operations
 - insert,
 - delete, and
 - search.

- Most data structures for storing dictionaries depend on using *comparison* and *exchange* to order the items.

- This limits the efficiency of certain operations (recall the lower bound on the efficiency of comparison-based sorting).

- A *hash table* is a generalization of an array that takes advantage of our ability to access an arbitrary array element in constant time.

- Using hashing, we determine where to store an item in the table (and how to find it later) without using comparison.

- This allows us to perform all the basic operations extremely efficiently.
Hash Functions

• A hash function is a function $h : U \rightarrow 0, \ldots, M - 1$ that takes a key and converts it into an array index (called the hash value).

• Once we have a hash function, we can use the very efficient array-based implementation to store the table.

• A good hash function minimizes collisions and is easy to compute.

• For a “random” key, we would like the probability of each hash value to be “equally likely.”

• A simple method to hash a key x, take $x \mod M$, where M is the size of the hash table (typically a prime number).

• This is called modular hashing and is a very popular form of hashing.
Resolving Collisions

- There are two primary methods of resolving collisions.
 - **Chaining**: Form a linked list of all the elements that hash to the same value.
 - Easy to implement.
 - The table never “fills up” (better for extremely dynamic tables).
 - May use more memory overall.
 - Easy to insert and delete.
 - **Open Addressing**: If the hashed address is already used, use a simple rule to systematically look for an alternate.
 - Very efficient if implemented correctly.
 - When the table is nearly full, basic operations become very expensive.
 - Deleting items can be very difficult, if not impossible.
 - Once the table fills up, no more items can be added until items are deleted or the table is reallocated (expensive).
Disjoint Set Data Structure

• A disjoint set data structure is used to store a set of items that consists of a number of disjoint subsets.

• There are two basic operations we’d like to be able to perform.
 – \texttt{find}(i, j): Are \textit{i} and \textit{j} in the same subset?
 – \texttt{union}(i, j): Combine the subsets containing \textit{i} and \textit{j}.

• This type of data structure is sometimes called a \textit{union-find} data structure.

• The most naive implementations of union-find are inefficient for one of the two operations.

• Making both operations efficient requires techniques that are not obvious.
Graphs
Graphs

- A **graph** is a data structure used to store connectivity relations.

- A **graph** consists of a list of items, along with a set of connections between the items.

- An undirected graph $G = (V, E)$ is composed of a set of vertices V and a set of edges $E \subseteq V \times V$ that are unordered pairs.

- A directed graph $G = (N, A)$ is composed of a set of vertices N and a set of arcs $A \subseteq V \times V$ that are ordered pairs.

- In a **weighted graph**, each edge or arc has a real number, called its **weight**, associated with it.

- Basic operations on a graph:
 - Inserting an edge.
 - Deleting an edge.
 - Enumerating all edges incident to/from/on a node.
 - Searching the graph.
Graph Implementations

- To support basic graph operations, we need a method of storing the graph (an implementation.

- As with many previous data structures, there are basically two different ways to compactly represent a graph.
 - **Adjacency matrix**: An implementation based on arrays.
 - **Adjacency lists**: An implementation based on linked lists.

- We analyzed the tradeoffs between these two representations.
 - Generally, an adjacency matrix is more appropriate for dense graphs.
 - An adjacency list is more appropriate for sparse graphs.
Finding the Components of a Graph

• The most basic property of a graph we are interested in is whether two vertices are connected or not.

• This question can be answered for all vertices by finding the connected components of the graph.

• There are two basic methods for finding the components.

 – Union-find
 * Components can be computed “on-line.”
 * Very efficient if no other information about the graph is needed.

 – Graph search
 * Must construct a graph representation first.
 * Better if the graph will be queried for more information later.
Searching a Graph

- *Graph search* is a general method used to reveal various properties of a graph.
- Many algorithms are based on this general framework.
- *Graph search* consists of systematically *processing* the vertices of a graph to discover some property of the graph.
- To search a single component:
 - Choose a start vertex and add it to the list of unprocessed vertices.
 - Repeat until no vertices remain on the list.
 - Choose a vertex v from the list of unprocessed vertices.
 - Process v.
 - Add all the neighbors of v to the list of unprocessed vertices.
Types of Graph Search

- Note that we have left three basic components unspecified in our description of graph search.
 - How to determine the starting vertex (for each component).
 - How to process a vertex.
 - How to select a vertex from the list of vertices to be processed.

- The way in which these three steps are implemented determines the overall running time of the algorithm.

- The various options result in a rich class of algorithms that can answer many interesting questions about a given graph.
Trees as Graphs

- In graph terminology, a **tree** is a connected graph with no cycles and a **forest** is a graph consisting of a collection of trees.

- Properties of trees
 - Every tree has exactly $n - 1$ edges.
 - In a tree, there is a **unique path** from any given vertex to any other vertex.

- A tree that has a specified **root vertex** is called a rooted tree.
 - In a rooted tree, there is a unique path from the root to every other vertex.
 - We can therefore uniquely define the parent of a vertex v as the vertex that immediately precedes it on the path from the root to v.
 - Hence, we are justified in thinking of trees in the way that we had previously, as a set of hierarchical relationships between the vertices.
Search Trees and Forests

- Consider searching a connected undirected graph $G = (V, E)$.
- The process of searching G can be captured by constructing a tree T called the search tree.
- T is constructed as the search evolves by adding an edge connecting the vertex currently being processed to any vertex not yet processed.
- This graph must be connected and acyclic, and hence is a tree.
- We can view it as a rooted tree by taking the root to be the start vertex.
- In graphs with multiple components, we can similarly obtain search forests.
Depth-first and Breadth-first Search

- Two common graph search algorithms choose the next node to be processed based on its depth.

- **Depth-first search** (DFS)
 - DFS chooses the next vertex to be processed as the vertex at maximum depth in this tree.
 - DFS tends to produce very deep search trees.
 - DFS is easy to implement, either with recursion or by using a stack.

- **Breadth-first search**
 - BFS chooses the next vertex to be processed as the vertex at maximum depth in this tree.
 - BFS results in a very shallow search tree, unlike DFS.
 - BFS is implemented using a queue instead of a stack to store the unprocessed nodes.
Shortest Paths

- In an unweighted graph, the path from the root node to any other vertex in the BFS search tree is a shortest path (in terms of number of edges).

- In a weighted graph, the length of a path is the sum of the weights of the edges encountered on the path.

- A shortest path between two vertices in a weighted graph is a path connecting the two vertices that is of minimum length.

- A shortest paths tree (SPT) is a rooted tree in which the path from the root vertex to each other vertex in the graph is a shortest such path in the original graph.

- To construct a shortest paths tree in the weighted case, we can use Dijkstra’s Algorithm.
Algorithm Summary

• We are given a graph $G = (V, E)$ and a source node node r from which we want to find shortest paths to all other nodes.

• Algorithm
 – Initialize by assigning $d(r) = 0$ for the source node and $d(v) = \infty$ for all other nodes $v \in V \setminus \{r\}$.
 – Place r on the list L of unprocessed nodes.
 – While L is not empty
 * Choose $v \in L$ such that $d(v) = \min_{u \in L} d(u)$.
 * For each neighbor x of v, set $d(x) = \min\{d(x), d(v) + w_{\{v,x\}}\}$.

• When the algorithm is completed, we will have $d(v) = \delta(v)$ for all $v \in V$ and the search tree will be a shortest paths tree.

• This algorithm can be implemented using a priority queue to store the list of unprocessed nodes and has a running time of $O(m \lg n)$ if the graph is connected.
Spanning Trees

- Given a connected undirected graph \(G = (V, E) \), a spanning tree \(T \) of \(G \) is a subgraph that is a tree and whose vertex set is all of \(V \).

- Every minimal connected subgraph is a spanning tree (and vice versa).

- In other words, a subgraph is a spanning tree if and only if it is connected and removing any edge will disconnect it.

- If \(T \subseteq E \) is a spanning tree of \(G \), the weight of \(T \) is

\[
\sum_{e \in T} w_e
\]

- The minimum weight spanning tree (MST) problem is that of finding, among all spanning trees of \(G \), one that has minimum weight.
Prim’s Algorithm for Finding an MST

- We are given a connected undirected weighted graph $G = (V, E)$ and we want to find an MST of G.

- **Prim’s Algorithm**
 - Arbitrarily choose a source node r.
 - Initialize by assigning $d(r) = 0$ for the source node and $d(v) = \infty$ for all other nodes $v \in V \setminus \{r\}$.
 - Place r on the list L of unprocessed nodes.
 - While L is not empty
 - Choose $v \in L$ such that $d(v) = \min_{u \in L} d(u)$.
 - For each neighbor x of v, set $d(x) = \min\{d(x), w_{\{v, x\}}\}$.

Another Approach

- Another class of algorithms, called *greedy algorithms* takes the approach of building an MST edge by edge.

- Let's assume that we have a set of edges T that satisfies the property that T can be extended to an MST.

- **Question**: What edges can we add to T to maintain the property?

- If we add an edge that is a minimum edge crossing some cut S, this property is maintained.

- **Rationale**: In any connected graph, there must be an edge crossing each cut in the graph.

- We will call such edge a *safe edge* if it also doesn’t create a cycle when added to T.

- How do we find such an edge?
 - *Prim’s Algorithm* simply considers the cut S consisting of nodes that have already been processed.
 - At each step, we add the minimum edge crossing that cut.
 - There are other possibilities, however.
Kruskal’s Algorithm

- **Kruskal’s Algorithm** takes a more global view.

- At each step, we consider *all edges* that do not form a cycle when added to the current set T.

- The minimum such edge is guaranteed to be safe (why?).

- As edges are added, we will keep track of the current set of components using a union-find data structure.

- At each step, we’ll add the cheapest edge to T that doesn’t connect two nodes currently in the same component.

- **Implementing Kruskal's Algorithm**

 - Before beginning, sort the edges by weight and set $T = \emptyset$.

 - While there are unexamined edges on the list

 * Call the `find()` operation on the endpoints of each edge until an edge e is found for whose endpoints are in different components.

 * After adding e to T, call the `union()` operation to combine the components containing its endpoints into a single component.
Data Structures for Digraphs

- Data structures for digraphs are similar to those for undirected graphs.
- As before, there are two basic choices
 - Adjacency matrix
 - Adjacency lists
- These are implemented in similar fashion, except that
 - In the case of an adjacency matrix, the matrix is no longer symmetric.
 - In the case of an adjacency list, each arc appears only on the adjacency list of its tail vertex.
Graph Search for Digraphs

- Graph search doesn’t have the same interpretation in the directed case because we cannot use it directly to find the (strongly) connected components.

- Graph search from vertex r:
 - Add r to the list of unprocessed vertices.
 - Repeat until no vertices remain on the list.
 * Choose a vertex v from the list of unprocessed vertices.
 * Process v.
 * For each arch incident from v, add its head to the list of unprocessed vertices.

- As before, this graph search process results in construction of a directed search tree in which there is a path from r to each other vertex.

- Such a directed tree is said to be directed away from r.

- This graph search algorithm can easily be adapted to find the shortest directed paths from r to each other vertex.

- It can also be used to find a minimum spanning tree directed away from r.
Directed Acyclic Graphs

- Often, directed graphs are used to represent precedence relations.

- Such *precedence graphs* should be both *directed* and *acyclic*.

- Given a directed acyclic graph (DAG), one thing we would like to be able to do is determine an ordering of vertices that obeys the precedence relations.

- This is called a *topological sort*.

- Given a DAG, DFS can be used to perform a topological sort.

 - Each vertex is added to the front of a linked list after all of its neighbors have been processed.

 - The resulting linked list is a topological sort.
Numerical Analysis
Floating-point Numbers

• There are basically three schemes by which real numbers can be approximated in a computer.
 – As a rational number.
 – Using fixed point representation.
 – Using floating point representation.

• In modern computers, real numbers are approximated using a floating point representation.

• The floating-point numbers F are a subset of the real numbers.

• A floating point number consists of three parts:
 – The sign
 – The exponent
 – The mantissa
Floating-point Arithmetic

• Arithmetic with floating point numbers is different than regular arithmetic.

• This is because after each operation, the answer must be rounded off.

• The biggest problems occur when numbers on different scales appear in the same calculation.

• Example

 – Assume 10 digit precision

 – \((10^{-10} + 1) - 1 = 0\)

 \(-\ 10^{-10} + (1 - 1) = 10^{-10}\)

• The example show that floating point operations do not have the same properties as familiar arithmetic operations.
Vectors and Matrices

- Vectors and matrices are constructs that arise naturally in many systems engineering applications.

- Operating on vectors and matrices requires numerical algorithms.

- An $m \times n$ matrix is an array of mn real numbers:

$$A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}$$

- A is said to have n columns and m rows.

- An n-dimensional column vector is a matrix with one column.

- An n-dimensional row vector is a matrix with one row.

- By default, a vector is considered a column vector.
Storing Vectors and Matrices

- The *density* of a matrix is the percentage of entries that are nonzero.
- *Dense* vectors can simply be stored in an array.
- *Dense* matrices can be stored in a 2-dimensional array.
- Matrices that arise in practice, however, are typically *sparse*.
- Sparse matrices can be stored using a strategy similar adjacency lists using three vectors:
 - The first vector stores the locations of the nonzero entries in each column.
 - The second vector stores the actual values corresponding to each one of those locations.
 - The third vector stores the location in the first two matrices of the entries corresponding to each column.
Multiplying Matrices

- A straightforward method for multiplying 2×2 matrices can be generalized to yield a simple recursive algorithm.

- Divide each matrix into $\frac{n}{2} \times \frac{n}{2}$ submatrices.

\[
\begin{bmatrix}
R & S \\
T & U
\end{bmatrix}
=
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\begin{bmatrix}
E & F \\
G & H
\end{bmatrix}
\]

- To calculate the answer, we have:

\[
R = AE + BG \\
S = AF + BH \\
T = CE + DG \\
U = CF + DH
\]
The LUP Decomposition

- An LUP decomposition consists of three $n \times n$ matrices L, U, and P such that
 \[PA = LU \]
 where
 - L is upper triangular.
 - U is lower triangular with 1’s on the diagonal.
 - P is a permutation matrix.

- Once we have an LUP decomposition, we can use it to solve the system $Ax = b$.
 - First solve the system $Ly = Pb$ (forward substitution).
 - Then solve the system $Ux = y$ (backward substitution).

- Once the factorization is known, this takes only $O(n^2)$ steps, as opposed to $O(n^3)$ for Gaussian elimination.
Finding the LU Decomposition (cont.)

• The following equation shows how to find an LU factorization recursively and “in place.”

\[
A = \begin{bmatrix}
1 & 0 \\
v/a_{11} & I
\end{bmatrix}
\begin{bmatrix}
a_{11} & w^T \\
0 & A' - vw^T/a_{11}
\end{bmatrix} (1)
\]

\[
= \begin{bmatrix}
1 & 0 \\
v/a_{11} & I
\end{bmatrix}
\begin{bmatrix}
a_{11} & w^T \\
0 & \text{L'U'}
\end{bmatrix} (2)
\]

\[
= \begin{bmatrix}
1 & 0 \\
v/a_{11} & \text{L'}
\end{bmatrix}
\begin{bmatrix}
a_{11} & w^T \\
0 & \text{U'}
\end{bmatrix} (3)
\]

• The element \(a_{11}\) is called the pivot element.

• Note that the above decomposition method fails whenever the pivot element is zero.

• In this case, we can permute the rows of \(A\) to obtain a new pivot element (this is where the matrix \(P\) comes from).

• The total running time is \(O(n^3)\), the same as Gaussian elimination.
Cryptography

- Cryptography is the study of methods for sending messages in an encoded form that can (hopefully) only be interpreted by the intended recipient.

- The original message is said to be in plaintext and the encoded message is said to be in ciphertext.

- Let \mathcal{P} be the set of all plaintext messages and \mathcal{C} be the set of all encrypted messages.

- A crytosystem is a one-to-one mapping $f : \mathcal{P} \rightarrow \mathcal{C}$, whose inverse maps \mathcal{C} back to \mathcal{P}.

- Most cryptosystems work by dividing the original message into message units, which are then individually enciphered.

- A message unit is typically defined to be a block of k letters for some positive k.

- For ease of defining the transformation, we can convert each message unit to a unique integer by interpreting it as a k-digit number base N.
Public Key Encryption

• For a cryptosystem to be useful, it has to be possible to easily encode and decode.

• Until about 25 years ago, all known cryptosystems had the property that if you knew the encoding key, you could easily derive the decoding key.

• This creates problems when trying to send an encrypted message to someone without prior arrangement.

• Public key encryption is an attempt to overcome this shortcoming.

• Public key systems are based on the concept of a trapdoor function.

• A trapdoor function is one which is easy to compute but “difficult” to invert without additional information.

• Using a trapdoor function to do the encoding makes it difficult to discover the decoding key from the encoding key.

• This allows the establishment of secure communications between parties without prior arrangement.

• It also provides an easy method for digitally signing electronic transmissions.
RSA Public Key Encryption Algorithm

- The RSA algorithm is used almost universally to encrypt data on the Internet.
- If you have ever visited a secure site on the Internet, you have used RSA encryption.
- Procedure for creating public and private keys.
 - Randomly choose two large prime numbers \(p \) and \(q \) such that \(p \neq q \).
 - Compute \(n = pq \).
 - Select an odd integer \(e \) that is relatively prime to \(\phi(n) = (p - 1)(q - 1) = n + 1 - p - q \).
 - Compute \(d \) as the multiplicative inverse of \(e \) modulo \(\phi(n) \).
 - The pair \((e, n)\) is the public key.
 - The pair \((d, n)\) is the private key.
- The encoding function is \(f_E(P) = P^e \mod n \).
- The decoding function is \(f_D(C) = C^d \mod n \).
Implementing RSA Encryption

- The RSA encryption algorithm is easy to state, but implementing it efficiently can be challenging.
- Security of the method is based on the difficulty of factoring large integers.
- To generate the public key, one must choose two large prime numbers.
- This is usually accomplished by generating random integers until two are found that can be proven prime.
- A typical method for proving a number prime involves modular exponentiation, which can be implemented efficiently.
- Once the public key is determined, the private key can be calculated using the extended version of Euclid’s Algorithm.
- One of the biggest challenges is that the numbers involved in implementing this algorithm are HUGE.
- New data types must be implemented to store these numbers.
- Ultimately, this can all be implemented efficiently.