References for Today’s Lecture

• Required reading
 – CLRS Chapter 12

• References
Symbol Tables and Dictionaries

• In the last few lectures, we discussed various methods for sorting a list of items by a specified key.

• We now consider further operations on such lists.

• A *symbol table* is a data structure for storing a list of items, each with a *key* and *satellite data*, supporting the following basic operations.

 – **Construct** a symbol table.
 – **Search** for an item (or items) having a specified key.
 – **Insert** an item.
 – **Remove** a specified item.
 – **Count** the number of items.
 – **Print** the list of items.

• Symbol tables are also called *dictionaries* because of the obvious comparison with looking up entries in a dictionary.

• Note that the keys may not have an ordering.
Additional Operations on Symbol Tables

• If the items can be ordered, e.g., by `operator<` and `operator ==`, we may support the following additional operations.

 – **Sort** the items (print them in sorted order).
 – Return the **maximum** or **minimum** item.
 – **Select** the \(k^{th} \) item.
 – Return the **successor** or **predecessor** of a given item.

• We may also want to be able to **join** two symbol tables into one.

• These operations may or may not be supported in various implementations.
Applications of Symbol Tables

- What are some applications of symbol tables?
Symbol Tables with Integer Keys

• Consider a list of items whose keys are small positive integers.
• Assuming no duplicate keys, we can implement such a symbol table using an array.

```cpp
class symbolTable
{
    private:
        symbolTable(); // Disable the default constructor
        Item** st_; // An array of pointers to the items
        const int maxKey_; // The maximum allowed value of a key

    public:
        symbolTable(const int M); // Constructor
        ~symbolTable(); // Destructor
        int getNumItems() const;
        Item* search(const int k) const;
        Item* select(int k) const;
        void insert(Item* it);
        void remove(Item* it);
        void sort(ostream& os);
}
```
Implementation

symbolTable::symbolTable (const int M)
{
 maxKey_ = M;
 st_ = new Item* [M];
 for (int i = 0; i < M; i++) { st_[i] = 0; }
}

void symbolTable::insert(Item* it)
{ st_[it.getKey()] = it; }

void symbolTable::remove(Item* it)
{ delete st_[it.getKey()]; st_[it.getKey()] = 0; }

Item* symbolTable::search(const int k) const
{ return st_[k]; }
Implementation (cont.)

Item* select(int k)
{
 for (int i = 0; i < maxKey_; i++)
 if (st_[i])
 if (k-- == 0) return st_[i];
}

Item sort(ostream& os)
{
 for (int i = 0; i < maxKey_; i++)
 if (st_[i])
 os << *st_[i];
}

int getNumItems() const
{
 int j(0);
 for (int i = 0; i < maxKey_; i++) { if (st_[i]) j++; }
 return j;
}
Arbitrary Keys

- Note that with arrays, most operations are constant time.
- What if the keys are not integers or have arbitrary value?
- We could still use an array or a linear linked list to store the items.
- However, some of the operations would become inefficient.
- Recall Lab 1
 - If we keep the items in order, searching would be efficient (binary search), but inserting would be inefficient.
 - If we kept the items unordered, inserting would be efficient, but searching would be inefficient (sequential search).
- A *binary search tree* (BST) is a more efficient data structure for implementing symbol tables where the keys are an arbitrary data type.
Binary Search Trees

• To use the BST data structure, the keys must have an order.

• As with heaps, a binary search tree is a binary tree with additional structure.

• In a binary tree, the key value of any node is
 – greater than or equal to the key value of all nodes in its left subtree;
 – less than or equal to the key value of all nodes in its right subtree.

• For now, we will assume that all keys are unique.

• With this simple structure, we can implement all functions efficiently.
Searching

• **Search** in a BST can be implemented recursively in a fashion similar to **binary search**, starting with the root as the current node.

 – If the pointer to the current node is 0, then return 0.
 – Otherwise, compare the search key to the current node’s key, if it exists.
 – If the keys are equal, then return a pointer to the current node.
 – If the search key is smaller, recursively search in the left subtree.
 – If the search key is larger, recursively search in the right subtree.

• What is the running time of this operation?
Inserting a Node

- The procedure for inserting a node is similar to that for searching.
- As before, we will assume there is no item with an identical key already in the tree.
- We simply perform an unsuccessful search and insert the node in place of the final 0 pointer at the end of the search path.
- This places it where we would expect to find it the next time we look.
- The running time is the same as searching.
- Constructing a BST from a given list of elements can be done by iteratively inserting each element.
Finding the Minimum and Maximum

- Finding the **minimum** and **maximum** is a simple procedure.
- The minimum is the leftmost node in the tree.
- The maximum is the rightmost node in the tree.
Sorting

- We can easily read off the items from a BST in sorted order.
- This involves walking the tree in a specified way.
- Walking the tree is done recursively by first walking the left subtree and then the right subtree.
- This leads to three different orders in which we can display the key values in the tree.
 - To display the values in preorder, print the value of the current node before recursively walking the two subtrees.
 - To display the values in inorder, print the value of the current node after walking the left subtree, but before walking the right subtree.
 - To display the values in postorder, print the value of the current node after walking both subtrees.
- Which display order will result in the printing of a sorted list?
Finding the Predecessor and Successor

• To find the successor of a node x, think of an inorder tree walk.

• After visiting a given node, what is the next value to get printed out?

• We need to examine two cases.
 – If x has a right child, then the successor is the node with the minimum key in the right subtree (easy to find).
 – Otherwise, the successor is the lowest ancestor of x whose left child is also an ancestor of x (why?).
 – To find such a node, we follow the path to the root until we reach a node that is the left child of its parent.
 – Note that if a node has two children, its successor cannot have a left child (why not?).

• Finding the predecessor works the same way.
Deleting a Node

• Deleting a node z from a BST is more complicated than other operations because of the rigid structure that must be maintained.

• There are a number of algorithms for doing this.

• The most straightforward implementation considers three cases.
 - If z has no children, then simply set the pointer to z in the parent to be 0.
 - If z has one child, then replace z with its child.
 - If z has two children, then delete either the predecessor or the successor and then replace z with it.

• Why does this work?
Performance of BSTs

- Efficiency of the basic operations depends on the depth of the tree.
- Consider the search operation: what is the best case?
- The best case is to make the same comparisons as in binary search.
- However, this can only happen if the root of each subtree is the median element of that subtree, i.e., the tree is balanced.
- Fortunately, if keys are added at random, this should be the case “on average.”
 - Like quicksort, the average performance is very good, but worst case behavior is easy to find (where?).
 - In fact, quicksort and BSTs exhibit worst case behavior on the same inputs!
 - As with quicksort, one can show that for a random sequence of keys, the average depth of the tree is $2 \ln n \approx 1.39 \lg n$.
 - Again, the average depth is only 40% higher than the best possible.
 - Building a binary search tree has the same running time as quicksort!
Handling Duplicate Keys

• What happens when the tree may contain duplicate keys?

• To make things easier, we can always insert items with duplicate keys in the right subtree.

• To find all items with the same key, search for the first item and then recursively search for the same item in the right subtree.

• Alternatively, we could maintain a linked list of items with the same key at each node in the tree.