References for Today’s Lecture

• Required reading
 – CLRS Chapter 6

• References
The Sorting Problem

- We will now undertake a more formal study of algorithms for the *sorting problem*.

- This problem is fundamental to the study of algorithms.

- Most often, the items to be sorted are individual *records*, usually consisting of a *key* and related *satellite data*.

- Recall our previous definition (slightly generalized here).
 - **Input**: A sequence of *n* records a_1, a_2, \ldots, a_n.
 - **Output**: A reordering a'_1, a'_2, \ldots, a'_n of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.

- Note that the records can be anything for which a “\leq” operator can be defined (usually by comparing the specified key).

- We may be interested in sorting the same list in more than one way.

- What are some contexts in which sorting is important?
Sorting Algorithms

• It is safe to say that there are more algorithms for sorting than any other single problem.

• There are so many fundamentally different ways of solving this problem that entire books have been devoted to the topic.

• It is known that the running time of any comparison-based sorting algorithm is in $\Omega(n \lg n)$ (why?).

• Any algorithm whose worst-case running time matches this lower bound is said to be asymptotically optimal or just optimal.

• Many of the known algorithms, including merge sort are optimal.

• However, this does not necessarily translate into good performance in practice.
Properties of Sorting Algorithms

• In addition to worst-case running time, there are a few important properties of sorting algorithm that we may need to consider.
 – A **stable** sorting algorithm is one that leaves duplicate keys in the same relative order that they were in the original list.
 – This is an important property if you want to be able to sort on multiple keys.
 – Another important consideration is whether the algorithm sorts *in place*, i.e., does not have to allocate too much extra memory.
 – Finally, we might consider how well the algorithm performs on arrays that are already sorted, or mostly sorted.

• The sorting algorithm you choose may depend on what you expect the data to look like, e.g., is it “almost sorted.”

• The basic operations performed in sorting are **comparison** and **exchange**.

• The relative cost of these operations may also help determine the type of sort that is most appropriate.
Elementary Sorting Methods

- Most straightforward sorting algorithms have a running time in

- *Selection sort* is perhaps the easiest to understand.

- *Bubble sort* is another simple algorithm.

- These simple algorithms are called *nonadaptive* because the sequence of steps is not affected by the initial ordering of the list.

- The number of operations is $\Theta(n^2)$ regardless of the input.

- However, these algorithms are fine for small lists.
More Sophisticated Algorithms

- We can improve slightly on the performance of selection and bubble sort by using a closely related variant called insertion sort.
 - Insertion sort performs poorly in many cases and still takes $\Theta(n^2)$ in the worst case.
 - However, it is efficient for lists that are almost sorted.
 - Insertion sort can be performed in place and is stable.

- In Lab 2, we saw a variant of a more sophisticated recursive algorithm called quick sort, which is based on partitioning.
 - Quick sort is also $\Theta(n^2)$ in the worst case, but is $\Theta(n \lg n)$ on average.
 - However, it is unstable and can result in a large call stack and poor performance if not implemented carefully.

- In Lecture 4, we saw merge sort.
 - Merge sort is asymptotically optimal and stable.
 - However, it cannot be performed in place.
Priority Queues and Sorting

• Before performing a more in-depth analysis of these methods, we introduce one more called *heap sort*.

• Heap sort is *optimal* and can be performed *in place*, but is *unstable*.

• Heap sort is based on construction of a *priority queue*.
 – A priority queue is a data structure for maintaining a list of items that have associated *priorities*.
 – The usual operations are

• Note that any implementation of a priority queue can be used to sort a list of items.
Trees

- A *tree* is a set of items organized into a hierarchical structure (think of a family tree).
- When organized in this way, we call the items *nodes*.
- Each node has a single designated *parent* and one or more *children*.
- There is a single designated node, called the *root*, with no parent.
- Any node with no children is called a *leaf*.
- Any node with children is called *internal*.
- A tree in which all nodes have 2 or fewer children is called a *binary tree*.
- Storing a list of items in a tree structure allows us to represent *additional relationships* among the items in the list.
- Trees occur naturally in many applications.
Binary Tree Data Structures

- To store a tree, we need a data structure supporting three basic operations.

- This allows us to \textit{traverse} the tree and perform other operations on it.

- The \textit{level} of a node in the tree is the number of recursive calls to \texttt{parent()} needed to reach the root.

- The \textit{depth} of the tree is the maximum level of any of its nodes.

- A \textit{balanced tree} is one in which all leaves are at levels k or $k - 1$, where k is the depth of the tree.
Data Structures for Storing Trees

- There are two primary data structures used for storing trees.

- **Array**
 - The root is stored in position 0.
 - The children of the node in position i are stored in positions $2i + 1$ and $2i + 2$.
 - This determines a unique storage location for every node in the tree and makes it easy to find a node’s parent and children.
 - Using an array, the basic operations can be performed very efficiently.
 - If the tree is unbalanced or dynamic, a linked list may be better.

- **Linked List**
 - In a linked list, each item is stored along with explicit pointers to its parent and children.
 - This allows for easy addition and deletion of nodes from the tree.
Heaps

• A *heap* is a balanced binary tree with additional structure that allows it to function efficiently as a priority queue.

• The additional structure needed to support these operations is that the record stored at each node has a higher priority than either of its children.

• Any node with this property is said to satisfy the *heap property*.

• Consider a tree in which all nodes except for the root have the heap property.

• We can easily transform this into a tree in which every node has the heap property (*how?*).

• This operation is called `heapify()`.

• By calling `heapify()` on each node, starting at the lowest level and working upward, we can transform an unordered binary tree into a heap.
Operations on a Heap

- The node with the highest priority is always the root.
- To delete a record
 - To add a record
 - Note that we can change the priority of a record in a similar fashion.
Heap Sort

- Suppose the list of items to be sorted are in an array of size n.
- The heap sort algorithm is as follows.

- Why is this algorithm correct?
- How do we analyze the running time?