References for Today’s Lecture

• Required reading
 – CLRS Chapter 3

• References
Some Notational Conventions

• Unless otherwise specified, we will assume all functions map \mathbb{N}_+ to \mathbb{R}_+.

• Our usual function names will be f, g, and T.

• We will also assume that n is a variable denoting the input size that takes on values in \mathbb{N}_+.

• We will also use m as a variable taking on values in \mathbb{N}_+.

• We will use a, b, and c to denote constants.

• Generally, all variables and constants will take on values in \mathbb{N}_+.

• Although it is common practice, I will try not to refer to a function by the notation $f(n)$ because $f(n)$ is a value, not a function.

 – Correct: “f is a polynomial function.”
 – Incorrect: “$f(n)$ is a polynomial function.”
Growth of Functions

• **Question**: Why are we *really* interested in the theoretical running times of algorithms?

• **Answer**: To compare different algorithm for solving the same problem.

• We are interested in performance for large input sizes.

• For this purpose, we need only compare the *asymptotic growth rates* of the running times.

 – Consider algorithm A with running time given by f and algorithm B with running time given by g.

 – We are interested in knowing

\[
L = \lim_{n \to \infty} \frac{f(n)}{g(n)}
\]

 – What are the four possibilities?
We now define the set

$$\Theta(g) = \{f : \exists c_1, c_2, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n) \forall n \geq n_0\}$$

- If $f \in \Theta(g)$, then we say that f and g grow at the same rate or that they are of the same order.
- Note that

$$f \in \Theta(g) \iff g \in \Theta(f)$$

- We also know that if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$ for some constant c, then $f \in \Theta(g)$.
- If the limit doesn’t exist, we don’t know.
Big-\(O\) Notation

- We now define the set
 \[
 O(g) = \{ f : \exists c, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \forall n \geq n_0 \}
 \]

- If \(f \in O(g) \), then we say that “\(f \) is big-\(O \) of \(g \)” or that \(g \) grows at least as fast as \(f \).

- Some other notation
 - \(f \in \Omega(g) \iff g \in O(f) \).
 - \(f \in o(g) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \).
 - \(f \in \omega(g) \iff g \in o(f) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \).

- Note that \(f \in o(g) \Rightarrow f \in O(g) \setminus \Theta(g) \).
Example

- Recall the polynomial evaluation example from last class.
- Let’s show that if $f(n) = \frac{1}{2}(n^2 + 3n)$, then $f \in \Theta(n^2)$.

Comparing Functions

- The notation we have just defined gives us a way of ordering functions.

- We can interpret
 - \(f \in O(g) \) as "\(f \leq g \),"
 - \(f \in \Omega(g) \) as "\(f \geq g \),"
 - \(f \in o(g) \) as "\(f < g \),"
 - \(f \in \omega(g) \) as "\(f > g \)," and
 - \(f \in \Theta(g) \) as "\(f = g \)."

- This gives us a method for comparing algorithms based on their running times.

- Note that most of the relational properties of real numbers (transitivity, reflexivity, symmetry) work here also.

- However, not every pair of functions is comparable.
Commonly Occurring Functions

- **Polynomials**: All polynomials f of degree k are in $\Theta(n^k)$.

- **Exponentials**
 - A function in which n appears as an exponent on a constant is an *exponential function*, i.e., 2^n.
 - For all positive constants a and b, $\lim_{n \to \infty} \frac{n^a}{b^n} = 0$.
 - This means that exponential functions always grow faster than polynomials.

- **Logarithms**
 - Logarithms of different bases differ only by a constant multiple, so they all grow at the same rate.
 - A *polylogarithmic* function is a function in $O(lg^k)$.
 - Polylogarithmic functions always grow more slowly than polynomials.

- **Factorials**: Factorial functions grow more quickly than exponentials, but are in $o(n^n)$.
Problem Difficulty

• The **difficulty** of a problem can be judged by the (worst-case) running time of the **best-known algorithm**.

• Problems for which there is an algorithm with polynomial running time (or better) are called **polynomially solvable**.

• Generally, these problems are considered to be **easy**.

• There are many interesting problems for which it is not known if there is a polynomial-time algorithm.

• These problems are generally considered **difficult**.

• One of the great open questions in mathematics is whether these problems really are difficult or if we just haven’t discovered the right algorithm yet.

• If you answer this question, you can win a **million dollars**.

• In this course, we will stick mostly to the easy problems.