References for Today’s Lecture

• Required reading
 – CLRS Chapter 28
Systems of Equations

• In some applications, we must determine values for a given set of unknowns, or variables, that satisfy one or more equations.

• Example:
Linear Equations

- A **linear equation** in n variables x_1, \ldots, x_n is an equation of the form

$$a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = b$$

where a_1, a_2, \ldots, a_n and b are constants.

- A **solution** to the equation is an assignment of values to the variables such that the equation is satisfied.

- Suppose we interpret the constants a_1, a_2, \ldots, a_n as the entries of an n-dimensional vector a.

- Let’s also make a vector x out of the variables x_1, x_2, \ldots, x_n.

- Then we can rewire the above equation as simply $a^T x = b$.
Systems of Linear Equations

• Suppose we are given a set of \(n \) variables whose values must satisfy more than one equation.

• In this case, we have a \textit{system of equations}, such as

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
 \vdots & \quad \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{align*}
\]

where \(a_{ij} \) is a constant for all \(1 \leq i \leq m \) and \(1 \leq j \leq n \) and \(b_1, \ldots, b_m \) are constants.

• As before, a solution to this system of equations is an assignment of values to the variables such that all equations are satisfied.

• Now we can interpret the constants \(a_{ij} \) as the entries of a \textit{matrix} \(A \) and the constants \(b_1, \ldots, b_m \) as the entries of a \textit{vector} \(b \).

• Interpreting the variables \(x_1, \ldots, x_n \) as a vector, we can again write the system of equation simply as \(Ax = b \).
Solving Systems of Linear Equations

- From linear algebra, we know that the system of equations $Ax = b$ has a unique solution if and only if the matrix A is square and invertible.

- From now on, we will consider only such systems.

- How do we solve a systems of equations?
Special Matrices

• A square matrix D is *diagonal* if $d_{ij} = 0$ whenever $i \neq j$.

• A square matrix L is *lower triangular* if $l_{ij} = 0$ whenever $j > i$.

• A square matrix U is *upper triangular* if $u_{ij} = 0$ whenever $j < i$.

• A square matrix P is a *permutation matrix* if there is a single 1 in each row and column.

• The identity matrix, usually denoted I is a diagonal matrix that is also a permutation matrix.

• What effect does multiplying by a permutation matrix have?
The LUP Decomposition

• Let’s suppose that we are able to find three \(n \times n \) matrices \(L, U, \) and \(P \) such that

\[PA = LU \]

where

– \(L \) is upper triangular.
– \(U \) is lower triangular with 1’s on the diagonal.
– \(P \) is a permutation matrix.

• This is called an \textit{LUP decomposition} of \(A \).

• How could use such a decomposition to solve the system \(Ax = b \)?
Using the LUP Decomposition

• Once we have an LUP decomposition, we can use it to easily solve the system \(Ax = b \).

• Note that the system \(PAx = Pb \) is equivalent to the original system, which is then equivalent to \(LUx = Pb \).

• We can solve the system in two steps:

 – First solve the system \(Ly = Pb \) (forward substitution).
 – Then solve the system \(Ux = y \) (backward substitution).

• Note the similarity to Gaussian elimination.

• What is the running time of this solution method, once we know the factorization?
Finding the LU Decomposition

- Let’s assume for now that $P = I$ and concentrate on finding L and U.
- We can find these two matrices using a procedure similar to Gaussian elimination.
- In fact, we will implement the algorithm recursively.
- First we’ll divide the matrix A into four pieces, as follows:

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}
\]

\[= \begin{bmatrix}
 a_{11} & w^T \\
 v & A'
\end{bmatrix}\]

- Next, we’ll use use row operations to change v into the zero vector and record the operations in another matrix.
Finding the LU Decomposition (cont.)

• Using the method on the previous slide, we can obtain the following factorization of A.

$$A = \begin{bmatrix} a_{11} & w^T \\ v & A' \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ v/a_{11} & I \end{bmatrix} \begin{bmatrix} a_{11} & w^T \\ 0 & A' - vw^T/a_{11} \end{bmatrix}$$

(7)

(8)

• We can show that if A is nonsingular, then so is $A' - vw^T/a_{11}$.

• So we can recursively call the method to factor the $(n - 1) \times (n - 1)$ matrix $A' - vw^T/a_{11}$.

• Applying this recursion n times yields the desired factorization, as explained on the next slide.
Finding the LU Decomposition (cont.)

• To see how to get the factorization from the recursive application of the algorithm, we have the following.

\[
A = \begin{bmatrix}
1 & 0 \\
v/a_{11} & I
\end{bmatrix}
\begin{bmatrix}
a_{11} & w^T \\
0 & A' - vw^T/a_{11}
\end{bmatrix}
\] (9)

\[
= \begin{bmatrix}
1 & 0 \\
v/a_{11} & I
\end{bmatrix}
\begin{bmatrix}
a_{11} & w^T \\
0 & L'U'
\end{bmatrix}
\] (10)

\[
= \begin{bmatrix}
1 & 0 \\
v/a_{11} & L'
\end{bmatrix}
\begin{bmatrix}
a_{11} & w^T \\
0 & U'
\end{bmatrix}
\] (11)

• This shows how to obtain the factorization recursively.

• Notice that this can also be done iteratively and “in place.”
Finding the LUP Decomposition

- The element a_{11} is called the *pivot element*.

- Note that the above decomposition method fails whenever the pivot element is zero.

- In this case, we can permute the rows of A to obtain a new pivot element.

- In fact, for numerical stability, it is desirable to have the pivot element be as large as possible in absolute value.

- If no nonzero pivot is available, A is singular.

- This leads to the following modified factorization.

\[
QA = \begin{bmatrix}
a_{k1} & w^T \\
v & A'
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & 0 \\
v/a_{k1} & I
\end{bmatrix} \begin{bmatrix}
a_{k1} & w^T \\
0 & A' - vw^T/a_{k1}
\end{bmatrix}
\]
Finding the LUP Decomposition (cont.)

• Again, we can recursively call the method to factor the \((n - 1) \times (n - 1)\) matrix \(A' - vw^T/a_{11}\).

• As before, we obtain \(L'\), \(U'\), and \(P'\) and we get

\[
PA = \begin{bmatrix} 1 & 0 \\ 0 & P' \end{bmatrix} QA
\]

\[(14)\]

\[
= \begin{bmatrix} 1 & 0 \\ 0 & P' \end{bmatrix} \begin{bmatrix} 1 & 0 \\ v/a_{k1} & I \end{bmatrix} \begin{bmatrix} a_{k1} & w^T \\ 0 & A' - vw^T/a_{k1} \end{bmatrix}
\]

\[(15)\]

\[
= \begin{bmatrix} 1 & 0 \\ P'v/a_{k1} & I \end{bmatrix} \begin{bmatrix} a_{k1} & w^T \\ 0 & P'(A' - vw^T/a_{k1}) \end{bmatrix}
\]

\[(16)\]

\[
= \begin{bmatrix} 1 & 0 \\ P'v/a_{k1} & I \end{bmatrix} \begin{bmatrix} a_{k1} & w^T \\ 0 & L'U' \end{bmatrix}
\]

\[(17)\]

\[
= \begin{bmatrix} 1 & 0 \\ P'v/a_{k1} & L' \end{bmatrix} \begin{bmatrix} a_{k1} & w^T \\ 0 & U' \end{bmatrix}
\]

\[(18)\]

• What is the running time of finding the LUP decomposition?
Using the LUP Decomposition

- Note that finding the decomposition has the same running time as Gaussian elimination.
- The decomposition can be stored in almost the same space as the original matrix.
- Once we have an LUP decomposition, we can solve $Ax = b$ with various right hand sides in time $\Theta(n^2)$.