References for Today’s Lecture

- Required reading
 - CLRS Chapter 28
Continuous Mathematics

- So far, all the algorithms we have studied have been for problems in discrete mathematics.
- Discrete mathematics is the study of problems for which there are only a finite number of possible outcomes.
- Algorithms for discrete problems typically only involve integer values.
- Continuous mathematics is the study of problems for which the number of possible outcomes is infinite.
- Algorithms for these problems typically involve real numbers.
- The difficulty with such algorithms is that a computer is not capable of representing most real numbers exactly.
- To represent a real number in a computer, the value must be rounded.
- This can create serious problems for some algorithms.
Common Problems in Continuous Mathematics

- Solving systems of equations
- Finding the inverse of a matrix
- Finding the eigenvalues or eigenvectors of a matrix
- Least-squares problems
- Solving systems of inequalities
- Factoring a matrix
Floating-point Numbers

• There are basically three schemes by which real numbers can be approximated in a computer.
 – As a rational number.
 – Using fixed point representation.
 – Using floating point representation.

• In modern computers, real numbers are approximated using a floating point representation.

• The floating-point numbers F are a subset of the real numbers.

• A floating point number consists of three parts:
 – The sign
 – The exponent
 – The mantissa
Floating-point Arithmetic

• Arithmetic with floating point numbers is different than regular arithmetic.

• This is because after each operation, the answer must be rounded off.

• The biggest problems occur when numbers on different scales appear in the same calculation.

• Example
 – Assume 10 digit precision
 – \((10^{-10} + 1) - 1 = 0\)
 – \(10^{-10} + (1 - 1) = 10^{-10}\)

• The example show that floating point operations do not have the same properties as familiar arithmetic operations.
Numerical Analysis

- **Numerical analysis** is the study of algorithms for problems from continuous mathematics.

- For the purposes of studying the problems of continuous mathematics, we will define a **problem** as a map $f : X \rightarrow Y$, where X and Y are subsets of the real numbers.

- A **numerical algorithm** is a procedure which calculates $F(x) \in Y$, an approximation of $f(x)$.

- Because we have to use **floating point** arithmetic and other approximations, our answers will not be exact.
Conditioning

- **Problem conditioning** has to do with how much the true answer to a problem changes if the input is changed slightly.

- A problem is **well-conditioned** if $x' \approx x \Rightarrow f(x') \approx f(x)$.

- Otherwise, it is **ill-conditioned**.

- Notice that well-conditioned requires all small perturbations to have a small effect.

- Ill-conditioned only requires some small perturbations to have a large effect.
Stability

- Algorithm stability has to do with whether the algorithm gives an answer that is close to the true answer for some input close to the true input.

- An algorithm is *stable* if $F(x) \approx f(x')$ for some $x' \approx x$.

- This says that a stable algorithm computes "nearly the right answer" to "nearly the right question."

- Notice the contrast between conditioning and stability:
 - **Conditioning** applies to problems.
 - **Stability** applies to algorithms.
Numerical Accuracy

- **Stability** plus good conditioning implies *accuracy*.

- If a stable algorithm is applied to a well-conditioned problem, then $F(x) \approx f(x)$.

- Conversely, if a problem is ill-conditioned, an accurate solution may not be possible or even meaningful.

- We cannot ask more of an algorithm than stability.
Examples

- Addition, subtraction, multiplication, division.
 - Addition, multiplication, division with positive numbers are well-conditioned problems.
 - Subtraction is not.

- Zeros of a quadratic equation.
 - The problem of computing the two roots is well-conditioned.
 - However, the quadratic formula is not a stable algorithm.

- Solving systems of linear equations $Ax = b$.
 - Conditioning depends on the matrix A.
More Examples

• Calculating e^{-a} with $a > 0$ by Taylor Series.
 – The round-off error is approximately u times the largest partial sum.
 – Calculating e^a and then taking its inverse gives a full-precision answer.

• Roots of a quadratic $(ax^2 + bx + c)$
 – If $x_1 \approx 0$ and $x_2 >> 0$, then the quadratic formula is unstable.
 – Computing x_2 by the quadratic formula and then setting $x_1 = cx_2/a$ is stable.
More Examples

• **Matrix factorization.**
 – Generally ill-conditioned.
 – There are stable algorithms, however.

• **Zeros of a polynomial.**
 – Generally ill-conditioned.

• **Eigenvalues of a matrix.**
 – For a symmetric matrix, finding eigenvalues is well-conditioned, finding eigenvectors is ill-conditioned.
 – For non-symmetric matrices, both are ill-conditioned.
 – In all cases, there are stable algorithms.