Algorithms in Systems Engineering
IE170

Lecture 19

Dr. Ted Ralphs
References for Today’s Lecture

- Required reading
 - CLRS Chapter 22-24

- References
Another View of Prim’s Algorithm

- Last time, we derived Prim’s Algorithm as a special case of graph search.
- The algorithm can also be viewed as a special case of another general class of algorithms called greedy algorithms.
- A greedy algorithm is one that makes the choice at each step that looks the best “at the moment” and doesn’t reconsider that choice later.
- We can view the construction of an MST as a greedy algorithm, but first we must define some terminology.
- Given an undirected graph $G = (V, E)$, a cut is a set $S \subset V$ that defines a partition of V into two nonempty subsets, S and $V \setminus S$.
- An edge is said to cross the cut if it connects a node in S to a node in $V \setminus S$.
- Our goal is to build a spanning tree by adding one edge at a time to a set T in a “greedy” fashion.
- Basically, we just need to somehow guarantee ourselves that at each step, the current set can be “extended” to an MST.
- How do we do that?
Safe Edges

- Let’s assume that our current set of edges T already satisfies the property that T can be extended to an MST.

- **Question**: What edges can we add to T to maintain the property?

- **Answer**:

- **Rationale**:

- We will call such edge a *safe edge* if it also doesn’t create a cycle when added to T.

- How do we find such an edge?
Generic Greedy Algorithm for Building an MST

• Generic greedy algorithm for constructing a spanning tree.
 – Set $T = \emptyset$.
 – Select a safe edge and add it to T.
 – Repeat until T is a spanning tree.

• This is guaranteed to work, no matter how the safe edges are selected.
Kruskal’s Algorithm

- **Kruskal’s Algorithm** takes a more global view.

- At each step, we consider *all edges* that do not form a cycle when added to the current set T.

- The minimum such edge is guaranteed to be safe (why?).

- As edges are added, we’ll keep track of the current set of components using

- At each step, we’ll add the cheapest edge to T that doesn’t connect two nodes currently in the same component.

- Implementing Kruskal’s Algorithm
Running Time of Kruskal’s Algorithm

- Kruskal’s Algorithm consists of two stages.
 - Sorting the edges by weight.
 - Performing m `find()` and $n - 1$ `union()` operations.

- The first step takes
- The second step takes
- The total running time is
Directed Graphs

- Up until now, we’ve concentrated on undirected graphs.

- In a directed graph, or *digraph*, the connections between the vertices are ordered pairs called *arcs*.

- The set of vertices is typically denoted N and the set of arcs is denoted A with $m = |A| \leq n(n - 1)$.

- A directed graph $G = (N, A)$ is then composed of a set of vertices N and a set of arcs $A \subseteq V \times V$.

- If $a = (i, j) \in A$, then
 - i is called the *tail* of a and j is called the *head* of a,
 - a is said to be *incident from* i and *incident to* j, and
 - i and j are said to be *adjacent* vertices.

- For a given digraph, there is an *underlying undirected graph* obtained by ignoring the directions of the arcs (and eliminating parallel edges).
More Terminology

• Let \(G = (N, A) \) be a digraph.

• A subgraph of \(G \) is a digraph composed of an arc set \(A' \subseteq A \) along with all incident vertices.

• A subset \(V' \) of \(V \), along with all incident arcs is called an induced subgraph.

• A directed path in \(G \) is a sequence \(v_0, \ldots, v_p \) of vertices such that for each \(i \in 0, \ldots, p - 1 \), \((v_i, v_{i+1}) \in A \).

• A directed path is simple if no vertex occurs more than once in the sequence.

• A directed cycle is a directed path that is simple, except that the first and last vertices are the same.

• A directed tour is a directed cycle that includes all the vertices.
Data Structures for Digraphs

- Data structures for digraphs are similar to those for undirected graphs.
- As before, there are two basic choices
 - Adjacency matrix
 - Adjacency lists
- These are implemented in similar fashion, except that
 - In the case of an adjacency matrix, the matrix is no longer symmetric.
 - In the case of an adjacency list, each arc appears only on the adjacency list of its tail vertex.
Connectivity in Digraphs

- A digraph is *connected* if the underlying undirected graph is connected.
- A digraph is *strongly connected* if for each pair of vertices \(i \) and \(j \), there is a directed path from \(i \) to \(j \) and a directed path from \(j \) to \(i \).
- A digraph that is not strongly connected consists of a set of *strongly connected components* that are the maximal strongly connected subgraphs.
- Given a digraph, one of the most basic questions one can ask is whether there is a path from vertex \(i \) to vertex \(j \).
- We can answer this question as we did before using a modified version of graph search.
- In *graph search* for directed graphs, we only examine the arcs that are incident from the vertex being processed.
- Performing graph search starting at vertex \(r \) results in the processing of all the vertices to which there is a path from \(r \).
Graph Search for Digraphs

- Graph search doesn’t have the same interpretation in the directed case because we cannot use it directly to find the (strongly) connected components.

- Graph search from vertex r:
 - As before, this graph search process results in construction of a directed search tree in which there is a path from r to each other vertex.
 - Such a directed tree is said to be directed away from r.
 - This graph search algorithm can easily be adapted to find the shortest directed paths from r to each other vertex.
 - It can also be used to find a minimum spanning tree directed away from r.
Directed Acyclic Graphs

• Often, directed graphs are used to represent precedence relations.

• Such *precedence graphs* should be both directed and acyclic.

• Given a directed acyclic graph (DAG), one thing we would like to be able to do is determine an ordering of vertices that obeys the precedence relations.

• This is called a *topological sort*.

• Given a DAG, DFS can be used to perform a topological sort.
 – Each vertex is added to the front of a linked list after all of its neighbors have been processed.
 – The resulting linked list is a topological sort.
 – Why?