References for Today’s Lecture

• Required reading
 – CLRS Chapter 23

• References
Spanning Trees

• Given a connected undirected graph $G = (V, E)$, a spanning tree T of G is a subgraph that is a tree and whose vertex set is all of V.

• Since the vertex set of any such spanning tree is V, we will sometimes equate the edge set of a spanning tree with the spanning tree itself.

• Every minimal connected subgraph is a spanning tree (and vice versa).

• In other words, a subgraph is a spanning tree if and only if it is connected and removing any edge will disconnect it.

• If we are looking for the most inexpensive set of links that connect a set of geographically dispersed points, we want a spanning tree.

• Spanning trees arise frequently in applications, especially those with a network design component.

• They also arise in other applications, such as the design of integrated circuits.
Minimum Weight Spanning Trees

• Consider an undirected graph $G = (V, E)$ with weight vector $w \in \mathbb{R}^E$.

• If $T \subseteq E$ is a spanning tree of G, the weight of T is

\[\sum_{e \in T} w_e \]

• The minimum weight spanning tree (MST) problem is that of finding, among all spanning trees of G, one that has minimum weight.

• How many spanning tree are there?

• What about simply enumerating all of them?
Finding a Minimum Weight Spanning Tree

- Although finding an MST may seem to be a difficult problem, it can be solved efficiently.
- The first algorithm we’ll consider uses another variant of graph search to build a search tree that is guaranteed to be an MST.
- We build the tree up, adding one vertex at a time.
- At each iteration, we have a partially completed tree that spans the vertices that have been processed so far.
- The vertex that is processed next is the one that is “closest” to the partially completed tree.
- The algorithm is almost identical to Dijkstra’s Algorithm.
Algorithm Summary: Prim’s Algorithm

• We are given a connected undirected weighted graph $G = (V, E)$ and we want to find an MST of G.

• **Prim’s Algorithm**

 – Arbitrarily choose a source node r.
 – Initialize by assigning $d(r) = 0$ for the source node and $d(v) = \infty$ for all other nodes $v \in V \setminus \{r\}$.
 – Place r on the list L of unprocessed nodes.
 – While L is not empty

 * Choose $v \in L$ such that $d(v) = \min_{u \in L} d(u)$.
 * For each neighbor x of v, set $d(x) = \min\{d(x), w_{v,x}\}$.

• When we’re finished, the search tree will be an MST.

• Why is this algorithm correct?

• How do we implement it?

• What is the running time?