Algorithms in Systems Engineering
IE170

Lecture 17

Dr. Ted Ralphs
References for Today’s Lecture

• Required reading
 – CLRS Chapter 24

• References
Dijkstra's Algorithm

• We will assume for now that the edge lengths are all positive.

• The idea of Dijkstra’s Algorithm is to perform a graph search, updating the shortest known path to each encountered vertex as the search evolves.

• Throughout the algorithm, we maintain a quantity $d(v)$ for each node v, which represents the length of the shortest path found so far.

• We will call $d(v)$ the current *estimate* for node v.

• We start by assigning $d(r) = 0$ for the source node and $d(v) = \infty$ for all other nodes v.

• The node v to be processed next is the unprocessed node for which $d(v)$ is minimized.

• The processing step consists of updating the estimates for all the neighbors of v.
Algorithm Summary

• We are given a graph $G = (V, E)$ and a source node node r from which we want to find shortest paths to all other nodes.

• Algorithm

 – Initialize by assigning $d(r) = 0$ for the source node and $d(v) = \infty$ for all other nodes $v \in V \setminus \{r\}$.
 – Place r on the list L of unprocessed nodes.
 – While L is not empty
 * Choose $v \in L$ such that $d(v) = \min_{u \in L} d(u)$.
 * For each neighbor x of v, set $d(x) = \min\{d(x), d(v) + w_{\{v,x\}}\}$.

• When the algorithm is completed, we will have $d(v) = \delta(v)$ for all $v \in V$ and the search tree will be a shortest paths tree.

• Why is this algorithm correct?
Implementing the Algorithm

- To implement the algorithm, we need to maintain the node list L as a priority queue.

- Recall from Lecture 7 that a priority queue is a data structure for maintaining a list of items that have associated priorities.

- The usual operations are
 - construct a queue from a list of items.
 - find the item with the highest priority.
 - insert an item.
 - delete an item.
 - change the priority of an item.

- A “naive” implementation is to simply maintain a vector of the estimates for each node and then scan through it each time to find the minimum.

- We may be able to do better using a heap (remember those?).
Review: Heaps

- A *heap* is a binary tree with additional structure that allows it to function efficiently as a priority queue.
- The additional structure needed to support these operations is that the record stored at each node has a higher priority than either of its children.
- Any node with this property is said to satisfy the *heap property*.
- Consider a tree in which all nodes except for the root have the heap property.
- We can easily transform this into a tree in which every node has the heap property (*how?*).
- This operation is called *heapify()*.
- By calling *heapify()* on each node, starting at the lowest level and working upward, we can transform an unordered binary tree into a heap.
Review: Operations on a Heap

- The node with the highest priority is always the root.
- To delete a record
- To add a record
- We can change the priority of a record in a similar fashion.
Running Time of Dijkstra’s Algorithm

• This algorithm fits our definition of a graph search algorithm (roughly speaking), but cannot be analyzed in exactly the same way.

• We will consider the processing step to include both
 – deletion of the next node to be processed, and
 – adjustment of the estimates of all its neighbors.

• The “naive” implementation

• Using a heap

• Which algorithm is better?