References for Today’s Lecture

• Required reading
 – CLRS Chapter 24

• References
Breadth-first Search

- Recall from last time that processing the vertices in first-in, first-out (FIFO) order results in an algorithm called *breadth-first search* (BFS).

- This corresponds to the policy of choosing a vertex at minimum depth in the search tree as the next to be processed.

- The implementation is identical to DFS, except that the neighbors of the vertex being processed are inserted into a queue, instead of a stack.

- This creates a very shallow search tree, unlike DFS.
BFS and Shortest Paths

- Consider the problem of finding the shortest path from a vertex \(u \) to a vertex \(v \).

- A shortest path from \(u \) to \(v \) is a path containing the fewest intermediate vertices.

- A shortest paths tree (SPT) is a rooted tree in which the path from the root vertex to each other vertex in the graph is a shortest such path in the original graph.

- Question: Does such a tree always exist?

 - Answer: Yes.

- Question: How do we find it?

 - Answer: The search tree created by performing a BFS is an SPT.

- Why is this the case?
Weighted Graphs

• For most practical applications, we will need to consider weighted graphs.

• In a weighted graph, each edge has a real number, called its weight, associated with it.

• Usually, the weights are specified using a separate weight vector $w \in \mathbb{R}^E$.

• Depending on the application, edge weights can be interpreted in a number of different ways.

 – They are interpreted as lengths or distances in cases where the graph models a physical network, such as a transportation network.

 – They are also frequently interpreted as costs associated with building or operating a network.
Weighted Shortest Paths

• In a weighted graph, the length of a path is the sum of the weights of the edges encountered on the path.

• A shortest path between two vertices in a weighted graph is a path connecting the two vertices that is of minimum length.

• In a transportation network, the edge weights may represent distances between physical locations, such as specific intersections.

• In such a weighted graph, the shortest path between two vertices has a natural physical interpretation.

• We are interested in being able to find such a path.

• Actually, we will consider the problem of finding an entire shortest paths tree rooted at a given source vertex.
Weighted Shortest Paths Tree

- An SPT is exactly the same in the weighted case as in the unweighted case.

- Is such a tree still guaranteed to exist?

- Question: Is there always a shortest path between any two vertices in a weighted, undirected graph?

- Answer: Not always.

- If the graph has edges of negative length, there may not exist a shortest path.

- A shortest path exists if and only if there are no negative length cycles reachable from either vertex.

- If there are no cycles of negative length, then there is always a shortest path with no cycles.

- This is essentially all we need to show the existence of an SPT.
Properties of Shortest Paths Trees

• Let $G = (V, E)$ be an undirected graph with an associated weight vector $w \in \mathbb{R}^E$.

• Suppose T is an SPT rooted at r and define $\delta(v)$ to be the path length from r to v in the tree.

• By definition, we must have that $\delta(v)$ is the length of a shortest path from r to v.

• For any node u on the path from r to v, the length of a shortest path u to v must be $\delta(v) - \delta(u)$.

• For any edge $e = \{u, v\} \in E$ that is not part of T, we must have that $\delta(v) \leq \delta(u) + w_e$.

• To show that T is an SPT, we need to show that the inequalities above hold for all edges not in T.
Finding the Shortest Paths Tree

- Assuming that all the edge lengths are positive integers, one approach is to subdivide each weight edge into unweighted edges of unit length.

- In other words, we replace an edge of length l with a path consisting of l edges of unit length.

- This essentially converts a weighted graph into an unweighted graph.

- After converting to an unweighted graph, we could simply use breadth-first search to find the (unweighted) SPT.

- This could be converted back to the weighted SPT by contracting the paths that were added back into single edges.

- This is a potentially disastrous algorithm since the running time depends on the number of edges.

- Fortunately, we can modify the algorithm to eliminate this dependence.