References for Today’s Lecture

• Required reading
 – CLRS Chapter 21 and 22

• References
Connectivity Relations

• So far, we have only considered sets of items that are related to each other through some kind of ordering (if at all).

• In other words, two items x and y are only related by their relative positions in the ordered list.

• We will now generalize this idea by considering additional connectivity relationships between items.

• To do so, we will specify that there is a direct link between certain pairs of items.

• This will allow us to ask questions such as
Graphs

- A *graph* is an abstract object used to model such connectivity relations.
- A *graph* consists of a list of items, along with a set of connections between the items.
- The study of such graphs and their properties, called *graph theory*, is hundreds of years old.
- Graphs can be visualized easily by creating a physical manifestation.
- There are several variations on this theme.
 - The connections in the graph may or may not have an *orientation* or a *direction*.
 - We may not allow more than one connection between a pair of items.
 - We may not allow an item to be connected to itself.
- For now, we consider graphs that are
 - *undirected*, i.e., the connections do not have an orientation, and
 - *simple*, i.e., we allow only one connection between each pair of items and no connections from an item to itself.
Applications of Graphs
Graph Terminology and Notation

• In an undirected graph, the “items” are usually called vertices (sometimes also called nodes).

• The set of vertices is denoted V and the vertices are indexed from 0 to $n - 1$, where $n = |V|$.

• The connections between the vertices are unordered pairs called edges.

• The set of edges is denoted E and $m = |E| \leq n(n - 1)/2$.

• An undirected graph $G = (V, E)$ is then composed of a set of vertices V and a set of edges $E \subseteq V \times V$.

• If $e = \{i, j\} \in E$, then
 – i and j are called the endpoints of e,
 – e is said to be incident to i and j, and
 – i and j are said to be adjacent vertices.
More Terminology

• Let $G = (V, E)$ be an undirected graph.

• A subgraph of G is a graph composed of an edge set $E' \subseteq E$ along with all incident vertices.

• A subset V' of V, along with all incident edges is called an induced subgraph.

• A path in G is a sequence of vertices such that each vertex is adjacent to the vertex preceding it in the sequence.

• A path is simple if no vertex occurs more than once in the sequence.

• A cycle is a path that is simple except that the first and last vertices are the same.

• A tour is a cycle that includes all the vertices.
Connectivity in Graphs

- An undirected graph is said to be connected if there is a path between any two vertices in the graph.

- A graph that is not connected consists of a set of connected components that are the maximal connected subgraphs.

- Given a graph, one of the most basic questions one can ask is whether vertices i and j are in the same component.

- In other words, is there a path from i to j?

- Such questions might arise in the design of a network or circuit.

- They may not be that easy to answer!

- One approach is to use a data structure for storing disjoint sets.
Disjoint Set Data Structure

• A disjoint set data structure is used to store a set of items that consists of a number of disjoint subsets.

• There are two basic operations we’d like to be able to perform.

• This type of data structure is sometimes called a union-find data structure.

• How could we use such a data structure to determine the connected components of a graph?
Connected Components Algorithm

- Suppose the graph is specified simply as a list of edges.
- **Algorithm**
 - Start with each vertex in its own subset.
 - While there are still edges left on the list,
 - After reading in all the edges, a call to \texttt{find(i, j)} will determine whether \texttt{i} and \texttt{j} are in the same connected component.
- The advantage of this method is that we never have to actually store the list of edges.
- We will also consider more efficient methods that require storing the edges.
Quick Find Implementation of Union-Find

- The simplest implementation involves an array of length n.
- We will maintain the array such that two items are in the same subset if and only if the array entries are equal.
- This makes the $\text{find}(i, j)$ constant time, so we call this implementation \textit{quick find}.
- How do we implement $\text{union}(i, j)$?
- What is the running time?
- Note that this could also be implemented using linked lists, as described in CLRS.
Quick Union Implementation of Union-Find

- To speed up the union operation, we maintain the array in a different fashion.
- We will consider the i^{th} entry of the array to be a pointer to some other item.
- We start with the i^{th} entry of the array pointing to item i, i.e., all items pointing to themselves.
- To perform $\text{find}(i, j)$,
 - Follow the pointers from nodes i and j until reaching a node that points to itself, called the \textit{representative}
 - If the same representative is reached from both nodes i and j, then they are in the same subset.
- To perform $\text{union}(i, j)$, perform the find operation and then point the representative for i to the representative for j.
- What is the performance now?
Weighted Quick Union

- Note that the quick union algorithm essentially builds a tree out of the nodes in each component, with the root being the representative.

- As in binary search, the running time of the find operation depends on the depth of the trees.

- Each union operation essentially connects two trees together by pointing the root of one tree to the root of the other.

- One way to limit the depth of the tree is to always point the smaller tree to the larger one.

- This ensures that each find takes less than $\lg n$ steps.

- Note that we must now keep track of the number of nodes in each tree, but that’s easy to do.

- Another approach is to keep track of the height of each tree and always point the shorter tree to the taller one.
Path Compression

- Ideally, we would like each item to point directly to the representative of its subset.

- One possibility is to simply keep track of all the nodes encountered in the path to the root.

- After reaching the root, set all the nodes on the path to point to the root.

- This is easy to implement recursively and doesn’t change the asymptotic running time.

- An easier method to implement is *compression by halving*, which is setting each node to point to its grandparent.

- Combining weighted quick union with path compression yields a total running time for connected components of approximately $O(m)$.