
Decomposition in Integer Linear Programming

T.K. Ralphs∗ M.V. Galati†

May 6, 2005

Abstract

Both cutting plane methods and traditional decomposition methods are procedures
that compute a bound on the optimal value of an integer linear program (ILP) by con-
structing an approximation to the convex hull of feasible solutions. This approximation
is obtained by intersecting the polyhedron associated with the continuous relaxation,
which has an explicit representation, with an implicitly defined polyhedron having a
description of exponential size. In this paper, we first review these classical procedures
and then introduce a new class of bounding methods called integrated decomposition
methods, in which the bound yielded by traditional approaches is potentially improved
by introducing a second implicitly defined polyhedron. We also discuss the concept of
structured separation, which is related to the well-known template paradigm for dynam-
ically generating valid inequalities and is central to our algorithmic framework. Finally,
we briefly introduce a software framework for implementing the methods discussed in
the paper and illustrate the concepts through the presentation of applications.

1 Introduction

In this paper, we discuss the principle of decomposition as it applies to the computation
of bounds on the value of an optimal solution to an integer linear program (ILP). Most
bounding procedures for ILP are based on the generation of a polyhedron approximating
P, the convex hull of feasible solutions. Solving an optimization problem over such a poly-
hedral approximation, provided it fully contains P, produces a bound that can be used to
drive a branch and bound algorithm. The effectiveness of the bounding procedure depends
largely on how well P can be approximated. The most straightforward approximation is the
continuous approximation, consisting simply of the linear constraints present in the original
ILP formulation. The bound resulting from this approximation is frequently too weak to be
effective, however. In such cases, it can be improved by dynamically generating additional
polyhedral information that can be used to augment the approximation.

Traditional dynamic procedures for augmenting the continuous approximation can be
grouped roughly into two categories. Cutting plane methods improve the approximation by
dynamically generating half-spaces containing P, i.e., valid inequalities, to form a second

∗Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015,
tkralphs@lehigh.edu, http://www.lehigh.edu/~tkr2

†Analytical Solutions - Operations R & D, SAS Institute, Cary, NC 27513 matthew.galati@sas.com,
http://sagan.ie.lehigh.edu/mgalati

1

polyhedron, and then intersect this second polyhedron with the continuous approximation
to yield a final approximating polyhedron. With this approach, the valid inequalities are
generated by solving an associated separation problem. Generally, the addition of each valid
inequality reduces the hypervolume of the approximating polyhedron, resulting in a poten-
tially improved bound. Because they dynamically generate part of the description of the
final approximating polyhedron as the intersection of half-spaces (an outer representation),
we refer to cutting plane methods as outer approximation methods.

Traditional decomposition methods, on the other hand, improve the approximation by
dynamically generating the extreme points of a polyhedron containing P, which is again
intersected with the continuous approximation, as in the cutting plane method, to yield a
final approximating polyhedron. In this case, each successive extreme point is generated
by solving an associated optimization problem and at each step, the hypervolume of the
approximating polyhedron is increased. Because decomposition methods dynamically gen-
erate part of the description of the approximating polyhedron as the convex hull of a finite
set (an inner representation), we refer to these methods as inner approximation methods.

Both inner and outer methods work roughly by alternating between a procedure for
computing solution and bound information (the master problem) and a procedure for aug-
menting the current approximation (the subproblem). The two approaches, however, differ
in important ways. Outer methods require that the master problem produce “primal” so-
lution information, which then becomes the input to the subproblem, a separation problem.
Inner methods require “dual” solution information, which is then used as the input to the
subproblem, an optimization problem. In this sense, the two approaches can be seen as
“dual” to each other. A more important difference, however, is that the valid inequalities
generated by an inner method can be valid with respect to any polyhedron containing P
(see Section 5), whereas the extreme points generated by an inner method must ostensibly
be from a single polyhedron. Procedures for generating new valid inequalities can also take
advantage of knowledge of previously generated valid inequalities to further improve the
approximation, whereas with inner methods, such “backward-looking” procedures do not
appear to be possible. Finally, the separation procedures used in the cutting plane method
can be heuristic in nature as long as it can be proven that the resulting half-space does
actually contain P. Although heuristic methods can be employed in solving the optimiza-
tion problem required of an inner method, valid bounds are only obtained when using exact
optimization. On the whole, outer methods have proven to be more flexible and powerful
and this is reflected in their position as the approach of choice for solving most ILPs.

As we will show, however, inner methods do still have an important role to play. Al-
though inner and outer methods have traditionally been considered separate and distinct, it
is possible, in principle, to integrate them in a straightforward way. By doing so, we obtain
bounds at least as good as those yielded by either approach alone. In such an integrated
method, one alternates between a master problem that produces both primal and dual in-
formation, and either one of two subproblems, one an optimization problem and the other
a separation problem. This may result in significant synergy between the subproblems,
as information generated by solving the optimization subproblem can be used to generate
cutting planes and vice versa.

The remainder of the paper is organized as follows. In Section 2, we introduce def-
initions and notation. In Section 3, we describe the principle of decomposition and its

2

application to integer linear programming in a traditional setting. In Section 4, we extend
the traditional framework to show how the cutting plane method can be integrated with
either the Dantzig-Wolfe method or the Lagrangian method to yield improved bounds. In
Section 5, we discuss solution of the separation subproblem and introduce an extension of
the well-known template paradigm, called structured separation, inspired by the fact that
separation of structured solutions is frequently easier than separation of arbitrary real vec-
tors. We also introduce a decomposition-based separation algorithm called decompose and
cut that exploits structured separation. In Section 6, we discuss some of the algorithms that
can be used to solve the master problem. In Section 7, we describe a software framework
for implementing the algorithms presented in the paper. Finally, in Section 8, we present
applications that illustrate the principles discussed herein.

2 Definitions and Notation

For ease of exposition, we consider only pure integer linear programs with bounded, nonempty
feasible regions, although the methods presented herein can be extended to more general
settings. For the remainder of the paper, we consider an ILP whose feasible set is the
integer vectors contained in the polyhedron Q = {x ∈ Rn | Ax ≥ b}, where A ∈ Qm×n is
the constraint matrix and b ∈ Qm is the vector of requirements. Let F = Q ∩ Zn be the
feasible set and let P be the convex hull of F . The canonical optimization problem for P is
that of determining

zIP = min
x∈Zn
{c>x | Ax ≥ b} = min

x∈F
{c>x} = min

x∈P
{c>x} (1)

for a given cost vector c ∈ Qn, where zIP = ∞ if F is empty. We refer to such an ILP by
the notation ILP (P, c). In what follows, we also consider the equivalent decision version of
this problem, which is to determine, for a given upper bound U , whether there is a member
of P with objective function value strictly better than U . We denote by OPT (c,P, U) a
subroutine for solving this decision problem. The subroutine is assumed to return either
the empty set, or a set of one or more (depending on the situation) members of P with
objective value better than U .

A related problem is the separation problem for P, which is typically already stated as
a decision problem. Given x ∈ Rn, the problem of separating x from P is that of deciding
whether x ∈ P and if not, determining a ∈ Rn and β ∈ R such that a>y ≥ β ∀y ∈ P but
a>x < β. A pair (a, β) ∈ Rn+1 such that a>y ≥ β ∀y ∈ P is a valid inequality for P and
is said to be violated by x ∈ Rn if a>x < β. We denote by SEP (x,P) a subroutine that
separates an arbitrary vector x ∈ Rn from polyhedron P, returning either the empty set
or a set of one or more violated valid inequalities. Note that the optimization form of the
separation problem is that of finding the most violated inequality and is equivalent to the
decision form stated here.

A closely related problem is the facet identification problem, which restricts the gener-
ated inequalities to only those that are facet-defining for P. In [32], it was shown that the
facet identification problem for a polyhedron X is polynomially equivalent to the optimiza-
tion problem for X (in the worst case sense). However, a theme that arises in what follows
is that the complexity of optimization and separation can vary significantly if either the

3

input or the output must have known structure. If the solution to an optimization problem
is required to be integer, the problem generally becomes much harder to solve. On the other
hand, if the input vector to a separation problem is an integral vector, then the separation
problem frequently becomes much easier to solve in the worst case. From the dual point
of view, if the input cost vector of an optimization problem has known structure, such as
being integral, this may make the problem easier. Requiring the output of the separation
problem to have known structure is known as the template paradigm and may also make
the separation problem easier, but such a requirement is essentially equivalent to enlarging
the set X. These concepts are discussed in more detail in Section 5.

3 The Principle of Decomposition

We now formalize some of the notions described in the introduction. Implementing a branch
and bound algorithm for solving an ILP requires a procedure that will generate a lower
bound as close as possible to the optimal value zIP . The most commonly used method
of bounding is to solve the linear programming (LP) relaxation obtained by removing the
integrality requirement from the ILP formulation. The LP Bound is given by

zLP = min
x∈Rn
{c>x | Ax ≥ b} = min

x∈Q
{c>x}, (2)

and is obtained by solving a linear program with the original objective function c over the
polyhedron Q. It is clear that zLP ≤ zIP since P ⊆ Q. This LP relaxation is usually
much easier to solve than the original ILP, but zLP may be arbitrarily far away from zIP

in general, so we need to consider more effective procedures.
In most cases, the description of Q is small enough that it can be represented explicitly

and the bound computed using a standard linear programming algorithm. To improve the
LP bound, decomposition methods construct a second approximating polyhedron that can
be intersected with Q to form a better approximation. Unlike Q, this second polyhedron
usually has a description of exponential size, and we must generate portions of its descrip-
tion dynamically. Such a dynamic procedure is the basis for both cutting plane methods,
which generate an outer approximation, and for traditional decomposition methods, such as
the Dantzig-Wolfe method [19] and the Lagrangian method [22, 14], which generate inner
approximations.

For the remainder of this section, we consider the relaxation of (1) defined by

min
x∈Zn
{c>x | A′x ≥ b′} = min

x∈F ′
{c>x} = min

x∈P ′
{c>x}, (3)

where F ⊂ F ′ = {x ∈ Zn | A′x ≥ b′} for some A′ ∈ Qm′×n, b′ ∈ Qm′
and P ′ is the convex

hull of F ′. Along with P ′ is associated a set of side constraints [A′′, b′′] ∈ Qm′′×(n+1) such
that Q = {x ∈ Rn | A′x ≥ b′, A′′x ≥ b′′}. We denote by Q′ the polyhedron described
by the inequalities [A′, b′] and by Q′′ the polyhedron described by the inequalities [A′′, b′′].
Thus, Q = Q′ ∩ Q′′ and F = {x ∈ Zn | x ∈ P ′ ∩ Q′′}. For the decomposition to be
effective, we must have that P ′ ∩ Q′′ ⊂ Q, so that the bound obtained by optimizing over
P ′∩Q′′ is at least as good as the LP bound and strictly better for some objective functions.
The description of Q′′ must also be “small” so that we can construct it explicitly. Finally,

4

we assume that there exists an effective algorithm for optimizing over P ′ and thereby, for
separating arbitrary real vectors from P ′. We are deliberately using the term effective here
to denote an algorithm that has an acceptable average-case running time, since this is more
relevant than worst-case behavior in our computational framework.

Traditional decomposition methods can all be viewed as techniques for iteratively com-
puting the bound

zD = min
x∈P ′
{c>x | A′′x ≥ b′′} = min

x∈F ′∩Q′′
{c>x} = min

x∈P ′∩Q′′
{c>x}. (4)

In Sections 3.1–3.3 below, we review the cutting plane method, the Dantzig-Wolfe method,
and the Lagrangian method, all classical approaches that can be used to compute this
bound. The common perspective motivates Section 4, where we consider a new class of
decomposition methods called integrated decomposition methods, in which both inner and
outer approximation techniques are used in tandem. In both this section and the next, we
describe the methods at a high level and leave until later sections the discussion of how
the master problem and subproblems are solved. To illustrate the effect of applying the
decomposition principle, we now introduce two examples that we build on throughout the
paper. The first is a simple generic ILP.

Example 1 Let the following be the formulation of a given ILP:

min x1,

7x1 − x2 ≥ 13, (5)

x2 ≥ 1, (6)

−x1 + x2 ≥ −3, (7)

−4x1 − x2 ≥ −27, (8)

−x2 ≥ −5, (9)

0.2x1 − x2 ≥ −4, (10)

−x1 − x2 ≥ −8, (11)

−0.4x1 + x2 ≥ 0.3, (12)

x1 + x2 ≥ 4.5, (13)

3x1 + x2 ≥ 9.5, (14)

0.25x1 − x2 ≥ −3, (15)

x ∈ Z2. (16)

5

(a) (b) (c)

P
P′

Q′

Q′′

P

Q′ ∩ Q′′
P
P′ ∩ Q′′

(2,1) (2,1) (2,1)

Figure 1: Polyhedra (Example 1)

In this example, we let

P = conv{x ∈ R2 | x satisfies (5)− (16)},
Q′ = {x ∈ R2 | x satisfies (5)− (10)},
Q′′ = {x ∈ R2 | x satisfies (11)− (15)}, and
P ′ = conv(Q′ ∩ Zn).

In Figure 1(a), we show the associated polyhedra, where the set of feasible solutions
F = Q′ ∩ Q′′ ∩ Zn = P ′ ∩ Q′′ ∩ Zn and P = conv(F). Figure 1(b) depicts the contin-
uous approximation Q′∩Q′′, while Figure 1(c) shows the improved approximation P ′∩Q′′.
For the objective function in this example, optimizing over P ′∩Q′′ leads to an improvement
over the LP bound obtained by optimizing over Q.

In our second example, we consider the classical Traveling Salesman Problem (TSP), a well-
known combinatorial optimization problem. The TSP is in the complexity class NP-hard,
but lends itself well to the application of the principle of decomposition, as the standard
formulation contains an exponential number of constraints and has a number of well-solved
combinatorial relaxations.

Example 2 The Traveling Salesman Problem is that of finding a minimum cost tour in
an undirected graph G with vertex set V = {0, 1, ..., |V | − 1} and edge set E. We assume
without loss of generality that G is complete. A tour is a connected subgraph for which
each node has degree 2. The TSP is then to find such a subgraph of minimum cost, where
the cost is the sum of the costs of the edges comprising the subgraph. With each edge
e ∈ E, we therefore associate a binary variable xe, indicating whether edge e is part of the
subgraph, and a cost ce ∈ R. Let δ(S) = {{i, j} ∈ E | i ∈ S, j /∈ S}, E(S : T) = {{i, j} | i ∈
S, j ∈ T}, E(S) = E(S : S) and x(F) =

∑
e∈F xe. Then an ILP formulation of the TSP is

6

as follows:

min
∑

e∈E

cexe,

x(δ({i})) = 2 ∀i ∈ V, (17)

x(E(S)) ≤ |S| − 1 ∀S ⊂ V, 3 ≤ |S| ≤ |V | − 1, (18)

0 ≤ xe ≤ 1 ∀e ∈ E, (19)

xe ∈ Z ∀e ∈ E. (20)

The continuous approximation, referred to as the TSP polyhedron, is then

P = conv{x ∈ RE | x satisfies (17)− (20)}.
The equations (17) are the degree constraints, which ensure that each vertex has degree two
in the subgraph, while the inequalities (18) are known as the subtour elimination constraints
(SECs) and enforce connectivity. Since there are an exponential number of SECs, it is
impossible to explicitly construct the LP relaxation of TSP for large graphs. Following the
pioneering work of Held and Karp [35], however, we can apply the principle of decomposition
by employing the well-known Minimum 1-Tree Problem, a combinatorial relaxation of TSP.

A 1-tree is a tree spanning V \{0} plus two edges incident to vertex 0. A 1-tree is hence
a subgraph containing exactly one cycle through vertex 0. The Minimum 1-Tree Problem
is to find a 1-tree of minimum cost and can thus be formulated as follows:

min
∑

e∈E

cexe,

x(δ({0})) = 2, (21)

x(E(V \ {0})) = |V | − 2, (22)

x(E(S)) ≤ |S| − 1 ∀S ⊂ V \ {0}, 3 ≤ |S| ≤ |V | − 1, (23)

xe ∈ {0, 1} ∀e ∈ E. (24)

A minimum cost 1-tree can be obtained easily as the union of a minimum cost spanning
tree of V \ {0} plus two cheapest edges incident to vertex 0. For this example, we thus let
P ′ = conv({x ∈ RE | x satisfies (21) − (24)}) be the 1-Tree Polyhedron, while the degree
and bound constraints comprise the polyhedron Q′′ = {x ∈ RE | x satisfies (17) and (19)}
and Q′ = {x ∈ RE | x satisfies (18)}. Note that the bound constraints appear in the
descriptions of both polyhedra for computational convenience. The set of feasible solutions
to TSP is then F = P ′ ∩Q′′ ∩ Zn.

3.1 Cutting Plane Method

Using the cutting plane method, the bound zD can be obtained by dynamically generating
portions of an outer description of P ′. Let [D, d] denote the set of facet-defining inequalities
of P ′, so that

P ′ = {x ∈ Rn | Dx ≥ d}. (25)

7

Cutting Plane Method

Input: An instance ILP (P, c).
Output: A lower bound zCP on the optimal solution value for the instance, and
x̂CP ∈ Rn such that zCP = c>x̂CP .

1. Initialize: Construct an initial outer approximation

P0
O = {x ∈ Rn | D0x ≥ d0} ⊇ P, (27)

where D0 = A′′ and d0 = b′′, and set t← 0.

2. Master Problem: Solve the linear program

zt
CP = min

x∈Rn
{c>x | Dtx ≥ dt} (28)

to obtain the optimal value zt
CP = minx∈Pt

O
{c>x} ≤ zIP and optimal primal

solution xt
CP .

3. Subproblem: Call the subroutine SEP (xt
CP ,P) to generate a set of poten-

tially improving valid inequalities [D̃, d̃] for P, violated by xt
CP .

4. Update: If violated inequalities were found in Step 3, set [Dt+1, dt+1] ←[
Dt dt

D̃ d̃

]
to form a new outer approximation

Pt+1
O = {x ∈ Rn | Dt+1x ≤ dt+1} ⊇ P, (29)

and set t← t + 1. Go to Step 2.

5. If no violated inequalities were found, output zCP = zt
CP ≤ zIP and x̂CP =

xt
CP .

Figure 2: Outline of the cutting plane method

Then the cutting plane formulation for the problem of calculating zD can be written as

zCP = min
x∈Q′′

{c>x | Dx ≥ d}. (26)

This is a linear program, but since the set of valid inequalities [D, d] is potentially of
exponential size, we dynamically generate them by solving a separation problem. An outline
of the method is presented in Figure 2.

In Step 2, the master problem is a linear program whose feasible region is the current
outer approximation Pt

O, defined by a set of initial valid inequalities plus those generated
dynamically in Step 3. Solving the master problem in iteration t, we generate the relaxed
(primal) solution xt

CP and a valid lower bound. In the figure, the initial set of inequalities
is taken to be those of Q′′, since it is assumed that the facet-defining inequalities for P ′,

8

which dominate those of Q′, can be generated dynamically. In practice, however, this initial
set may be chosen to include those of Q′ or some other polyhedron, on an empirical basis.

In Step 3, we solve the subproblem, which is to generate a set of improving valid
inequalities, i.e., valid inequalities that improve the bound when added to the current
approximation. This step is usually accomplished by applying one of the many known
techniques for separating xt

CP from P. The algorithmic details of the generation of valid
inequalities are covered more thoroughly in Section 5, so the unfamiliar reader may wish to
refer to this section for background or to [1] for a complete survey of techniques. It is well
known that violation of xt

CP is a necessary condition for an inequality to be improving, and
hence, we generally use this condition to judge the potential effectiveness of generated valid
inequalities. However, this condition is not sufficient and unless the inequality separates
the entire optimal face of Pt

O, it will not actually be improving. Because we want to refer
to these results later in the paper, we state them formally as theorem and corollary without
proof. See [59] for a thorough treatment of the theory of linear programming that leads to
this result.

Theorem 1 Let F be the face of optimal solutions to an LP over a nonempty, bounded
polyhedron X with objective function vector f . Then (a, β) is an improving inequality for
X with respect to f , i.e.,

min{f>x | x ∈ X, a>x ≥ β} > min{f>x | x ∈ X}, (30)

if and only if a>y < β for all y ∈ F .

Corollary 1 If (a, β) is an improving inequality for X with respect to f , then a>x̂ < β,
where x̂ is any optimal solution to the linear program over X with objective function vector
f .

Even in the case when the optimal face cannot be separated in its entirety, the augmented
cutting plane LP must have a different optimal solution, which in turn may be used to
generate more potential improving inequalities. Since the condition of Theorem 1 is difficult
to verify, one typically terminates the bounding procedure when increases resulting from
additional inequalities become “too small.”

If we start with the continuous approximation P0
O = Q′′ and generate only facet-defining

inequalities of P ′ in Step 3, then the procedure described here terminates in a finite number
of steps with the bound zCP = zD (see [52]). Since Pt

O ⊇ P ′ ∩ Q′′ ⊇ P, each step yields
an approximation for P, along with a valid bound. In Step 3, we are permitted to generate
any valid inequality for P, however, not just those that are facet-defining for P ′. In theory,
this means that the cutting plane method can be used to compute the bound zIP exactly.
However, this is rarely practical.

To illustrate the cutting plane method, we show how it could be applied to generate
the bound zD for the ILPs of Examples 1 and 2. Since we are discussing the computation
of the bound zD, we only generate facet-defining inequalities for P ′ in these examples. We
discuss more general scenarios later in the paper.

9

(a) (b)

P
P′

P0
O = Q′ ∩ Q′′

x0
CP = (2.25, 2.75)

P
P′

P1
O = P0

O ∩ {x ∈ Rn | 3x1 − x2 ≥ 5}

x1
CP = (2.42, 2.25)

(2, 1) (2, 1)

Figure 3: Cutting plane method (Example 1)

Example 1 (Continued) We define the initial outer approximation to be P0
O = Q′∩Q′′ =

{x ∈ R2 | x satisfies (5)− (15)}, the continuous approximation.

Iteration 0: Solving the master problem over P0
O, we find an optimal primal solution

x0
CP = (2.25, 2.75) with bound z0

CP = 2.25, as shown in Figure 3(a). We then call the
subroutine SEP (x0

CP ,P), generating facet-defining inequalities of P ′ that are violated by
x0

CP . One such facet-defining inequality, 3x1 − x2 ≥ 5, is pictured in Figure 3(a). We add
this inequality to form a new outer approximation P1

O.

Iteration 1: We again solve the master problem, this time over P1
O, to find an optimal

primal solution x1
CP = (2.42, 2.25) and bound z1

CP = 2.42, as shown in Figure 3(b). We
then call the subroutine SEP (x1

CP ,P). However, as illustrated in Figure 3(b), there are
no more facet-defining inequalities violated by x1

CP . In fact, further improvement in the
bound would necessitate the addition of valid inequalities violated by points in P ′. Since
we are only generating facets of P ′ in this example, the method terminates with bound
zCP = 2.42 = zD.

We now consider the use of the cutting plane method for generating the bound zD for the
TSP of Example 2. Once again, we only generate facet-defining inequalities for P ′, the
1-tree polyhedron.

Example 2 (Continued) We define the initial outer approximation to be comprised of
the degree constraints and the bound constraints, so that

P0
O = Q′′ = {x ∈ RE | x satisfies (17) and (19)}.

The bound zD is then obtained by optimizing over the intersection of the 1-tree polyhedron
with the polyhedron Q′′ defined by constraints (17) and (19). Note that because the 1-tree
polyhedron has integer extreme points, we have that zD = zLP in this case. To calculate
zD, however, we must dynamically generate violated facet-defining inequalities (the SECs

10

0

1

2

0.6

3

0.2

0.8

0.2

4

5

6

0.8

7

0.8

8

9

0.6

10

11

0.4

0.2

12

0.2

0.2

0.2

13
0.4

0.6
0.8

14

0.6

0.2

0.2

15

0.2

0.2

0.2

0.8
0.6

Figure 4: Finding violated inequalities in the cutting plane method (Example 2)

(23)) of the 1-tree polyhedron P ′ defined earlier. Given a vector x̂ ∈ RE satisfying (17) and
(19), the problem of finding an inequality of the form (23) violated by x̂ is equivalent to
the well-known minimum cut problem, which can be nominally solved in O(|V |4) [53]. We
can use this approach to implement Step 3 of the cutting plane method and hence compute
the bound zD effectively. As an example, consider the vector x̂ pictured graphically in
Figure 4, obtained in Step 2 of the cutting plane method. In the figure, only edges e for
which x̂e > 0 are shown. Each edge e is labeled with the value x̂e, except for edges e with
x̂e = 1. The circled set of vertices S = {0, 1, 2, 3, 7} define a SEC violated by x̂, since
x̂(E(S)) = 4.6 > 4.0 = |S| − 1.

3.2 Dantzig-Wolfe Method

In the Dantzig-Wolfe method, the bound zD can be obtained by dynamically generating
portions of an inner description of P ′ and intersecting it with Q′′. Consider Minkowski’s
Theorem, which states that every bounded polyhedron is finitely generated by its extreme
points [52]. Let E ⊆ F ′ be the set of extreme points of P ′, so that

P ′ = {x ∈ Rn | x =
∑

s∈E
sλs,

∑

s∈E
λs = 1, λs ≥ 0 ∀s ∈ E}. (31)

Then the Dantzig-Wolfe formulation for computing the bound zD is

zDW = min
x∈Rn
{c>x | A′′x ≥ b′′, x =

∑

s∈E
sλs,

∑

s∈E
λs = 1, λs ≥ 0 ∀s ∈ E}. (32)

By substituting out the original variables, this formulation can be rewritten in the more
familiar form

zDW = min
λ∈RE+

{c>(
∑

s∈E
sλs) | A′′(

∑

s∈E
sλs) ≥ b′′,

∑

s∈E
λs = 1}. (33)

11

This is a linear program, but since the set of extreme points E is potentially of exponential
size, we dynamically generate those that are relevant by solving an optimization problem
over P ′. An outline of the method is presented in Figure 5.

In Step 2, we solve the master problem, which is a restricted linear program obtained
by substituting E t for E in (33). In Section 6, we discuss several alternatives for solving this
LP. In any case, solving it results in a primal solution λt

DW , and a dual solution consisting
of the dual multipliers ut

DW on the constraints corresponding to [A′′, b′′] and the multiplier
αt

DW on the convexity constraint. The dual solution is needed to generate the improving
columns in Step 3. In each iteration, we are generating an inner approximation, Pt

I ⊆ P ′,
the convex hull of E t. Thus Pt

I ∩ Q′′ may or may not contain P and the bound returned
from the master problem in Step 2, z̄t

DW , provides an upper bound on zDW . Nonetheless, it
is easy to show (see Section 3.3) that an optimal solution to the subproblem solved in Step
3 yields a valid lower bound. In particular, if s̃ is a member of E with the smallest reduced
cost in Step 3, then

zt
DW = c>s̃ + (ut

DW)>(b′′ −A′′s̃) (38)

is a valid lower bound. This means that, in contrast to the cutting plane method, where a
valid lower bound is always available, the Dantzig-Wolfe method only yields a valid lower
bound when the subproblem is solved to optimality, i.e., the optimization version is solved,
as opposed to the decision version. This need not be done in every iteration, as described
below.

In Step 3, we search for improving members of E , where, as in the previous section,
this means members that when added to E t yield an improved bound. It is less clear here,
however, which bound we would like to improve, z̄t

DW or zt
DW . A necessary condition for

improving z̄t
DW is the generation of a column with negative reduced cost. In fact, if one

considers (38), it is clear that this condition is also necessary for improvement of zt
DW .

However, we point out again that the subproblem must be solved to optimality in order
to update the bound zt

DW . In either case, however, we are looking for members of E with
negative reduced cost. If one or more such members exist, we add them to E t and iterate.

An area that deserves some deeper investigation is the relationship between the solution
obtained by solving the reformulation (35) and the solution that would be obtained by
solving an LP directly over Pt

I ∩ Q′′ with the objective function c. Consider the primal
optimal solution λt

DW , which we refer to as an optimal decomposition. If we combine the
members of E t using λt

DW to obtain an optimal fractional solution

xt
DW =

∑

s∈Et

s(λt
DW)s, (39)

then we see that z̄t
DW = c>xt

DW . In fact, xt
DW ∈ Pt

I ∩ Q′′ is an optimal solution to the
linear program solved directly over Pt

I ∩Q′′ with objective function c.
The optimal fractional solution plays an important role in the integrated methods to

be introduced later. To illustrate the Dantzig-Wolfe method and the role of the optimal
fractional solution in the method, we show how to apply it to generate the bound zD for
the ILP of Example 1.

Example 1 (Continued) For the purposes of illustration, we begin with a randomly
generated initial set of points E0 = {(4, 1), (5, 5)}. Taking their convex hull, we form the

12

Dantzig-Wolfe Method

Input: An instance ILP (P, c).
Output: A lower bound zDW on the optimal solution value for the instance, a primal
solution λ̂DW ∈ RE , and a dual solution (ûDW , α̂DW) ∈ Rm′′+1.

1. Initialize: Construct an initial inner approximation

P0
I = {

∑

s∈E0

sλs |
∑

s∈E0

λs = 1, λs ≥ 0 ∀s ∈ E0, λs = 0 ∀s ∈ E \ E0} ⊆ P ′ (34)

from an initial set E0 of extreme points of P ′ and set t← 0.

2. Master Problem: Solve the Dantzig-Wolfe reformulation

z̄t
DW = min

λ∈RE+
{c>(

∑

s∈E
sλs) | A′′(

∑

s∈E
sλs) ≥ b′′,

∑

s∈E
λs = 1, λs = 0 ∀s ∈ E \ E t}

(35)
to obtain the optimal value z̄t

DW = minPt
I∩Q′′ c

>x ≥ zDW , an optimal primal
solution λt

DW ∈ RE+, and an optimal dual solution (ut
DW , αt

DW) ∈ Rm′′+1.

3. Subproblem: Call the subroutine OPT (c>− (ut
DW)>A′′,P ′, αt

DW), generat-
ing a set of Ẽ of improving members of E with negative reduced cost, where
the reduced cost of s ∈ E is

rc(s) = (c> − (ut
DW)>A′′)s− αt

DW . (36)

If s̃ ∈ Ẽ is the member of E with smallest reduced cost, then zt
DW = rc(s̃) +

αt
DW + (ut

DW)>b′′ ≤ zDW provides a valid lower bound.

4. Update: If Ẽ 6= ∅, set E t+1 ← E t ∪ Ẽ to form the new inner approximation

Pt+1
I = {

∑

s∈Et+1

sλs |
∑

s∈Et+1

λs = 1, λs ≥ 0 ∀s ∈ E t+1, λs = 0 ∀s ∈ E\E t+1} ⊆ P ′,

(37)
and set t← t + 1. Go to Step 2.

5. If Ẽ = ∅, output the bound zDW = z̄t
DW = zt

DW , λ̂DW = λt
DW , and

(ûDW , α̂DW) = (ut
DW , αt

DW).

Figure 5: Outline of the Dantzig-Wolfe method

13

(a) (b) (c)

P
P′

c> − û>A”c>

c> − û>A”

c> − û>A”

(2, 1) (2, 1) (2, 1)

x0
DW = (4.25, 2)

s̃ = (2, 1)

Q′′ Q′′

P
P′

x1
DW = (2.64, 1.86)

s̃ = (3, 4)

Q′′

P
P′

x2
DW = (2.42, 2.25)

P0
I = conv(E0) ⊂ P′ P1

I = conv(E1) ⊂ P′ P2
I = conv(E2) ⊂ P′

Figure 6: Dantzig-Wolfe method (Example 1)

initial inner approximation P0
I = conv(E0), as illustrated in Figure 6(a).

Iteration 0. Solving the master problem with inner polyhedron P0
I , we obtain an optimal pri-

mal solution (λ0
DW)(4,1) = 0.75, (λ0

DW)(5,5) = 0.25, x0
DW = (4.25, 2), and bound z̄0

DW = 4.25.
Since constraint (12) is binding at x0

DW , the only nonzero component of u0
DW is (u0

DW)(12) =
0.28, while the dual variable associated with the convexity constraint has value α0

DW = 4.17.
All other dual variables have value zero. Next, we search for an extreme point of P ′ with
negative reduced cost, by solving the subproblem OPT (c> − (ut

DW)>A′′,P ′, α0
DW). From

Figure 6(a), we see that s̃ = (2, 1). This gives a valid lower bound z0
DW = 2.03. We add

the corresponding column to the restricted master and set E1 = E0 ∪ {(2, 1)}.

Iteration 1. The next iteration is depicted in Figure 6(b). First, we solve the master
problem with inner polyhedron P1

I = conv(E1) to obtain (λ1
DW)(5,5) = 0.21, (λ1

DW)(2,1) =
0.79, x1

DW = (2.64, 1.86), and bound and z̄1
DW = 2.64. This also provides the dual so-

lution (u1
DW)(13) = 0.43 and α1

DW = 0.71 (all other dual values are zero). Solving

OPT (c> − u1
DW A′′,P ′, α1

DW), we obtain s̃ = (3, 4), and z1
DW = 1.93. We add the cor-

responding column to the restricted master and set E2 = E1 ∪ {(3, 4)}.

Iteration 2 The final iteration is depicted in Figure 6(c). Solving the master problem once
more with inner polyhedron P2

I = conv(E2), we obtain (λ2
DW)(2,1) = 0.58 and (λ2

DW)(3,4) =
0.42, x2

DW = (2.42, 2.25), and bound z̄2
DW = 2.42. This also provides the dual solution

(u2
DW)(14) = 0.17 and α2

DW = 0.83. Solving OPT (c> − u2
DW A′′,P ′, α2

DW), we conclude

that Ẽ = ∅. We therefore terminate with the bound zDW = 2.42 = zD.

As a further brief illustration, we return to the TSP example introduced earlier.

14

0
00

0 0
0

0

1213

14

15

11

1
11

1 1
1

1

2
22

2 2
2

2

3
33

3 3
3

3

4
44

4 4
4

4

5
55

5 5
5

5

6
66

6 6
6

6

7
77

7 7
7

7

8
88

8 8
8

8

10

9
99

9 9
9

9

1
11

11
1

0
00

00
0

1
11

11
1

1
11

11
1

1 1

1

12

1 1

2

2

2

2 2

1
11

1
1 1

3
33

3
3 3

11 1

1 1

44 4

4 4
14

1

1 1

11

1

5

5 5

55

5

0.5

0.5

0.5

0.5

0.5

0.5

0.2

0.3
0.7

0.3

0.3

0.2

(a) x̂

(b) λ̂0 = 0.3 (c) λ̂1 = 0.2 (d) λ̂2 = 0.2

(e) λ̂3 = 0.1 (f) λ̂4 = 0.1 (g) λ̂5 = 0.1

Figure 7: Dantzig-Wolfe method (Example 2)

Example 2 (Continued) As we noted earlier, the Minimum 1-Tree Problem can be
solved by computing a minimum cost spanning tree on vertices V \ {0}, and then adding
two cheapest edges incident to vertex 0. This can be done in O(|E| log |V |) using standard
algorithms. In applying the Dantzig-Wolfe method to compute zD using the decomposition
described earlier, the subproblem to be solved in Step 3 is a Minimum 1-Tree Problem.
Because we can solve this problem effectively, we can apply the Dantzig-Wolfe method in
this case. As an example of the result of solving the Dantzig-Wolfe master problem (35),
Figure 7 depicts an optimal fractional solution (a) to a Dantzig-Wolfe master LP and the
six extreme points 7(b-g) of the 1-tree polyhedron P ′, with nonzero weight comprising an
optimal decomposition. We return to this figure later in Section 4.

Now consider the set S(u, α), defined as

S(u, α) = {s ∈ E | (c> − u>A′′)s = α}, (40)

where u ∈ Rm′′
and α ∈ R. The set S(ut

DW , αt
DW) is the set of members of E with reduced

cost zero at optimality for (35) in iteration t. It follows that conv(S(ut
DW , αt

DW)) is in fact
the face of optimal solutions to the linear program solved over Pt

I with objective function
c> − u>A′′. This line of reasoning culminates in the following theorem tying together the

15

set S(ut
DW , αt

DW) defined above, the vector xt
DW , and the optimal face of solutions to the

LP over the polyhedron Pt
I ∩Q′′.

Theorem 2 conv(S(ut
DW , αt

DW)) is a face of Pt
I and contains xt

DW .

Proof. We first show that conv(S(ut
DW , αt

DW)) is a face of Pt
I . Observe that

(c> − (ut
DW)>A′′, αt

DW)

defines a valid inequality for Pt
I since αt

DW is the optimal value for the problem of minimizing
over Pt

I with objective function c> − (ut
DW)>A′′. Thus, the set

G = {x ∈ Pt
I | (c> − (ut

DW)>A′′)x = αt
DW }, (41)

is a face of Pt
I that contains S(ut

DW , αt
DW). We will show that conv(S(ut

DW , αt
DW)) = G.

Since G is convex and contains S(ut
DW , αt

DW), it also contains conv(S(ut
DW , αt

DW)), so we
just need to show that conv(S(ut

DW , αt
DW)) contains G. We do so by observing that the

extreme points of G are among those of S(ut
DW , αt

DW). By construction, all extreme points
of Pt

I are members of E and the extreme points of G are also extreme points of Pt
I . There-

fore, the extreme points of G must be members of E and contained in S(ut
DW , αt

DW). The
claim follows and conv(S(ut

DW , αt
DW)) is a face of Pt

I .

The fact that xt
DW ∈ conv(S(ut

DW , αt
DW)) follows from the fact that xt

DW is a convex com-
bination of members of S(ut

DW , αt
DW).

An important consequence of Theorem 2 is that the face of optimal solutions to the LP
over the polyhedron Pt

I ∩ Q′′ is actually contained in conv(S(ut
DW , αt

DW)) ∩ Q′′, as stated
in the following corollary.

Corollary 2 If F is the face of optimal solutions to the linear program solved directly over
Pt

I ∩Q′′ with objective function vector c, then F ⊆ conv(S(ut
DW , αt

DW)) ∩Q′′.
Proof. Let x̂ ∈ F be given. Then we have that x̂ ∈ Pt

I ∩Q′′ by definition, and

c>x̂ = αt
DW + (ut

DW)>b′′ = αt
DW + (ut

DW)>A′′x̂, (42)

where the first equality in this chain is a consequence of strong duality and the last is a
consequence of complementary slackness. Hence, it follows that (c>− (ut

DW)>A′′)x̂ = αt
DW

and the result is proven.

Hence, each iteration of the method not only produces the primal solution xt
DW ∈ Pt

I ∩Q′′,
but also a dual solution (ut

DW , αt
DW) that defines a face conv(S(ut

DW , αt
DW)) of Pt

I that
contains the entire optimal face of solutions to the LP solved directly over Pt

I ∩Q′′ with the
original objective function vector c.

When no column with negative reduced cost exists, the two bounds must be equal to zD

and we stop, outputting both the primal solution λ̂DW , and the dual solution (ûDW , α̂DW).
It follows from the results proven above that in the final iteration, any column of (35)
with reduced cost zero must in fact have a cost of α̂DW = zD − û>DW b′′ when evaluated
with respect to the modified objective function c> − û>DW A′′. In the final iteration, we can
therefore strengthen the statement of Theorem 2, as follows.

16

Theorem 3 conv(S(ûDW , α̂DW)) is a face of P ′ and contains x̂DW .

The proof follows along the same lines as Theorem 2. As before, we can also state the
following important corollary.

Corollary 3 If F is the face of optimal solutions to the linear program solved directly over
P ′ ∩Q′′ with objective function vector c, then F ⊆ conv(S(ûDW , α̂DW)) ∩Q′′.
Thus, conv(S(ûDW , α̂DW)) is actually a face of P ′ that contains x̂DW and the entire face
of optimal solutions to the LP solved over P ′ ∩ Q′′ with objective function c. This fact
provides strong intuition regarding the connection between the Dantzig-Wolfe method and
the cutting plane method and allows us to regard Dantzig-Wolfe decomposition as either a
procedure for producing the bound zD = c>x̂DW from primal solution information or the
bound zD = c>ŝ + û>DW (b′′ − A′′ŝ), where ŝ is any member of S(ûDW , α̂DW), from dual
solution information. This fact is important in the next section, as well as later when we
discuss integrated methods.

The exact relationship between S(ûDW , α̂DW), the polyhedron P ′ ∩ Q′′, and the face
F of optimal solutions to an LP solved over P ′ ∩ Q′′ can vary for different polyhedra and
even for different objective functions. Figure 8 shows the polyhedra of Example 1 with
three different objective functions indicated. The convex hull of S(ûDW , α̂DW) is typically
a proper face of P ′, but it is possible for x̂DW to be an inner point of P ′, in which case we
have the following result.

Theorem 4 If x̂DW is an inner point of P ′, then conv(S(ûDW , α̂DW)) = P ′.
Proof. We prove the contrapositive. Suppose conv(S(ûDW , α̂DW)) is a proper face of P ′.
Then there exists a facet-defining valid inequality (a, β) ∈ Rn+1 such that conv(S(ûDW , α̂DW)) ⊆
{x ∈ Rn | ax = β}. By Theorem 3, x̂DW ∈ conv(S(ûDW , α̂DW)) and x̂DW therefore cannot
satisfy the definition of an inner point.

In this case, illustrated graphically in Figure 8(a) with the polyhedra from Example 1,
zDW = zLP and Dantzig-Wolfe decomposition does not improve the bound. All columns
of the Dantzig-Wolfe LP have reduced cost zero and any member of E can be given posi-
tive weight in an optimal decomposition. A necessary condition for an optimal fractional
solution to be an inner point of P ′ is that the dual value of the convexity constraint in an
optimal solution to the Dantzig-Wolfe LP be zero. This condition indicates that the chosen
relaxation may be too weak.

A second case of potential interest is when F = conv(S(ûDW , α̂DW)) ∩ Q′′, illustrated
graphically in Figure 8(b). In this case, all constraints of the Dantzig-Wolfe LP other than
the convexity constraint must have dual value zero, since removing them does not change
the optimal solution value. This condition can be detected by examining the objective
function values of the members of E with positive weight in the optimal decomposition.
If they are all identical, any such member that is contained in Q′′ (if one exists) must be
optimal for the original ILP, since it is feasible and has objective function value equal to
zIP . The more typical case, in which F is a proper subset of conv(S(ûDW , α̂DW)) ∩ Q′′, is
shown in Figure 8(c).

17

(c)(b)(a)

conv(S(ûDW , α̂DW))

{s ∈ E|(λ̂DW)s > 0}

x̂DW

conv(S(ûDW , α̂DW))

{s ∈ E|(λ̂DW)s > 0}

x̂DW

c>

F = x̂DW

conv(S(ûDW , α̂DW))

{s ∈ E|(λ̂DW)s > 0}

x̂DW

conv(S(ûDW , α̂DW)) ∩ Q” = F

c>

F

c>

P′ ∩ Q” = conv(S(ûDW , α̂DW)) ∩ Q”

F = x̂DW

P′ ∩ Q” ⊃ conv(S(ûDW , α̂DW)) ∩ Q” ⊃ F

Figure 8: The relationship of P ′ ∩Q′′, conv(S(ûDW , α̂DW)) ∩Q′′, and the face F .

3.3 Lagrangian Method

The Lagrangian method [22, 14] is a general approach for computing zD that is closely
related to the Dantzig-Wolfe method, but is focused primarily on producing dual solution
information. The Lagrangian method can be viewed as a method for producing a partic-
ular face of P ′, as in the Dantzig-Wolfe method, but no explicit approximation of P ′ is
maintained. Although there are implementations of the Lagrangian method that do pro-
duce approximate primal solution information similar to the solution information that the
Dantzig-Wolfe method produces (see Section 3.2), our viewpoint is that the main difference
between the Dantzig-Wolfe method and the Lagrangian method is the type of solution infor-
mation they produce. This is an important distinction when we discuss integrated methods
in Section 4. When exact primal solution information is not required, faster algorithms for
determining the dual solution are possible. By employing a Lagrangian framework instead
of a Dantzig-Wolfe framework, we can take advantage of this.

For a given vector u ∈ Rm′′
+ , the Lagrangian relaxation of (1) is given by

zLR(u) = min
s∈F ′
{c>s + u>(b′′ −A′′s)}. (43)

It is easily shown that zLR(u) is a lower bound on zIP for any u ≥ 0. The elements of
the vector u are called Lagrange multipliers or dual multipliers with respect to the rows
of [A′′, b′′]. Note that (43) is the same subproblem solved in the Dantzig-Wolfe method to
generate the most negative reduced cost column. The problem

zLD = max
u∈Rm′′

+

{zLR(u)} (44)

of maximizing this bound over all choices of dual multipliers is a dual to (1) called the
Lagrangian dual and also provides a lower bound zLD, which we call the LD bound. A
vector of multipliers û that yield the largest bound are called optimal (dual) multipliers.

18

Lagrangian Method

Input: An instance ILP (P, c).
Output: A lower bound zLD on the optimal solution value for the instance and a
dual solution ûLD ∈ Rm′′

.

1. Let s0
LD ∈ E define some initial extreme point of P ′, u0

LD some initial setting
for the dual multipliers and set t← 0.

2. Master Problem: Using the solution information gained from solving the
pricing subproblem, and the previous dual setting ut

LD, update the dual mul-
tipliers ut+1

LD .

3. Subproblem: Call the subroutine OPT (c> − (ut
LD)>A′′,P ′, (c −

(ut
LD)>A′′)st

LD), to solve

zt
LD = min

s∈F ′
{(c> − (ut

LD)>A′′)s + b′′>ut
LD}. (45)

Let st+1
LD ∈ E be the optimal solution to this subproblem, if one is found.

4. If a prespecified stopping criterion is met, then output zLD = zt
LD and ûLD =

ut
LD, otherwise, go to Step 2

Figure 9: Outline of the Lagrangian method

It is easy to see that zLR(u) is a piecewise linear concave function and can be maximized
by any number of methods for non-differentiable optimization. In Section 6, we discuss some
alternative solution methods (for a complete treatment, see [34]). In Figure 9 we give an
outline of the steps involved in the Lagrangian method. As in Dantzig-Wolfe, the main
loop involves updating the dual solution and then generating an improving member of E
by solving a subproblem. Unlike the Dantzig-Wolfe method, there is no approximation and
hence no update step, but the method can nonetheless be viewed in the same frame of
reference.

To more clearly see the connection to the Dantzig-Wolfe method, consider the dual of
the Dantzig-Wolfe LP (33),

zDW = max
α∈R,u∈Rm′′

+

{α + b′′>u | α ≤ (c> − u>A′′)s ∀s ∈ E}. (46)

Letting η = α + b′′>u and rewriting, we see that

zDW = max
η∈R,u∈Rm′′

+

{η | η ≤ (c> − u>A′′)s + b′′>u ∀s ∈ E} (47)

= max
η∈R,u∈Rm′′

+

{min
s∈E
{(c> − u>A′′)s + b′′>u}} = zLD. (48)

Thus, we have that zLD = zDW and that (44) is another formulation for the problem of
calculating zD. It is also interesting to observe that the set S(ut

LD, zt
LD − b′′>ut

LD) is the

19

set of alternative optimal solutions to the subproblem solved at iteration t in Step 3. The
following theorem is a counterpart to Theorem 3 that follows from this observation.

Theorem 5 conv(S(ûLD, zLD − b′′>ûLD)) is a face of P ′. Also, if F is the face of optimal
solutions to the linear program solved directly over P ′ ∩Q′′ with objective function vector c,
then F ⊆ conv(S(ûLD, zLD − b′′>ûLD)) ∩Q′′.
Again, the proof is similar to that of Theorem 3. This shows that while the Lagrangian
method does not maintain an explicit approximation, it does produce a face of P ′ containing
the optimal face of solutions to the linear program solved over the approximation P ′ ∩Q′′.

4 Integrated Decomposition Methods

In Section 3, we demonstrated that traditional decomposition approaches can be viewed
as utilizing dynamically generated polyhedral information to improve the LP bound by
either building an inner or an outer approximation of an implicitly defined polyhedron that
approximates P. The choice between inner and outer methods is largely an empirical one,
but recent computational research has favored outer methods. In what follows, we discuss
three methods for integrating inner and outer methods. In principle, this is not difficult
to do and can result in bounds that are improved over those achieved by either approach
alone.

While traditional decomposition approaches build either an inner or an outer approxi-
mation, integrated decomposition methods build both an inner and an outer approximation.
These methods follow the same basic loop as traditional decomposition methods, except
that the master problem is required to generate both primal and dual solution information
and the subproblem can be either a separation problem or an optimization problem. The
first two techniques we describe integrate the cutting plane method with either the Dantzig-
Wolfe method or the Lagrangian method. The third technique, described in Section 5, is a
cutting plane method that uses an inner approximation to perform separation.

4.1 Price and Cut

The integration of the cutting plane method with the Dantzig-Wolfe method results in a
procedure that alternates between a subproblem that generates improving columns (the
pricing subproblem) and a subproblem that generates improving valid inequalities (the
cutting subproblem). Hence, we call the resulting method price and cut. When employed
in a branch and bound framework, the overall technique is called branch, price, and cut.
This method has already been studied previously by a number of authors [12, 61, 38, 11, 60]
and more recently by Arãgao and Uchoa [21].

As in the Dantzig-Wolfe method, the bound produced by price and cut can be thought of
as resulting from the intersection of two approximating polyhedra. However, the Dantzig-
Wolfe method required one of these, Q′′, to have a short description. With integrated
methods, both polyhedra can have descriptions of exponential size. Hence, price and cut
allows partial descriptions of both an inner polyhedron PI and an outer polyhedron PO

to be generated dynamically. To optimize over the intersection of PI and PO, we use a

20

Dantzig-Wolfe reformulation as in (33), except that the [A′′, b′′] is replaced by a matrix that
changes dynamically. The outline of this method is shown in Figure 10.

In examining the steps of this generalized method, the most interesting question that
arises is how methods for generating improving columns and valid inequalities translate to
this new dynamic setting. Potentially troublesome is the fact that column generation results
in a reduction of the bound z̄t

PC produced by (51), while generation of valid inequalities is
aimed at increasing it. Recall again, however, that while it is the bound z̄t

PC that is directly
produced by solving (51), it is the bound zt

PC obtained by solving the pricing subproblem
that one might claim is more relevant to our goal and this bound can be potentially improved
by generation of either valid inequalities or columns.

Improving columns can be generated in much the same way as they were in the Dantzig-
Wolfe method. To search for new columns, we simply look for those with negative reduced
cost, where reduced cost is defined to be the usual LP reduced cost with respect to the
current reformulation. Having a negative reduced cost is still a necessary condition for a
column to be improving. However, it is less clear how to generate improving valid inequal-
ities. Consider an optimal fractional solution xt

PC obtained by combining the members of
E according to weights yielded by the optimal decomposition λt

PC in iteration t. Following
a line of reasoning similar to that followed in analyzing the results of the Dantzig-Wolfe
method, we can conclude that xt

PC is in fact an optimal solution to an LP solved directly
over Pt

I ∩Pt
O with objective function vector c and that therefore, it follows from Theorem 1

that any improving inequality must be violated by xt
PC . It thus seems sensible to consider

separating xt
PC from P. This is the approach taken in the method of Figure 10.

To demonstrate how the price and cut method works, we return to Example 1.

Example 1 (Continued) We pick up the example at the last iteration of the Dantzig-
Wolfe method and show how the bound can be further improved by dynamically generating
valid inequalities.

Iteration 0. Solving the master problem with E0 = {(4, 1), (5, 5), (2, 1), (3, 4)} and the
initial inner approximation P0

I = conv(E0) yields (λ0
PC)(2,1) = 0.58 and (λ0

PC)(3,4) = 0.42,
x0

PC = (2.42, 2.25), bound z0
PC = z̄0

PC = 2.42. Next, we solve the cutting subproblem
SEP (x0

PC ,P), generating facet-defining inequalities of P that are violated by x0
PC . One

such facet-defining inequality, x1 ≥ 3, is illustrated in Figure 11(a). We add this inequality
to the current set D0 = [A′′, b′′] to form a new outer approximation P1

O, defined by the set
D1.

Iteration 1. Solving the new master problem, we obtain an optimal primal solution (λ1
PC)(4,1) =

0.42, (λ1
PC)(2,1) = 0.42, (λ1

PC)(3,4) = 0.17, x1
PC = (3, 1.5), bound z̄1

PC = 3, as well as an
optimal dual solution (u1

PC , α1
PC). Next, we consider the pricing subproblem. Since x1

PC is
in the interior of P ′, every extreme point of P ′ has reduced cost 0 by Theorem 4. Therefore,
there are no negative reduced cost columns and we switch again to the cutting subproblem
SEP (x1

PC ,P). As illustrated in Figure 11(b), we find another facet-defining inequality of
P violated by x1

PC , x2 ≥ 2. We then add this inequality to form D2 and further tighten the
outer approximation, now P2

O.

21

Price and Cut Method

Input: An instance ILP (P, c).
Output: A lower bound zPC on the optimal solution value for the instance, a pri-
mal solution x̂PC ∈ Rn, an optimal decomposition λ̂PC ∈ RE , a dual solution
(ûPC , α̂PC) ∈ Rmt+1, and the inequalities [DPC , dPC] ∈ Rmt×(n+1).

1. Initialize: Construct an initial inner approximation

P0
I = {

∑

s∈E0

sλs |
∑

s∈E0

λs = 1, λs ≥ 0 ∀s ∈ E0, λs = 0 ∀s ∈ E \ E0} ⊆ P ′ (49)

from an initial set E0 of extreme points of P ′ and an initial outer approximation

P0
O = {x ∈ Rn | D0x ≥ d0} ⊇ P, (50)

where D0 = A′′ and d0 = b′′, and set t← 0, m0 = m′′.

2. Master Problem: Solve the Dantzig-Wolfe reformulation

z̄t
PC = min

λ∈RE+
{c>(

∑

s∈E
sλs) | Dt(

∑

s∈E
sλs) ≥ dt,

∑

s∈E
λs = 1, λs = 0 ∀s ∈ E \ E t}

(51)
of the LP over the polyhedron Pt

I ∩ Pt
O to obtain the optimal value z̄t

PC ,
an optimal primal solution λt

PC ∈ RE , an optimal fractional solution xt
PC =∑

s∈E s(λt
PC)s, and an optimal dual solution (ut

PC , αt
PC) ∈ Rmt+1.

3. Do either (a) or (b).

(a) Pricing Subproblem and Update: Call the subroutine OPT (c> −
(ut

PC)>Dt,P ′, αt
PC), generating a set Ẽ of improving members of E with

negative reduced cost (defined in Figure 5). If Ẽ 6= ∅, set E t+1 ← E t∪Ẽ to
form a new inner approximation Pt+1

I . If s̃ ∈ E is the member of E with
smallest reduced cost, then zt

PC = rc(s̃) + αt
PC + (dt)>ut

PC provides a
valid lower bound. Set [Dt+1, dt+1] ← [Dt, dt], Pt+1

O ← Pt
O, mt+1 ← mt,

t← t + 1. and go to Step 2.

(b) Cutting Subproblem and Update: Call the subroutine SEP (xt
PC ,P)

to generate a set of improving valid inequalities [D̃, d̃] ∈ Rm̃×n+1 for P,
violated by xt

PC . If violated inequalities were found, set [Dt+1, dt+1] ←[
Dt dt

D̃ d̃

]
to form a new outer approximation Pt+1

O . Set mt+1 ← mt + m̃,
E t+1 ← E t, Pt+1

I ← Pt
I , t← t + 1, and go to Step 2.

4. If Ẽ = ∅ and no valid inequalities were found, output the bound zPC = z̄t
PC =

zt
PC = c>xt

PC , x̂PC = xt
PC , λ̂PC = λt

PC , (ûPC , α̂PC) = (ut
PC , αt

PC), and
[DPC , dPC] = [Dt, dt].

Figure 10: Outline of the price and cut method

22

(a) (b) (c)

(2,1) (2,1) (2,1)

c>

P

P0
O = Q′′

x0
P C = (2.42, 2.25)

P

P1
O = P0

O ∩ {x ∈ Rn | x1 ≥ 3}
x1

P C = (3, 1.5)

P

P2
O = P1

O ∩ {x ∈ Rn | x2 ≥ 2}

x2
P C = (3, 2)

P0
I = conv(E0) ⊂ P′ P1

I = conv(E1) ⊂ P′

{s ∈ E | (λ0
P C)s > 0} {s ∈ E | (λ1

P C)s > 0} {s ∈ E | (λ2
P C)s > 0}

P1
I = conv(E2) ⊂ P′

Figure 11: Price and cut method (Example 1)

Iteration 2. In the final iteration, we solve the master problem again to obtain (λ2
PC)(4,1) =

0.33, (λ2
PC)(2,1) = 0.33, (λ2

PC)(3,4) = 0.33, x2
PC = (3, 2), bound z̄2

PC = 3. Now, since the
primal solution is integral, and is contained in P ′ ∩ Q′′, we know that z2

PC = zIP and we
terminate.

Let us now return to the TSP example to further explore the use of the price and cut
method.

Example 2 (Continued) As described earlier, applying Dantzig-Wolfe method along
with the 1-tree relaxation for the TSP allows us to compute the bound zD obtained by
optimizing over the intersection of the 1-tree polyhedron (the inner polyhedron) with the
polyhedron Q′′ (the outer polyhedron) defined by constraints (17) and (19). With price
and cut, we can further improve the bound by allowing both the inner and outer polyhedra
to have large descriptions. For this purpose, let us now introduce the well-known comb
inequalities [30, 31], which we will generate to improve our outer approximation. A comb
is defined by a set H ⊂ V , called the handle and sets T1, T2, ..., Tk ⊂ V , called the teeth,
which satisfy

H ∩ Ti 6= ∅ for i = 1, ..., k,

Ti \H 6= ∅ for i = 1, ..., k,

Ti ∩ Tj = ∅ for 1 ≤ i < j ≤ k,

for some odd k ≥ 3. Then, for |V | ≥ 6 the comb inequality,

x(E(H)) +
k∑

i=1

x(E(Ti)) ≤ |H|+
k∑

i=1

(|Ti| − 1)− dk/2e (52)

23

0

1213

14

15

11

1

2

3

4 5

6

7

8

10

9

0.5

0.5

0.5

0.5

0.5

0.5

0.2

0.3
0.7

0.3

0.3

0.2

Figure 12: Price and cut method (Example 2)

is valid and facet-defining for the TSP. Let the comb polyhedron be defined by constraints
(17), (19), and (52).

There are no known efficient algorithms for solving the general facet identification prob-
lem for the comb polyhedron. To overcome this, one approach is to focus on comb in-
equalities with special forms. One subset of the comb inequalities, known as the blossom
inequalities, is obtained by restricting the teeth to have exactly two members. The facet
identification for the polyhedron comprised of the blossom inequalities and constraints (17)
and (19) can be solved in polynomial time, a fact we return to shortly. Another approach
is to use heuristic algorithms not guaranteed to find a violated comb inequality when one
exists (see [4] for a survey). These heuristic algorithms could be applied in price and cut as
part of the cutting subproblem in Step 3b to improve the outer approximation.

In Figure 7 of Section 3.2, we showed an optimal fractional solution x̂ that resulted from
the solution of a Dantzig-Wolfe master problem and the corresponding optimal decomposi-
tion, consisting of six 1-trees. In Figure 12, we show the sets H = {0, 1, 2, 3, 6, 7, 9, 11, 12, 15}, T1 =
{5, 6}, T2 = {8, 9}, and T3 = {12, 13} forming a comb that is violated by this fractional so-
lution, since

x̂(E(H)) +
k∑

i=1

x̂(E(Ti)) = 11.3 > 11 = |H|+
k∑

i=1

(|Ti| − 1)− dk/2e.

Such a violated comb inequality, if found, could be added to the description of the outer
polyhedron to improve on the bound zD. This shows the additional power of price and cut
over the Dantzig-Wolfe method. Of course, it should be noted that it is also possible to
generate such inequalities in the standard cutting plane method and to achieve the same
bound improvement.

The choice of relaxation has a great deal of effect on the empirical behavior of decom-
position algorithms. In Example 2, we employed an inner polyhedron with integer extreme
points. With such a polyhedron, the integrality constraints of the inner polyhedron have
no effect and zD = zLP . In Example 3, we consider a relaxation for which the bound zD

may be strictly improved over zLP by employing an inner polyhedron that is not integral.

24

Example 3 Let G be a graph as defined in Example 2 for the TSP. A 2-matching is a
subgraph in which every vertex has degree two. Every TSP tour is hence a 2-matching.
The Minimum 2-Matching Problem is a relaxation of TSP whose feasible region is described
by the degree (17), bound (19), and integrality constraints (20) of the TSP. Interestingly,
the 2-matching polyhedron, which is implicitly defined to be the convex hull of the feasible
region just described, can also be described by replacing the integrality constraints (20)
with the blossom inequalities. Just as the SEC constraints provide a complete description
of the 1-tree polyhedron, the blossom inequalities (plus degree and bound) constraints
provide a complete description of the 2-matching polyhedron. Therefore, we could use this
polyhedron as an outer approximation to the TSP polyhedron. In [50], Müller-Hannemann
and Schwartz present several polynomial algorithms for optimizing over the 2-matching
polyhedron. We can therefore also use the 2-matching relaxation in the context of price
and cut to generate an inner approximation of the TSP polyhedron. Using integrated
methods, it would then be possible to simultaneously build up an outer approximation of
the TSP polyhedron consisting of the SECs (18). Note that this simply reverses the roles
of the two polyhedra from Example 2 and thus would yield the same bound.

Figure 13 shows an optimal fractional solution arising from the solution of the master
problem and the 2-matchings with positive weight in a corresponding optimal decomposi-
tion. Given this fractional subgraph, we could employ the separation algorithm discussed
in Example 2 of Section 3.1 to generate the violated subtour S = {0, 1, 2, 3, 7}.

Another approach to generating improving inequalities in price and cut is to try to take
advantage of the information contained in the optimal decomposition to aid in the sepa-
ration procedure. This information, though computed by solving (51) is typically ignored.
Consider the fractional solution xt

PC generated in iteration t of the method in Figure 10.
The optimal decomposition for the master problem in iteration t, λt

PC , provides a decom-
position of xt

PC into a convex combination of members of E . We refer to elements of E that
have a positive weight in this combination as members of the decomposition. The following
theorem shows how such a decomposition can be used to derive an alternate necessary con-
dition for an inequality to be improving. Because we apply this theorem in a more general
context later in the paper, we state it in a general form.

Theorem 6 If x̂ ∈ Rn violates the inequality (a, β) ∈ R(n+1) and λ̂ ∈ RE+ is such that∑
s∈E λ̂s = 1 and x̂ =

∑
s∈E sλ̂s, then there must exist an s ∈ E with λ̂s > 0 such that s

also violates the inequality (a, β) .

Proof. Let x̂ ∈ Rn and (a, β) ∈ R(n+1) be given such that a>x̂ < β. Also, let λ̂ ∈ RE+ be
given such that

∑
s∈E λ̂s = 1 and x̂ =

∑
s∈E sλ̂s. Suppose that a>s ≥ β for all s ∈ E with

λ̂s > 0. Since
∑

s∈E λ̂s = 1, we have a>(
∑

s∈E sλ̂s) ≥ β. Hence, a>x̂ = a>(
∑

s∈E sλ̂s) ≥ β,
which is a contradiction.

In other words, an inequality can be improving only if it is violated by at least one member
of the decomposition. If I is the set of all improving inequalities in iteration t, then the
following corollary is a direct consequence of Theorem 6.

Corollary 4 I ⊆ V = {(a, β) ∈ R(n+1) : a>s < β for some s ∈ E such that (λt
PC)s > 0}.

25

0
00

0

1
11

1

2
22

2

0.6

3 3 3

3

4
44

0.2

5
55

0.8

6
66

0.2

7
7

4

7

5

8 8 8

6

9 9 9

0.8

10 10

7

10

0.8

11 11

8

11

12 12

9

12

0.6

131313

10

1414
14

11

1515
15

0.4

0.2

12

0.2

0.2

0.2

13
0.4

0.6
0.8

14

0.6

0.2

0.2

15

0.2

0.2

0.2

0.8
0.6

(b) λ̂0 = 0.2 (c) λ̂1 = 0.2 (d) λ̂2 = 0.6

(a) x̂

Figure 13: Finding violated inequalities in price and cut (Example 3)

The importance of these results is that in many cases, it is easier to separate members
of F ′ from P than to separate arbitrary real vectors. There are a number of well-known
polyhedra for which the problem of separating an arbitrary real vector is difficult, but the
problem of separating a solution to a given relaxation is easy. This concept is formalized
in Section 5 and some examples are discussed in Section 8. In Figure 14, we propose a
new separation procedure that can be embedded in price and cut that takes advantage of
this fact. The procedure takes as input an arbitrary real vector x̂ that has been previously
decomposed into a convex combination of vectors with known structure. In price and cut,
the arbitrary real vector is xt

PC and it is decomposed into a convex combination of members
of E by solving the master problem (51). Rather than separating xt

PC directly, the procedure
consists of separating each one of the members of the decomposition in turn, then checking
each inequality found for violation against xt

PC .
The running time of this procedure depends in part on the cardinality of the decompo-

sition. Carathéodory’s Theorem assures us that there exists a decomposition with less than
or equal to dim(Pt

I)+1 members. Unfortunately, even if we limit our search to a particular
known class of valid inequalities, the number of such inequalities violated by each member
of D in Step 2 may be extremely large and these inequalities may not be violated by xt

PC

(such an inequality cannot be improving). Unless we enumerate every inequality in the set
V from Corollary 4, either implicitly or explicitly, the procedure does not guarantee that
an improving inequality will be found, even if one exists. In cases where it is possible to

26

Separation using a Decomposition

Input: A decomposition λ ∈ RE of x̂ ∈ Rn.
Output: A set [D, d] of potentially improving inequalities.

1. Form the set D = {s ∈ E | λs > 0}.
2. For each s ∈ D, call the subroutine SEP (s,P) to obtain a set [D̃, d̃] of violated

inequalities.

3. Let [D, d] be composed of the inequalities found in Step 2 that are also violated
by x̂, so that Dx̂ < d.

4. Return [D, d] as the set of potentially improving inequalities.

Figure 14: Solving the cutting subproblem with the aid of a decomposition

examine the set V in polynomial time, the worst-case complexity of the entire procedure
is polynomially equivalent to that of optimizing over P ′. Obviously, it is unlikely that the
set V can be examined in polynomial time in situations when separating xt

PC is itself an
NP-complete problem. In such cases, the procedure to select inequalities that are likely to
be violated by xt

PC in Step 2 is necessarily a problem-dependent heuristic. The effectiveness
of such heuristics can be improved in a number of ways, some of which are discussed in [57].

Note that members of the decomposition in iteration t must belong to the set S(ut
PC , αt

PC),
as defined by (40). It follows that the convex hull of the decomposition is a subset of
conv(S(ut

PC , αt
PC)) that contains xt

PC and can be thought of as a surrogate for the face of
optimal solutions to an LP solved directly over Pt

I ∩ Pt
O with objective function vector c.

Combining this corollary with Theorem 1, we conclude that separation of S(ut
PC , αt

PC) from
P is a sufficient condition for an inequality to be improving. Although this sufficient con-
dition is difficult to verify in practice, it does provide additional motivation for the method
described in Figure 14.

Example 1 (Continued) Returning to the cutting subproblem in iteration 0 of the price
and cut method, we have a decomposition x0

PC = (2.42, 2.25) = 0.58(2, 1) + 0.42(3, 4), as
depicted in Figure 11(a). Now, instead of trying to solve the subproblem SEP (x0

PC ,P), we
instead solve SEP (s,P), for each s ∈ D = {(2, 1), (3, 4)}. In this case, when solving the
separation problem for s = (2, 1), we find the same facet-defining inequality of P as we did
by separating x0

PC directly.
Similarly, in iteration 1, we have a decomposition of x2

PC = (3, 1.5) into a convex combi-
nation of D = {(4, 1), (2, 1), (3, 4)}. Clearly, solving the separation problem for either (2, 1)
or (4, 1) produces the same facet-defining inequality as with the original method.

Example 2 (Continued) Returning again to Example 2, recall the optimal fractional
solution and the corresponding optimal decomposition arising during solution of the TSP

27

00

1213

14

15

11

11
22

33

44
55

66

77

88

10

99

10

11

1213

14

15

0.5

0.5

0.5

0.5

0.5

0.5

0.2

0.3
0.7

0.3

0.3

0.2

(a) x̂ (a) λ̂0

Figure 15: Using the optimal decomposition to find violated inequalities in price and cut
(Example 2)

by the Dantzig-Wolfe method in Figure 7. Figure 12 shows a comb inequality violated
by this fractional solution. By Theorem 6, at least one of the members of the optimal
decomposition shown in Figure 7 must also violate this inequality. In fact, the member
with index 0, also shown in Figure 15, is the only such member. Note that the violation is
easy to discern from the structure of this integral solution. Let x̂ ∈ {0, 1}E be the incidence
vector of a 1-tree. Consider a subset H of V whose induced subgraph in the 1-tree is a path
with edge set P . Consider also an odd set O of edges of the 1-tree of cardinality at least 3
and disjoint from P , such that each edge has one endpoint in H and one endpoint in V \H.
Taking the set H to be the handle and the endpoints of each member of O to be the teeth,
it is easy to verify that the corresponding comb inequality will be violated by the 1-tree,
since

x̂(E(H)) +
k∑

i=1

x̂(E(Ti)) = |H| − 1 +
k∑

i=1

(|Ti| − 1) > |H|+
k∑

i=1

(|Ti| − 1)− dk/2e.

Hence, searching for such configurations in the members of the decomposition, as suggested
in the procedure of Figure 14, may lead to the discovery of comb inequalities violated by the
optimal fractional solution. In this case, such a configuration does in fact lead to discovery
of the previously indicated comb inequality. Note that we have restricted ourselves in the
above discussion to the generation of blossom inequalities. The teeth, as well as the handles
can have more general forms that may lead to the discovery of more general forms of violated
combs.

Example 3 (Continued) Returning now to Example 3, recall the optimal fractional
solution and the corresponding optimal decomposition, consisting of the 2-matchings shown
in Figure 13. Previously, we produced a set of vertices defining a SEC violated by the
fractional point by using a minimum cut algorithm with the optimal fractional solution as
input. Now, let us consider applying the procedure of Figure 14 by examining the members
of the decomposition in order to discovered inequalities violated by the optimal fractional
solution. Let x̂ ∈ {0, 1}E be the incidence vector of a 2-matching. If the corresponding

28

0
0

1
1

2
2

0.6

3
3

4

0.2

5

0.8

6

0.2

4

7

5

6

8

0.8

9

7

10

0.8

8

11

9

12

0.6

13

10

14
11

0.4

15

0.2

12

0.2

0.2

0.2

13
0.4

0.6
0.8

14

0.6

0.2

0.2

15

0.2

0.2

0.2

0.8
0.6

(a) x̂ (b) λ̂2

Figure 16: Using the optimal decomposition to find violated inequalities in price and cut
(Example 3)

subgraph does not form a tour, then it must be disconnected. The vertices corresponding
to any connected component thus define a violated SEC. By determining the connected
components of each member of the decomposition, it is easy to find violated SECs. In fact,
for any 2-matching, every component of the 2-matching forms a SEC that is violated by
exactly 1. For the 2-matching corresponding to ŝ, we have x̂(E(S)) = |S| > |S| − 1. Figure
16(b) shows the third member of the decomposition along with a violated SEC defined by
one of its components. This same SEC is also violated by the optimal fractional solution.

There are many variants of the price and cut method shown in Figure 10. Most sig-
nificant is the choice of which subproblem to execute during Step 3. It is easy to envision
a number of heuristic rules for deciding this. For example, one obvious rule is to continue
generating columns until no more are available and then switch to valid inequalities for
one iteration, then generate columns again until none are available. This can be seen as
performing a “complete” dual solution update before generating valid inequalities. Further
variants can be obtained by not insisting on a “complete” dual update before solving the
pricing problem [29, 17]. This rule could easily be inverted to generate valid inequalities
until no more are available and then generate columns. A hybrid rule in which some sort of
alternation occurs is a third option. The choice between these options is primarily empirical.

4.2 Relax and Cut

Just as with the Dantzig-Wolfe method, the Lagrangian method of Figure 9 can be inte-
grated with the cutting plane method to yield a procedure several authors have termed relax
and cut. This is done in much the same fashion as in price and cut, with a choice in each
iteration between solving a pricing subproblem and a cutting subproblem. In each iteration
that the cutting subproblem is solved, the generated valid inequalities are added to the de-
scription of the outer polyhedron, which is explicitly maintained as the algorithm proceeds.

29

As with the traditional Lagrangian method, no explicit inner polyhedron is maintained, but
the algorithm can again be seen as one that computes a face of the implicitly defined inner
polyhedron that contains the optimal face of solutions to a linear program solved over the
intersection of the two polyhedra. When employed within a branch and bound framework,
we call the overall method branch, relax, and cut.

An outline of the relax and cut method is shown in Figure 17. The question again arises
as to how to ensure that the inequalities being generated in the cutting subproblem are
improving. In the case of the Lagrangian method, this is a much more difficult issue since
we cannot assume the availability of the same primal solution information available within
price and cut. Furthermore, we cannot verify the condition of Corollary 1, which is the best
available necessary condition for an inequality to be improving. Nevertheless, some primal
solution information is always available in the form of the solution st

RC to the last pricing
subproblem that was solved. Intuitively, separating st

RC makes sense since the infeasibilities
present in st

RC may possibly be removed through the addition of valid inequalities violated
by st

RC .
As with both the cutting plane and price and cut methods, the difficulty is that the

valid inequalities generated by separating st
RC from P may not be improving, as Guignard

first observed in [33]. To deepen understanding of the potential effectiveness of the valid in-
equalities generated, we further examine the relationship between st

RC and xt
PC by recalling

again the results from Section 3.2. Consider the set S(ut
RC , zt

RC), where zt
RC is obtained by

solving the pricing subproblem (54) from Figure 17 and the set S(·, ·) is as defined in (40).
In each iteration where the pricing subproblem is solved, st+1

RC is a member of S(ut
RC , zt

RC).
In fact, S(ut

RC , zt
RC) is exactly the set of alternative solutions to this pricing subproblem.

In price and cut, a number of members of this set are available, one of which must be
violated in order for a given inequality to be improving. This yields a verifiable necessary
condition for a generated inequality to be improving. Relax and cut, in its most straight-
forward incarnation, produces one member of this set. Even if improving inequalities exist,
it is possible that none of them are violated by the member of S(ut

RC , zt
RC) so produced,

especially if it would have had a small weight in the optimal decomposition produced by
the corresponding iteration of price and cut.

It is important to note that by keeping track of the solutions to the Lagrangian sub-
problem that are produced while solving the Lagrangian dual, one can approximate the
optimal decomposition and the optimal fractional solution produced by solving (51). This
is the approach taken by the volume algorithm [9] and a number of other subgradient-based
methods. As in price and cut, when this fractional solution is an inner point of P ′, all
members of F ′ are alternative optimal solutions to the pricing subproblem and the bound
is not improved over what the cutting plane method alone would produce. In this case,
solving the cutting subproblem to obtain additional inequalities is unlikely to yield further
improvement.

As with price and cut, there are again many variants of the algorithm shown in Figure
17, depending on the choice of subproblem to execute at each step. One such variant is to
alternate between each of the subproblems, first solving one and then the other [45]. In this
case, the Lagrangian dual is not solved to optimality before solving the cutting subproblem.
Alternatively, another approach is to solve the Lagrangian dual all the way to optimality
before generating valid inequalities. Again, the choice is primarily empirical.

30

Relax and Cut Method

Input: An instance ILP (P, c).
Output: A lower bound zRC on the optimal solution value for the instance and a
dual solution ûRC ∈ Rmt

.

1. Let s0
RC ∈ E define some initial extreme point of P ′ and construct an initial

outer approximation

P0
O = {x ∈ Rn | D0x ≥ d0} ⊇ P, (53)

where D0 = A′′ and d0 = b′′. Let u0
RC ∈ Rm′′

be some initial set of dual
multipliers associated with the constraints [D0, d0]. Set t← 0 and mt = m′′.

2. Master Problem: Using the solution information gained from solving the
pricing subproblem, and the previous dual solution ut

RC , update the dual
solution (if the pricing problem was just solved) or initialize the new dual
multipliers (if the cutting subproblem was just solved) to obtain ut+1

RC ∈ Rmt
.

3. Do either (a) or (b).

(a) Pricing Subproblem: Call the subroutine OPT (c− (ut
RC)>Dt,P ′, (c−

(ut
RC)>Dt)st

RC) to obtain

zt
RC = min

s∈F ′
{(c> − (ut

RC)Dt)s + dt(ut
RC)}. (54)

Let st+1
RC ∈ E be the optimal solution to this subproblem. Set

[Dt+1, dt+1] ← [Dt, dt], Pt+1
O ← Pt

O, mt+1 ← mt, t ← t + 1, and go
to Step 2.

(b) Cutting Subproblem: Call the subroutine SEP (st
RC ,P) to generate

a set of improving valid inequalities [D̃, d̃] ∈ Rm̃×n+1 for P, violated by
st
RC . If violated inequalities were found, set [Dt+1, dt+1] ← [

Dt dt

D̃ d̃

]
to

form a new outer approximation Pt+1
O . Set mt+1 ← mt + m̃, st+1

RC ← st
RC ,

t← t + 1, and go to Step 2.

4. If a prespecified stopping criterion is met, then output zRC = zt
RC and ûRC =

ut
RC .

5. Otherwise, go to Step 2.

Figure 17: Outline of the relax and cut method

31

5 Solving the Cutting Subproblem

In this section, we formalize some notions that have been introduced in our examples and
provide more details regarding how the cutting subproblem is solved in practice in the
context of the various methods we have outlined. We review the well-known template
paradigm for separation and introduce a new concept called structured separation. Finally,
we describe a separation algorithm called decompose and cut that is closely related to the
integrated decomposition methods we have already described and utilizes several of the
concepts introduced earlier.

5.1 The Template Paradigm

The ability to generate valid inequalities for P violated by a given real vector is a crucial
step in many of the methods discussed in this paper. Ideally, we would be able to solve the
general facet identification problem for P, allowing us to generate a violated valid inequality
whenever one exists. This is clearly not practical in most cases, since the complexity of
this problem is the same as that of solving the original MILP. In practice, the subproblem
SEP (xt

CP ,P) in Step 3 of the cutting plane method pictured in Figure 2 is usually solved by
dividing the valid inequalities for P into template classes with known structure. Procedures
are then designed and executed for identifying violated members of each class individually.

A template class (or simply class) of valid inequalities for P is a set of related valid
inequalities that describes a polyhedron containing P, so we can identify each class with its
associated polyhedron. In Example 2, we described two well-known classes of valid inequali-
ties for the TSP, the subtour elimination constraints and the comb inequalities. Both classes
have an identifiable coefficient structure and describe polyhedra containing P. Consider a
polyhedron C described by a class of valid inequalities for P. The separation problem for
the class C of valid inequalities for P is defined to be the facet identification problem over
the polyhedron C. In other words, the separation problem for a class of valid inequalities
depends on the form of the inequality and is independent of the polyhedron P. It follows
that the worst case running time for solving the separation problem is also independent of
P. In particular, the separation problem for a particular class of inequalities may be much
easier to solve than the general facet identification problem for P. Therefore, in practice,
the separation problem is usually attempted over “easy” classes first, and more difficult
classes are only attempted when needed. In the case of the TSP, the separation problem
for the SECs is solvable in polynomial time, whereas there is no known efficient algorithm
for solving the separation problem for comb inequalities. In general, the intersection of the
polyhedra associated with the classes of inequalities for which the separation problem can
be reasonably solved is not equal to P.

5.2 Separating Solutions with Known Structure

In many cases, the complexity of the separation problem is also affected by the structure of
the real vector being separated. In Section 4, we informally introduced the notion that a
solution vector with known structure may be easier to separate from a given polyhedron than
an arbitrary one and illustrated this phenomena in Examples 2 and 3. This is a concept
called structured separation that arises quite frequently in the solution of combinatorial

32

optimization problems where the original formulation is of exponential size. When using
the cutting plane method to solve the LP relaxation of the TSP, for example, as described in
Example 2, we must generate the SECs dynamically. It is thus possible that the intermediate
solutions are integer-valued, but nonetheless not feasible because they violate some SEC
that is not present in the current approximation. When the current solution is optimal,
however, it is easy to determine whether it violates a SEC—we simply examine the connected
components of the underlying support graph, as described earlier. This process can be done
in O(|V |+ |E|) time. For an arbitrary real vector, the separation problem for SECs is more
difficult, taking O(|V |4) time.

It is also frequently the case that when applying a sequence of separation routines for
progressively more difficult classes of inequalities, routines for the more difficult classes
assume implicitly that the solution to be separated satisfies all inequalities of the the easier
classes. In the case of the TSP, it is generally assumed that any solution passed to the
subroutine for separating the comb inequalities, for instance, already satisfies the degree
and subtour elimination constraints. This assumption can allow the separation algorithms
for follow-on classes to be implemented more efficiently.

For the purposes of the present work, our main concern is with separating solutions that
are known to be integral, in particular, members of F ′. In our framework, the concept of
structured separation is combined with the template paradigm in specifying template classes
of inequalities for which separation of integral solutions is much easier, in a complexity sense,
than separation of arbitrary real vectors over that same class. A number of examples of
problems and classes of valid inequalities for which this situation occurs are examined in
Section 8. We now examine a separation paradigm called decompose and cut that can take
advantage of our ability to easily separate solutions with structure.

5.3 Decompose and Cut

The use of a decomposition to aid in separation, as is described in the procedure of Figure
14, is easy to extend to a traditional branch and cut framework using a technique we
call decompose and cut, originally proposed in [56] and further developed in [39] and [57].
Suppose now that we are given an optimal fractional solution xt

CP obtained during iteration
t of the cutting plane method and suppose that for a given s ∈ F ′, we can determine
effectively whether s ∈ F and if not, generate a valid inequality (a, β) violated by s. By
first decomposing xt

CP (i.e., expressing xt
CP as a convex combination of members of E ⊆ F ′)

and then separating each member of this decomposition from P in the fashion described in
Figure 14, we may be able to find valid inequalities for P that are violated by xt

CP .
The difficult step is finding the decomposition of xt

CP . This can be accomplished by
solving a linear program whose columns are the members of E , as described in Figure 18.
This linear program is reminiscent of (33) and in fact can be solved using an analogous
column-generation scheme, as described in Figure 19. This scheme can be seen as the
“inverse” of the method described in Section 4.1, since it begins with the fractional solution
xt

CP and tries to compute a decomposition, instead of the other way around. By the
equivalence of optimization and facet identification, we can conclude that the problem of
finding a decomposition of xt

CP is polynomially equivalent to that of optimizing over P ′.
Once the decomposition is found, it can be used as before to locate a violated valid

33

Separation in Decompose and Cut

Input: x̂ ∈ Rn

Output: A valid inequality for P violated by x̂, if one is found.

1. Apply standard separation techniques to separate x̂. If one of these returns a
violated inequality, then STOP and output the violated inequality.

2. Otherwise, solve the linear program

max
λ∈RE+

{0>λ |
∑

s∈E
sλs = x̂,

∑

s∈E
λs = 1}, (55)

as in Figure 19.

3. The result of Step 2 is either (1) a subset D of members of E participating in a
convex combination of x̂, or (2) a valid inequality (a, β) for P that is violated
by x̂. In the first case, go to Step 4. In the second case, STOP and output
the violated inequality.

4. Attempt to separate each member of D from P. For each inequality violated
by a member of D, check whether it is also violated by x̂. If an inequality
violated by x̂ is encountered, STOP and output it.

Figure 18: Separation in the decompose and cut method

Column Generation in Decompose and Cut

Input: x̂ ∈ Rn

Output: Either (1) a valid inequality for P violated by x̂; or (2) a subset D of E and
a vector λ̂ ∈ RE+ such that

∑
s∈D λss = x̂ and

∑
s∈D λs = 1.

2.0 Generate an initial subset E0 of E and set t← 0.

2.1 Solve (55), replacing E by E t. If this linear program is feasible, then the
elements of E t corresponding to the nonzero components of λ̂, the current
solution, comprise the set D, so STOP.

2.2 Otherwise, let (a, β) be a valid inequality for conv(E t) violated by x̂ (i.e., the
proof of infeasibility). Solve OPT (a,P ′, β) and let Ẽ be the resulting set of
solutions. If Ẽ 6= ∅, then set E t+1 ← E t∪Ẽ , t→ t+1, and go to 2.1. Otherwise,
(a, β) is an inequality valid for P ′ ⊇ P and violated by x̂, so STOP.

Figure 19: Column generation for the decompose and cut method

34

inequality. In contrast to price and cut, however, it is possible that xt
CP 6∈ P ′. This

could occur, for instance, if exact separation methods for P ′ are too expensive to apply
consistently. In this case, it is obviously not possible to find a decomposition in Step 2
of Figure 18. The proof of infeasibility for the linear program (55), however, provides an
inequality separating xt

CP from P ′ at no additional expense. Hence, even if we fail to find
a decomposition, we still find an inequality valid for P and violated by xt

CP . This idea was
originally suggested in [56] and was further developed in [39]. A similar concept was also
discovered and developed independently by Applegate, et al. [3].

Applying decompose and cut in every iteration as the sole means of separation is the-
oretically equivalent to price and cut. In practice, however, the decomposition is only
computed when needed, i.e., when less expensive separation heuristics fail to separate the
optimal fractional solution. This could give decompose and cut an advantage in terms of
computational efficiency. In other respects, the computations performed in each method
are similar.

6 Solving the Master Problem

Choosing a proper algorithm for solving the master problem is important for these methods,
both because a significant portion of the computational effort is spent solving the master
problem and because the solver must be capable of returning the solution information
required by the method to be implemented. In this section, we would like to briefly give the
reader a taste for the issues involved and summarize the existing methodology. The master
problems we have discussed are linear programs, or can be reformulated as linear programs.
Hence, one option for solving them is to use either simplex or interior point methods. In
the case of solving a Lagrangian dual, subgradient methods may also be employed.

Simplex methods have the advantage of providing accurate primal solution information.
They are therefore well-suited for algorithms that utilize primal solution information, such
as price and cut. The drawback of these methods is that updates to the dual solution
at each iteration are relatively expensive. In their most straightforward implementations,
they also tend to converge slowly when used with column generation. This is primarily
due to the fact that they produce basic (extremal) dual solutions, which tend to change
substantially from one iteration to the next, causing wide oscillations in the input to the
column-generation subproblem. This problem can be addressed by implementing one of a
number of stabilization methods that prevent the dual solution from changing “too much”
from one iteration to the next (for a survey, see [42]).

Subgradient methods, on the other hand, do not produce primal solution information
in their most straightforward form, so they are generally most appropriate for Lagrangian
methods such as relax and cut. It is possible, however, to obtain approximate primal solu-
tions from variants of subgradient such as the volume algorithm [9]. Subgradient methods
also have convergence issues without some form of stabilization. A recent class of algorithms
that has proven effective in this regard is bundle methods [18].

Interior point methods may provide a middle ground by providing accurate primal
solution information and more stable dual solutions [58, 28]. In addition, hybrid methods
that alternate between simplex and subgradient methods for updating the dual solution
have also shown promise [10, 36].

35

7 Software

The theoretical and algorithmic framework proposed in Sections 3–5 lends itself nicely to
a wide-ranging and flexible generic software framework. All of the techniques discussed
can be implemented by combining a set of basic algorithmic building blocks. DECOMP
is a C++ framework designed with the goal of providing a user with the ability to easily
utilize various traditional and integrated decomposition methods while requiring only the
provision of minimal problem-specific algorithmic components [25]. With DECOMP, the
majority of the algorithmic structure is provided as part of the framework, making it easy
to compare various algorithms directly and determine which option is the best for a given
problem setting. In addition, DECOMP is extensible—each algorithmic component can be
overridden by the user, if they so wish, in order to develop sophisticated variants of the
aforementioned methods.

The framework is divided into two separate user interfaces, an applications interface
DecompApp, in which the user must provide implementations of problem-specific methods
(e.g., solvers for the subproblems), and an algorithms interface DecompAlgo, in which the
user can modify DECOMP’s internal algorithms, if desired. A DecompAlgo object provides
implementations of all of the methods described in Sections 3 and 4, as well as options for
solving the master problem, as discussed in Section 6. One important feature of DECOMP
is that the problem is always represented in the original space, rather than in the space
of a particular reformulation. The user has only to provide subroutines for separation and
column generation in the original space without considering the underlying method. The
framework performs all of the necessary bookkeeping tasks, including including automatic
reformulation in the Dantzig-Wolfe master, constraint dualization for relax and cut, cut and
variable pool management, as well as, row and column expansion.

In order to develop an application, the user must provide implementations of the fol-
lowing two methods.

• DecompApp::createCore(). The user must define the initial set of constraints [A′′, b′′].

• DecompApp::solveRelaxedProblem(). The user must provide a solver for the relaxed
problem OPT (c,P ′, U) that takes a cost vector c ∈ Rn as its input and returns a set
of solutions as DecompVar objects. Alternatively, the user has the option to provide
the inequality set [A′, b′] and solve the relaxed problem using the built-in ILP solver.

If the user wishes to invoke the traditional cutting plane method using problem-specific
methods, then the following method must also be implemented.

• DecompApp::generateCuts(x). A method for solving the separation problem SEP (x,P),
given an arbitrary real vector, which returns a set of DecompCut objects.

Alternatively, various generic separation algorithms are also provided. The user might
also wish to implement separation routines specifically for members of F ′ that can take
advantage of the structure of such solutions, as was described in Section 5.

• DecompApp::generateCuts(s). A method for solving the separation problem SEP (s,P),
given a member of F ′, which returns a set of DecompCut objects.

36

At a high level, the main loop of the base algorithm provided in DecompAlgo follows the
paradigm described earlier, alternating between solving a master problem to obtain solution
information, followed by a subproblem to generate new polyhedral information. Each of the
methods described in this paper have its own separate interface derived from DecompAlgo.
For example, the base class for the price and cut method is DecompAlgo::DecompAlgoPC.
In this manner, the user can override a specific subroutine common to all methods (in
DecompAlgo) or restrict it to a particular method.

8 Applications

In this section, we further illustrate the concepts presented with three more examples.
We focus here on the application of integrated methods, a key component of which is the
paradigm of structured separation introduced in Section 5. For each example, we discuss
three key polyhedra: (1) an original ILP defined by a polyhedron P and associated feasible
set F = P ∩Zn; (2) a relaxation of the original ILP with feasible set F ′ ⊇ F such that it is
possible to optimize effectively over the polyhedron PI = conv(F ′); and (3) a polyhedron
PO, such that F = PI ∩ PO ∩ Zn. In each case, the polyhedron PO is comprised of a
known class or classes of valid inequalities that could be generated during execution of the
cutting subproblem of one of the integrated methods discussed in Section 4. As before,
PI is a polyhedron with an inner description generated dynamically through the solution
of an optimization problem, while PO is a polyhedron with an outer description generated
dynamically through the solution of a separation problem. We do not discuss standard
methods of solving the separation problem for PO, i.e., unstructured separation, as these
are well-covered in the literature. Instead, we focus here on problems and classes of valid
inequalities for which structured separation, i.e., separation of a member of F ′, is much
easier than unstructured separation. A number of ILPs that have appeared in the literature
have relaxations and associated classes of valid inequalities that fit into this framework, such
as the Generalized Assignment Problem [54], the Edge-Weighted Clique Problem [37], the
Knapsack Constrained Circuit Problem [41], the Rectangular Partition Problem [16], the
Linear Ordering Problem [15], and the Capacitated Minimum Spanning Tree Problem [24].

8.1 Vehicle Routing Problem

We first consider the Vehicle Routing Problem (VRP) introduced by Dantzig and Ramser
[20]. In this NP-hard optimization problem, a fleet of k vehicles with uniform capacity C
must service known customer demands for a single commodity from a common depot at
minimum cost. Let V = {1, . . . , |V |} index the set of customers and let the depot have
index 0. Associated with each customer i ∈ V is a demand di. The cost of travel from
customer i to j is denoted cij and we assume that cij = cji > 0 if i 6= j and cii = 0.

By constructing an associated complete undirected graph G with vertex set N = V ∪{0}
and edge set E, we can formulate the VRP as an integer program. A route is a set of
vertices R = {i1, i2, . . . , im} such that the members of R are distinct. The edge set of R
is ER = {{ij , ij+1} | j ∈ 0, . . . ,m}, where i0 = im+1 = 0. A feasible solution is then any
subset of E that is the union of the edge sets of k disjoint routes Ri, i ∈ [1..k], each satisfying
the capacity restriction, i.e.,

∑
j∈Ri

dj ≤ C, ∀i ∈ [1..k]. Each route corresponds to a set

37

of customers serviced by one of the k vehicles. To simplify the presentation, let us define
some additional notation.

By associating a variable with each edge in the graph, we obtain the following formula-
tion of this ILP [40]:

min
∑

e∈E

cexe,

x(δ({0})) = 2k, (56)

x(δ({v})) = 2 ∀v ∈ V, (57)

x(δ(S)) ≥ 2b(S) ∀S ⊆ V, |S| > 1, (58)

xe ∈ {0, 1} ∀e ∈ E(V), (59)

xe ∈ {0, 1, 2} ∀e ∈ δ(0). (60)

Here, b(S) represents a lower bound on the number of vehicles required to service the set
of customers S. Inequalities (56) ensure that there are exactly k vehicles, each departing
from and returning to the depot, while inequalities (57) require that each customer must be
serviced by exactly one vehicle. Inequalities (58), known as the generalized subtour elim-
ination constraints (GSECs) can be viewed as a generalization of the subtour elimination
constraints from TSP, and enforce connectivity of the solution, as well as ensuring that
no route has total demand exceeding capacity C. For ease of computation, we can define
b(S) =

⌈(∑
i∈S di

)
/C

⌉
, a trivial lower bound on the number of vehicles required to service

the set of customers S.
The set of feasible solutions to the VRP is

F = {x ∈ RE | x satisfies (56)− (60)}

and we call P = conv(F) the VRP polyhedron. Many classes of valid inequalities for the VRP
polyhedron have been reported in the literature (see [51] for a survey). Significant effort
has been devoted to developing efficient algorithms for separating an arbitrary fractional
point using these classes of inequalities (see [46] for recent results).

We concentrate here on the separation of GSECs. The separation problem for GSECs
was shown to be NP-complete by Harche and Rinaldi (see [5]), even when b(S) is taken
to be

⌈(∑
i∈S di

)
/C

⌉
. In [46], Lysgaard, et al. review heuristic procedures for generating

violated GSECs. Although GSECs are part of the formulation presented above, there are
exponentially many of them, so we generate them dynamically. We discuss three relaxations
of the VRP: the Multiple Traveling Salesman Problem, the Perfect b-Matching Problem, and
the Minimum Degree-constrained k-Tree Problem. For each of these alternatives, violation
of GSECs by solutions to the relaxation can be easily discerned.

Perfect b-Matching Problem. With respect to the graph G, the Perfect b-Matching
Problem is to find a minimum weight subgraph of G such that x(δ(v)) = bv ∀v ∈ V . This

38

problem can be formulated by dropping the GSECs from the VRP formulation, resulting
in the feasible set

F ′ = {x ∈ RE | x satisfies (56), (57), (59), (60)}.

In [50], Müller-Hannemann and Schwartz, present several fast polynomial algorithms for
solving b-Matching. The polyhedron PO consists of the GSECs (58) in this case.

In [49], Miller uses the b-Matching relaxation to solve the VRP by branch, relax, and cut.
He suggests generating GSECS violated by b-matchings as follows. Consider a member s of
F ′ and its support graph Gs (a b-Matching). If Gs is disconnected, then each component
immediately induces a violated GSEC. On the other hand, if Gs is connected, we first
remove the edges incident to the depot vertex and find the connected components, which
comprise the routes described earlier. To identify a violated GSEC, we compute the total
demand of each route, checking whether it exceeds capacity. If not, the solution is feasible
for the original ILP and does not violate any GSECs. If so, the set S of customers on
any route whose total demand exceeds capacity induces a violated GSEC. This separation
routine runs in O(|V | + |E|) time and can be used in any of the integrated decomposition
methods previously described. Figure 20 shows an example vector (a) that could arise
during execution of either the price and cut or decompose and cut algorithms, along with
a decomposition into a convex combination of two b-Matchings (b,c). In this example, the
capacity C = 35 and by inspection we find a violated GSEC in the second b-Matching (c)
with S equal to the marked component. This inequality is also violated by the optimal
fractional solution, since x̂(δ(S)) = 3.0 < 4.0 = 2b(S).

Minimum Degree-constrained k-Tree Problem. A k-tree is defined as a spanning
subgraph of G that has |V |+k edges (recall that G has |V |+1 vertices). A degree-constrained
k-tree (k-DCT), as defined by Fisher in [23], is a k-tree with degree 2k at vertex 0. The
Minimum k-DCT Problem is that of finding a minimum cost k-DCT, where the cost of a
k-DCT is the sum of the costs on the edges present in the k-DCT. Fisher [23] introduced
this relaxation as part of a Lagrangian relaxation-based algorithm for solving the VRP.

The k-DCT polyhedron is obtained by first adding the redundant constraint

x(E) = |V |+ k, (61)

then deleting the degree constraints (57), and finally, relaxing the capacity to C =
∑

i∈S di.
Relaxing the capacity constraints gives b(S) = 1 for all S ⊆ V , and replaces the set of
constraints (58) with ∑

e∈δ(S)

xe ≥ 2, ∀S ⊆ V, |S| > 1. (62)

The feasible region of the Minimum k-DCT Problem is then

F ′ = {x ∈ RE | x satisfies (56), (58), (59), (61)}.

This time, the polyhedron PO is comprised of the constraints (57) and the GSECs (58).
Since the constraints (57) can be represented explicitly, we focus again on generation of
violated GSECs. In [62], Wei and Yu give a polynomial algorithm for solving the Minimum

39

k-DCT Problem that runs in O(|V |2 log |V |) time. In [48], Martinhon et al. study the use
of the k-DCT relaxation for the VRP in the context branch, relax, and cut. Again, consider
separating a member s of F ′ from the polyhedron defined by all GSECS. It is easy to see
that for GSECs, an algorithm identical to that described above can be applied. Figure 20
also shows a vector (a) that could arise during the execution of either the price and cut or
decompose and cut algorithms, along with a decomposition into a convex combination of
four k-DCTs (d-g). Removing the depot edges, and checking each components demand, we
easily identify the violated GSEC in k-DCT (g).

Multiple Traveling Salesman Problem. The Multiple Traveling Salesman Problem
(k-TSP) is an uncapacitated version of the VRP obtained by adding the degree constraints
to the k-DCT polyhedron. The feasible region of the k-TSP is

F ′ = {x ∈ RE | x satisfies (56), (57), (59), (60), (62)}.

Although the k-TSP is an NP-hard optimization problem, small instances can be solved
effectively by transformation into an equivalent TSP obtained by adjoining to the graph k−1
additional copies of vertex 0 and its incident edges. In this case, the polyhedron PO is again
comprised solely of the GSECs (58). In [57], Ralphs et al. report on an implementation of
branch, decompose and cut using the k-TSP as a relaxation.

8.2 Three-Index Assignment Problem

The Three-Index Assignment Problem (3AP) is that of finding a minimum-weight clique
cover of the complete tri-partite graph Kn,n,n. Let I, J and K be three disjoint sets with
|I| = |J | = |K| = n and set H = I ×J ×K. 3AP can be formulated as the following binary
integer program:

min
∑

(i,j,k)∈H

cijkxijk,

∑

(j,k)∈J×K

xijk = 1 ∀i ∈ I, (63)

∑

(i,k)∈I×K

xijk = 1 ∀j ∈ J, (64)

∑

(i,j)∈I×J

xijk = 1 ∀k ∈ K, (65)

xijk ∈ {0, 1} ∀(i, j, k) ∈ H. (66)

A number of applications of 3AP can be found in the literature (see Piersjalla [18,19]). 3AP
is known to be NP-hard [26]. As before, the set of feasible solutions to 3AP is noted as

F = {x ∈ RH | x satisfies (63)− (66)}

40

0

0

0

0

0
0

0

2

2

2

2

2
2

2

7

7

7

7

7
7

7

5

5

5

5

5
5

5

8

8

8

8

8
8

8

7

7

7

7

7
7

7

10

10

10

10

10
10

10

4

4

4

4

4
4

4

0.5

11

11

11

11

0.5

11

11

5

5

0.5

5

5

5

5

11

1

1

1

1

1

1

5

13

13

13

13

1

13

13

5

5

5

5

5

5

13

4

4

4

5

4

4

4

1

1

1

1

1

0.5

1

0.5

1

1

1

1

1

1

4

2

2

2

0.5

2

2

2

1

1
2

0.5

0.5

(a) x̂

(b) b-Matching λ̂1 = 1
2 (c) b-Matching λ̂2 = 1

2

(f) k-DCT λ̂3 = 1
4

(d) k-DCT λ̂1 = 1
4

(e) k-DCT λ̂2 = 1
4

(g) k-DCT λ̂4 = 1
4

Figure 20: Example of a decomposition into b-Matchings and k-DCTs

41

0
0

3

2

1

0
1 2 3

1

2

3

(3, 0, 0)
(0, 3, 1)
(1, 1, 2)
(3, 2, 3)

(2, 2, 0)
(0, 3, 1)
(1, 1, 2)
(0, 0, 3)

(2, 1, 0)
(1, 0, 1)
(2, 3, 2)
(3, 2, 3)

(0, 0, 3) 1/3 (0, 3, 1) 2/3
(1, 0, 1) 1/3 (1, 1, 2) 2/3
(2, 1, 0) 1/3 (2, 2, 0) 1/3
(2, 3, 2) 1/3 (3, 0, 0) 1/3
(3, 2, 3) 2/3

P
w∈C(0,0,1) x̂w = 1 1/3 > 1

P
w∈C((0,0,3),(1,3,1)) x̂w = 1 1/3 > 1

(a) x̂ (b) λ̂1 = 1
3 (c) λ̂2 = 1

3 (d) λ̂3 = 1
3

(e) Q1(0, 0, 1) (f) P1((0, 0, 3), (1, 3, 1))

Figure 21: Example of a decomposition into assignments.

and we set P = conv(F).
In [7], Balas and Saltzman study the polyhedral structure of P and introduce several

classes of facet-inducing inequalities. Let u, v ∈ H and define |u ∩ v| to be the numbers
of coordinates for which the vectors u and v have the same value. Let C(u) = {w ∈
H | |u ∩ w| = 2} and C(u, v) = {w ∈ H | |u ∩ w| = 1, |w ∩ v| = 2}. We consider two classes
of facet-inducing inequalities Q1(u) and P1(u, v) for P,

xu +
∑

w∈C(u)

xw ≤ 1 ∀u ∈ H, (67)

xu +
∑

w∈C(u,v)

xw ≤ 1 ∀u, v ∈ H, |u ∩ v| = 0. (68)

Note that these include all the clique facets of the intersection graph of Kn,n,n [7]. In
[6], Balas and Qi describe algorithms that solve the separation problem for the polyhedra
defined by the inequalities Q1(u) and P1(u, v) in O(n3) time.

Balas and Saltzman consider the use of the classical Assignment Problem (AP) as a
relaxation of 3AP in an early implementation of branch, relax, and cut [8]. The feasible
region of the AP is

F ′ = {x ∈ RH | x satisfies (64)− (66)}.
The AP can be solved in O(n5/2 log(nC)) time where C = maxw∈H cw, by the cost-scaling
algorithm [2]. The polyhedron PO is here described by constraints (63), the constraints

42

Q1(u) for all u ∈ H, and the constrains P1(u, v) for all u, v ∈ H. Consider generating a
constraint of the form Q1(u) for some u ∈ H violated by a given s ∈ F ′. Let L(s) be the set
of n triplets corresponding to the nonzero components of s (the assignment from J to K). It
is easy to see that if there exist u, v ∈ L(s) such that u = (i0, j0, k0) and v = (i0, j1, k1), i.e.,
the assignment overcovers the set I, then both Q(i0, j0, k1) and Q(i0, j1, k0) are violated by
s. Figure 21 shows the decomposition of a vector x̂ (a) the could arise during the execution of
either the price and cut or decompose and algorithms, along with a decomposition of x̂ into
a convex combination of assignments (b-d). The pair of triplets (0, 3, 1) and (0, 0, 3) satisfies
the condition just discussed and identifies two valid inequalities, Q1(0, 3, 3) and Q1(0, 0, 1),
that are violated by the second assignment, shown in (c). The latter also violates x̂ and is
illustrated in (e). This separation routine runs in O(n) time.

Now consider generating a constraint of the form P1(u, v) for some u, v ∈ H violated
by s ∈ F ′. As above, for any pair of assignments that correspond to nonzero components
of s and have the form (i0, j0, k0), (i0, j1, k1), we know s violates P1((i0, j0, k0), (i, j1, k1)),
∀i 6= i0 and P1((i0, j1, k1), (i, j0, k0)), ∀i 6= i0. The inequality P1((0, 0, 3), (1, 3, 1)) is violated
by the second assignment, shown in Figure 21(c). This inequality is also violated by x̂ and
is illustrated in (f). Once again, this separation routine runs in O(n) time.

8.3 Steiner Tree Problem

Let G = (V,E) be a complete undirected graph with vertex set V = {1, ..., |V |}, edge set
E and a positive weight ce associated with each edge e ∈ E. Let T ⊂ V define the set
of terminals. The Steiner Tree Problem (STP), which is NP-hard, is that of finding a
subgraph that spans T (called a Steiner tree) and has minimum edge cost. In [13], Beasley
formulated the STP as a side constrained Minimum Spanning Tree Problem (MSTP) as
follows. Let r ∈ T be some terminal and define an artificial vertex 0. Now, construct the
augmented graph Ḡ = (V̄ , Ē) where V̄ = V ∪ {0} and Ē = E ∪ {{i, 0} | i ∈ (V \ T) ∪ {r}}.
Let ci0 = 0 for all i ∈ (V \ T) ∪ {r}. Then, the STP is equivalent to finding a minimum
spanning tree (MST) in Ḡ subject to the additional restriction that any vertex i ∈ (V \ T)
connected by edge {i, 0} ∈ Ē must have degree one.

By associating a binary variable xe with each edge e ∈ Ē, indicating whether or not the
edge is selected, we can then formulate the STP as the following integer program:

min
∑

e∈E

cexe,

x(Ē) = |V̄ | − 1, (69)

x(E(S)) ≤ |S| − 1 ∀S ⊆ V̄ , (70)

xi0 + xe ≤ 1 ∀e ∈ δ(i), i ∈ (V \ T), (71)

xe ∈ {0, 1} ∀e ∈ Ē. (72)

Inequalities (69) and (70) ensure that the solution forms a spanning tree on Ḡ. Inequalities
(70) are subtour elimination constraints (similar to those used in the TSP). Inequalities
(71) are the side constraints that ensure the solution can be converted to a Steiner tree by
dropping the edges in Ē \E.

43

The set of feasible solutions to the STP is

F = {x ∈ RĒ | x satisfies (69)− (72)}.

We set P = conv(F) as before. We consider two classes of valid inequalities for P that are
lifted versions of the subtour elimination constraints (SEC).

x(E(S)) + x(E(S \ T | {0})) ≤ |S| − 1 ∀S ⊆ V, S ∩ T 6= ∅, (73)

x(E(S)) + x(E(S \ {v} | {0})) ≤ |S| − 1 ∀S ⊆ V, S ∩ T = ∅, v ∈ S. (74)

The class of valid inequalities (73) were independently introduced by Goemans [27], Lucena
[43] and Margot, Prodon, and Liebling [47], for another extended formulation of STP. The
inequalities (74) were introduced in [27, 47]. The separation problem for inequalities (73)
and (74) can be solved in O(|V |4) time through a series of max-flow computations.

In [44], Lucena considers the use of MSTP as a relaxation of STP in the context of a
branch, relax, and cut algorithm. The feasible region of the MSTP is

F ′ = {x ∈ RĒ | x satisfies (69), (70), (72)}.

The MSTP can be solved in O(|E| log |V |) time using Prim’s algorithm [55]. The polyhedron
PO is described by the constraints (71), (73), and (74). Constraints (71) can be represented
explicitly, but we must dynamically generate constraints (73) and (74). In order to identify
an inequality of the form (73) or (74) violated by a given s ∈ F ′, we remove the artificial
vertex 0 and find the connected components on the resulting subgraph. Any component of
size greater than 1 that does not contain r and does contain a terminal, defines a violated
SEC (73). In addition, if the component does not contain any terminals, then each vertex
in the component that was not connected to the artificial vertex defines a violated SEC
(74).

Figure 22 gives an example of a vector (a) that might have arisen during execution of
either the price and cut or decompose and cut algorithms, along with a decomposition into
a convex combination of two MSTs (b,c). In this figure, the artificial vertex is black, the
terminals are gray and r = 3. By removing the artificial vertex, we easily find a violated
SEC in the second spanning tree (c) with S equal to the marked component. This inequality
is also violated by the optimal fractional solution, since x̂(E(S))+ x̂(E(S \T | {0})) = 3.5 >
3 = |S| − 1. It should also be noted that the first spanning tree (b), in this case, is in fact
feasible for the original problem.

9 Conclusions and Future Work

In this paper, we presented a framework for integrating dynamic cut generation (outer
methods) and traditional decomposition methods (inner methods) to yield new integrated
methods that may produce bounds that are improved over those yielded by either tech-
nique alone. We showed the relationships between the various methods and how they can
be viewed in terms of polyhedral intersection. We have also introduced the concept of struc-
tured separation and a related paradigm for the generation of improving inequalities based
on decomposition and the separation of solutions to a relaxation. The next step in this

44

1 1 1

2 2 2

3 3 3

0.5

444

0.5

5 55

6 6

6

6

6

0.5

6

0.5

(a) x̂ (b) λ̂ = 1
2 (c) λ̂ = 1

2

Figure 22: Example of a decomposition into minimum spanning trees.

research is to complete a computational study using the software framework introduced in
Section 7 that will allow practitioners to make intelligent choices between the many possible
variants we have discussed.

References

[1] K. Aardal and S. van Hoesel. Polyhedral techniques in combinatorial optimization.
Statistica Neerlandica, 50:3–26, 1996.

[2] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms, and Appli-
cations. Prentice Hall, Englewood Cliffs, NJ, 1993.

[3] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. TSP cuts which do not conform to
the template paradigm. In Computational Combinatorial Optimization, pages 261–303.
Springer, 2001.

[4] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Implementing the Dantzig-
Fulkerson-Johnson algorithm for large traveling salesman problems. Mathematical Pro-
gramming, 97:91–153, 2003.

[5] P. Augerat, J. M. Belenguer, E. Benavent, A. Corberán, D. Naddef, and G. Rinaldi.
Computational Results with a Branch and Cut Code for the Capacitated Vehicle Rout-
ing Problem. Technical Report 949-M, Université Joseph Fourier, Grenoble, France,
1995.

[6] E. Balas and L. Qi. Linear-time separation algorithms for the three-index assignment
polytope. Discrete Applied Mathematics, 43:1–12, 1993.

[7] E. Balas and M.J. Saltzman. Facets of the three-index assignment polytope. Discrete
Applied Mathematics, 23:201–229, 1989.

45

[8] E. Balas and M.J. Saltzman. An algorithm for the three-index assignment problem.
Operations Research, 39:150–161, 1991.

[9] F. Barahona and R. Anbil. The volume algorithm: Producing primal solutions with a
subgradient method. Mathematical Programming, 87:385–399, 2000.

[10] F. Barahona and D. Jensen. Plant location with minimum inventory. Mathematical
Programming, 83:101–111, 1998.

[11] C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-cut to
solve origin-destination integer multi-commodity flow problems. Operations Research,
48:318–326, 2000.

[12] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch and price: Column generation for solving huge integer programs. Operations
Research, 46:316–329, 1998.

[13] J.E. Beasley. A SST-based algorithm for the steiner problem in graphs. Networks,
19:1–16, 1989.

[14] J.E. Beasley. Lagrangean relaxation. In C.R. Reeves, editor, Modern Heuristic Tech-
niques for Combinatorial Optimization. Wiley, 1993.

[15] A. Belloni and A. Lucena. A Lagrangian heuristic for the linear ordering problem. In
M.G.C. Resende and J. Pinho de Sousa, editors, Metaheuristics: Computer Decision-
Making, pages 123–151. Kluwer Academic, 2003.

[16] F. C. Calheiros, A. Lucena, and C. de Souza. Optimal rectangular partitions. Networks,
41:51–67, 2003.

[17] A. Caprara, M. Fischetti, and P. Toth. Algorithms for the set covering problem. Annals
of Operations Research, 98:353–371, 2000.

[18] P. Carraresi, A. Frangioni, and M. Nonato. Applying bundle methods to optimization
of polyhedral functions: An applications-oriented development. Technical Report TR-
96-17, Universitá di Pisa, 1996.

[19] G. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations
Research, 8:101–111, 1960.

[20] G.B. Danzig and R.H. Ramser. The truck dispatching problem. Management Science,
6:80–91, 1959.

[21] M. Poggi de Aragão and E. Uchoa. Integer program reformulation for robust branch-
and-cut-and-price. Working paper, Pontif́ıca Universidade Católica do Rio de Janeiro,
2004. Available from http://www.inf.puc-rio.br/˜uchoa/doc/rbcp-a.pdf.

[22] M.L. Fisher. The Lagrangian relaxation method for solving integer programming prob-
lems. Management Science, 27:1–18, 1981.

46

[23] M.L. Fisher. Optimal solution of vehicle routing problems using minimum k-trees.
Operations Research, 42:626–642, 1994.

[24] R. Fukasawa, M. Poggi de Aragão, M. Reis, and E. Uchoa. Robust branch-and-cut-
and-price for the capacitated minimum spanning tree problem. In Proceedings of the
International Network Optimization Conference, pages 231–236, Evry, France, 2003.

[25] M. Galati. DECOMP user’s manual. Technical report, Lehigh University Industrial
and Systems Engineering, 2005.

[26] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[27] M.X. Goemans. The steiner tree polytope and related polyhedra. Mathematical Pro-
gramming, 63:157–182, 1994.

[28] J. L. Goffin and J. P. Vial. Convex nondifferentiable optimization: A survey focused
on the analytic center cutting plane method. Technical Report 99.02, Logilab, Geneva,
Switzerland, 1999.

[29] J. Gondzio and R. Sarkissian. Column generation with a primal-dual method. Technical
report, University of Geneva, Logilab, HEC Geneva, 1996.

[30] M. Grötschel and M. Padberg. On the symmetric travelling salesman problem I: In-
equalities. Mathematical Programming, 16:265–280, 1979.

[31] M. Grötschel and M. Padberg. On the symmetric travelling salesman problem II:
Lifting theorems and facets. Mathematical Programming, 16:281–302, 1979.

[32] Grötschel, M. and Lovász, L. and Schrijver, A. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1:169–197, 1981.

[33] M. Guignard. Efficient cuts in Lagrangean “relax-and-cut” schemes. European Journal
of Operational Research, 105:216–223, 1998.

[34] M. Guignard. Lagrangean relaxation. Top, 11:151–228, 2003.

[35] M. Held and R. M. Karp. The traveling salesman problem and minimum spanning
trees. Operations Research, 18:1138–1162, 1970.

[36] D. Huisman, R. Jans, M. Peeters, and A. Wagelmans. Combining column generation
and Lagrangian relaxation. Technical report, Erasmus Research Institute of Manage-
ment, Rotterdamn, The Netherlands, 2003.

[37] M. Hunting, U. Faigle, and W. Kern. A Lagrangian relaxation approach to the edge-
weighted clique problem. European Journal of Operational Research, 131:119–131,
2001.

[38] N. Kohl, J. Desrosiers, O.B.G. Madsen, M.M. Solomon, and F. Soumis. 2-path cuts for
the vehicle routing problem with time windows. Transportation Science, 33:101–116,
1999.

47

[39] L. Kopman. A New Generic Separation Routine and Its Application In a Branch
and Cut Algorithm for the Capacitated Vehicle Routing Problem. PhD thesis, Cornell
University, May 1999.

[40] G. Laporte, Y. Nobert, and M. Desrouchers. Optimal routing with capacity and dis-
tance restrictions. Operations Research, 33:1050–1073, 1985.

[41] J. Linderoth and M. Galati. Knapsack constrained circuit problem. Unpublished
working paper, 2004.

[42] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Technical
Report 008-2004, Technische Universität Berlin, 2004.

[43] A. Lucena. Tight bounds for the steiner problem in graphs. Talk given at TIMS-XXX-
SOBRAPO XXIII Joint International Meeting, Rio de Janeiro, July 1991.

[44] A. Lucena. Steiner problem in graphs: Lagrangean relaxation and cutting planes.
COAL Bulletin, 28:2–8, 1992.

[45] A. Lucena. Non-delayed relax-and-cut algorithms. Working paper, Departmaneto de
Administração, Universidade Federal do Rio de Janeiro, 2004.

[46] J. Lysgaard, A.N. Letchford, and R.W. Eglese. A new branch-and-cut algorithm for the
capacitated vehicle routing problem. Mathematical Programming, 100:423–445, 2004.

[47] F. Margot, A. Prodon, and T.M. Liebling. Tree polyhedron on 2-tree. Mathematical
Programming, 63:183–192, 1994.

[48] C. Martinhon, A. Lucena, and N. Maculan. Stronger k-tree relaxations for the vehicle
routing problem. European Journal of Operational Research, 158:56–71, 2004.

[49] D. Miller. A matching based exact algorithm for capacitated vehicle routing problems.
ORSA Journal on Computing, 7:1–9, 1995.

[50] M. Müller-Hannemann and A. Schwartz. Implementing weighted b-matching algo-
rithms: Towards a flexible software design. In Proceedings of the Workshop on Algo-
rithm Engineering and Experimentation (ALENEX99), volume 1619 of Lecture notes
in computer science, pages 18–36, Baltimore, MD, 1999. Springer-Verlag.

[51] D. Naddef and G. Rinaldi. Branch-and-cut algorithms for the capacitated VRP. In
P. Toth and D. Vigo, editors, The Vehicle Routing Problem, pages 53–84. SIAM, 2002.

[52] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley,
New York, 1988.

[53] M. Padberg and G. Rinaldi. An efficient algorithm for the minimum capacity cut
problem. Mathematical Programming, 47:19–36, 1990.

[54] A. Pigatti. Modelos e algoritmos para o problema de aloção generalizada e aplicações.
PhD thesis, Pontif́ıcia Universidade Católica do Rio de Janeiro, 2003.

48

[55] R. Prim. Shortest connection networks and some generalizations. Bell System Technical
Journal, 36:1389–1401, 1957.

[56] T.K. Ralphs. Parallel Branch and Cut for Vehicle Routing. PhD thesis, Cornell Uni-
versity, May 1995.

[57] T.K. Ralphs, L. Kopman, W.R. Pulleyblank, and L.E. Trotter Jr. On the capacitated
vehicle routing problem. Mathematical Programming, 94:343–359, 2003.

[58] L. M. Rousseau, M. Gendreau, and D. Feillet. Interior point stabilization for column
generation. Working paper, Cahier du Gerad, 2003. Available from http://www.lia.
univ-avignon.fr/fich_art/380-IPS.pdf.

[59] V. Chvátal. Linear Programming. W.H. Freeman and Company, 1983.

[60] J.M. van den Akker, C.A.J. Hurkens, and M.W.P. Savelsbergh. Time-indexed formu-
lations for machine scheduling problems: Column generation. INFORMS Journal on
Computing, 12:111–124, 2000.

[61] F. Vanderbeck. Lot-sizing with start-up times. Management Science, 44:1409–1425,
1998.

[62] G. Wei and G. Yu. An improved O(n2 log n) algorithm for the degree-constrained
minimum k-tree problem. Technical report, The University of Texas at Austin, Center
for Management of Operations and Logistics, 1995.

49

