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Preliminaries

® Consider the following integer linear program (ILP):
min{c'z: z € F}
where
F ={axecz":Az>b Az>0"Y Q ={zecR":Az2>0 A"z>V"}
F ={ecz": Az >V} Q ={zecR":Az>V}

Q" = {x eR": A"z > "}

® Denote P = conv(F) and P’ = conv(F").

Assume that optimization (separation) over P is difficult.

°

® Assume that optimization (separation) over P’ can be done effectively.
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Decomposition Methods

® Develop lower bounds to embed in a branch and bound (BB) framework.

® Goal: Improve the bound given by the initial LP relaxation
. T
min{c z:xz € Q}

$® Traditional Decomposition Methods
#® Dantzig-Wolfe Decomposition
#® Lagrangian Relaxation
#® Cutting Plane Methods
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Polyhedra, LP Bound, LD/DW/CP
Bound

/ 124
o’ N @’ (P Bound) —— P’ N 9’/ (LbibwicP Bound)

g

P = conv({x € Z™ : Ax > b})
- P = conv({z € Z™ : Az > b'})
— o' ={zeQ™: Alx > b}

—_——_— - Q//:{xGQ’)’L:A//be//}
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Dantzig-Wolfe Decomposition

Explicitly enforce membership in Q"

Implicitly enforce membership in P’

min{c( Y fAr):A(Y fA) =0, Y A =10 >0Vf € F'}

fer’ fer’ fer’

The optimal fractional solution z and optimal decomposition \

p= ) fAreP

feF

Solution method: column generation

Subproblem: optimize over P’
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Lagrangian Relaxation

® Explicitly enforce membership in F’

® Implicitly enforce membership in Q"
Lr(u) = min{(c —uA")f +ub’: f € F'}

Lp = maxLgr(u)
u>0

® Solution method: subgradient optimization (L r(u) is concave in u)

® Subproblem: Lg(u) - optimize over P’

® Rewriting Lp as a linear program is dual to the Dantzig-Wolfe LP

max {uo : uo < (¢ —uA”)f +ub",Vf € F'}

ug,u>0
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® Explicitly enforce membership in Q"

i
i

Implicitly enforce membership in P’

Cutting Plane Methods

Weyl's Theorem - existence of [A], b}] that describe P’

min{cx : Ajx > b7, A"z > "}

Solution method: cutting planes

Subproblem: separation over P’
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Equivalence of Traditional
Decomposition Methods

Equivalence of bounds (yet implementation very different)

max min{(c —uA”)f +ub” : f € F'} (LD)
= ma>><0{uo cup < (c—uA")f+ub”’ Vf e F
ug,u =
=min{c( Y fA):AN(D  fA) =YY A =10 >0VfeF} (DW)
feF! feF feF

=min{cz:z € P, A"z > b"}
= min{cz : Ajx > b7, Az > b"} (CP)

> min{cz: A'x > b, A"z > b"} (LP)
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Improving the LD/DW/CP Bound

® Let £ be aclass of valid inequalities for P.

® Consider the setting:

»

»
o

o

The optimization problem over P is difficult.

The optimization problem over P’ can be solved effectively.

Separation of a fractional solution from P using members
of L is difficult.

Separation of a member of 7’ from P using members

of £ can be solved effectively.

® Does this occur in practice? Yes
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Vehicle Routing Problem

ILP Formulation:

DecsoyTe = 2k | (1)
ccs(iyTe = 2 Vie V\ {0} (2)
cessyTe = 2b(S) VS CVAA{0}, [S|>1 (3)
b(S) = lower bound on the number of trucks required to service S

= [(X,e5di)/C] (normally)

® Relaxations:
# Multiple Traveling Salesman Problem: SetC' = ) . d..

& k-Tree: SetC' = ) . _.d;. Relax (2) butleave ) _,z. =n+k.
® Separation of the GSECs (3) in this formulation is N'P-Complete.

® Given the incidence vector of an MTSP or a k-Tree (¢ F’), we can
easily determine whether it satisfies all of these inequalities.
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Example of Decomposition
VRP/K-TSP
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Steiner Problem in Graphs

ILP Formulation:

Doecpte = |V|-1 ) (4)
DoccB(s)Te < |S|-1 VSCV (5)
Toi + Tij < 1 YieV \ T, {’L,]} € (5(2) (6)

® Relaxation: Minimum Spanning Tree - Relax (6).

® Lifted Subtour Elimination Constraints:

ZGEE(S)CUG_FZZ'ES\T:UO’I: < ‘S‘—l VSQ‘Z,SQT#Q (,61)
ZeEE(S’) Le —|_ ZZES\k L0i S |S| _ ]- VS g V:*SLHT # @,k c S (£2)7
ecB(X,y) Le < 1 VX, YCV, XNT#Y(

YNT#0, XNY =0 (L3)

® Separation of £1, L2 and L3 for a fractional point: O(|V|*) - Gomory-Hu.
® Separation of £, L2 and L3 for a MST: O(|E|) - Breadth-First Search.
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Dynamic Cut Generation In
Lagrangian Relaxation

Consider a solution (f € F’) to the Lagrangian dual Lp.
Attempt to separate f from P using the class of inequalities L.
If successful, dualize the violated inequalities on the fly.

Origins of relax and cut:

# Christofidos and Balas, “A Restricted Lagrangean Approach to the
TSP”, Mathematical Programming 1981

® M.L. Fisher, “Optimal Solution of VRPs Using Minimum K-Trees”,
Wharton Tech Report 1990

Applications: Couple Constrained Assignment Problem [Aboudi 91],
Steiner Problem in Graphs [Lucena 92], Quadratic Knapsack [Palmeria et
al 99], Edge-Weighted Clique Problem [Hunting et al 01] and Rectangular
Partitions [Calheiros et al 02] (coming - survey paper by Lucena).

Guignard/Ralphs: Adding these inequalities might not improve the bound.

Why? Using subgradient method, cannot obtain the optimal fractional
solution - so, without reoptimization cannot tell if bound will improve.
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Dynamic Cut Generation using
Dantzig-Wolfe Decomposition

Proposition 1 LetZ € R" suchthat® = > .- fAs,> ;e Ar =1, and

A >0VfeF . If(a,b) € Landa’ i < b, then for some f € F' with A/ > 0,
a' f<b.

® Consider an optimal fractional solution z € R™ to the D-W LP,
andlet D = {f € ' : \; > 0}.

® Attempt to separate each f € D from P using the class of inequalities L.

® In this case, we can check for improvement in the bound without
reoptimization.

® Origins:
#® T.K. Ralphs, “Parallel Branch and Cut for VRP”, Cornell Thesis 1995

#® L. Kopman, “A New Generic Separation Routine and Its Application
In a Branch and Cut Algorithm for the CVRP”, Cornell Thesis 1999

#® T.K. Ralphs, L. Kopman, W.R. Pulleyblank and L.E.Trotter Jr., “On the
CVRP”, Mathematical Programming 2001.
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Decomposition-Based
Separation Algorithm

Input: = € R"
Output: A valid inequality for P which is violated by z, if one is found.

® step 0. Apply separation algorithms and heuristics for 7 and P’. If one of
these returns a violated inequality, then output the violated inequality and
STOP.

® siep 1. Otherwise, attempt to decompose  into a convex combination of
members of F’ by solving the LP

max{0' X\ : TA=2,1"A=1,>0}, 2)
where T is a matrix whose columns are members of F”.

® siep 2a. If a decomposition ) exists, let D represent the columns of T
participating in the convex combination of . Scan the members of F’
corresponding to the columns in D. For each inequality in £ violated by a
column of D, check whether it is also violated by z. If a constraint
violated by z is encountered, output it and STOP.

® step 2b. If a decomposition does not exist, output a Farkas inequality
(o, —y) for P’ that is violated by & and STOP.
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Example of Separation Using
Decomposition

fractional point fractional point

A———
P
P’ P’
— — valid ineqaulity Farkas ineqaulity
for P
@z e P bz & P’
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Column Generation Subroutine

Input: & € R"
Output: Either (1) a decomposition of & into members of F’
or (2) a valid inequality for P’ violated by &

® step 1.0. Generate a matrix 7" containing a small subset of members of
FlandsetT =T,

® step 1.1. Solve (2) using the dual simplex. If this LP is feasible, output the
members of F’ participating in the decomposition, then STOP.

® step 1.2. Otherwise, let r be the row in which the dual unboundedness
condition was discovered, and let («a, ) be the *" row of the basis
inverse. Optimize over P’ with cost vector . Let t* € F' be the result.

® step13. Ifat™ + v <0, then t” is a column eligible to enter the basis. Add
t* to T and go to 1.1. Otherwise, the LP is infeasible and = ¢ P’. Output
the Farkas inequality (o, —v) and STOP.
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Questions

® How can we better deal with the column generation subroutine?
#® Can we do a better job initializing our search?
#® Can we be smarter about adding members to 1'?

How can we be smarter in our search for effective members of £?

What is the trade-off between the strength of the relaxation and the ease
of finding violated members of £?

L J

® Can we take advantage of distributed systems?
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Implementation Extensions

® Assume COP,i.e.,z € B". Let £ ={1,...,n}.

® Consistency Condition - restrict column generation of T°

Proposition 2 Assume & = } . fAr, > ;e Ay =1and

A >0VfeF . LetD={fe€F : )\ >0} Then, for each
f € D,Ve € F, the following two conditions must be true

if z. =1, then f. = 1;
if 2. =0, then fo. =0

® Define M > max{y — ax : x € P} (a LB for opt over P with cost «).

—M ifee Ey={e: .=

M ifee Ey={e:z.=0};
Oc = { 1};
Q otherwise

forec Fand 8=~ —>  cp (—M — ae).
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Implementation Extensions

® Lifting the Farkas Inequalities
® DbigM Method
& Sequential Lifting

® For general ILPs, decomposition into members of 7 [Kopman 99]
#® Column generation subproblem is an optimization problem over P!
# Given a proof (Farkas cut) that = ¢ P, this will improve the bound.

#® D. Applegate, R. Bixby, V. Chvatal, and W. Cook, "TSP Cuts Which
Do Not Conform to the Template Paradigm”, Computational
Combinatorial Optimization 2001
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Implementation Extensions

® |Initialization of T":

#® Consider the solution to a LP relaxation o = Tp A, where Tj is the set
of enumerated columns from which the optimal decomposition was
found.

® Let z; be the solution to the next LP relaxation.

® If||z1 — Zo|| < e, initialize Th = To,
else, continue as before (setting 73 randomly / brute force).

$® Column Pool:
#® Analogous to cut pools in branch and cut.

#® Keep a set of columns that have participated in a decomposition
recently and use this (or part of this) to initialize T'.
® s it necessary to be exact in solving the column generation problem? No

# Try optimizing over P’ heuristically first - all we need is a column that
destroys the proof of infeasibility.

® Also, solve a relaxed version of the feasibility problem
max{0'\ : £ —e<TA<Z+¢1' ' X=1,1>0},
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Implementation Extensions

® Metrics for Effectiveness
® Consider a solution & € R™ to the initial LP, D = {f € F' : A; > 0}.

#® The class £ might contain an exponential number of inequalities
that violate f, only some of which violate z.

# Sort D from least to greatest by normalized distance : ||z — f||
& Spend more computation time enumerating inequalities for
extreme points closer to the fractional point.
® Parallel Implementation

® Column generation subproblem is an optimization problem
over P’ -f or each dual ray.

® Separation problem f or each extreme pointin D C F'.
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DECOMP Library

® An abstract base class in C++ which can be derived for a specific
application.

® pure virtual methods, the user must derive

o virtual double optim ze over rel axation(
const vector<doubl e> & cost,
vect or<vari abl e> & sol ution_rel ax)

o virtual void separate _nenber of rel axation(
const vector<vari able> & solution_Ip,

const vector<vari abl e> & sol ution_rel ax,
vector<rc_vector> & new_rows)

® virtual methods, the user can derive

o virtual void find_ initial colums_deconp(
vector<rc_vector> & initial _colums)

o virtual void |ift _farkas inequality(
rc_vector & farkas)
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Summary

® DECOMP Library - base algorithm

$® Computational Study - previous work / relax and cut literature
® VRP (k-TSP or k-Tree : GSECs, Combs, Multistars)
® Couple Constrained Assignment Problem (AP : SVIs)
#® Steiner Problem in Graphs (Minimum Spanning Tree : Lifted SECs)

$® Computational Study - proposed new applications

#® Edge-Weighted Cligue Problem (Tree Relaxation : Trees, Cliques)
2-Connected Network with Bounded Rings (2-CN : ?7?)
VRP with Time Windows (KTSPTW : k-Path Cuts) - Galexis
Generalized Assignment Problem (m-Knap or AP : SVIs) - FabTime
Service Constrained Network Flow (Network Flow : ??) - IBM
Generalized Minimum Spanning Tree (MST : ??)

o oo 0 b0
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Implementation - previous extensions (generalize from COPs to ILPS)
#® Consistency condition
# Lifting of the Farkas inequality

Alternative methods for lifting the Farkas inequalities.
Explore the use of decomposition into members of F.

Implementation - proposed new extensions

#® Column pool

#® Heuristic solution to column generation subproblem
® Metric for effectiveness

#® Parallel implementation

Theoretical ties between relax and cut and DECOMP.
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