#### Decomposition Methods for Large-Scale Discrete Optimization

Matthew V Galati

Ted K Ralphs

Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA, USA November 20, 2002

#### Outline

- Preliminaries, Decomposition Methods
- Decomposition Algorithm
- Implementation and Extensions
- Summary

Consider the following integer linear program (ILP):

 $\min\{c^{\top}x:x\in\mathcal{F}\}$ 

where

$$\mathcal{F} = \{x \in \mathbb{Z}^n : A'x \ge b', A''x \ge b''\} \quad \mathcal{Q} = \{x \in \mathbb{R}^n : A'x \ge b', A''x \ge b''\}$$
$$\mathcal{F}' = \{x \in \mathbb{Z}^n : A'x \ge b'\} \quad \mathcal{Q}' = \{x \in \mathbb{R}^n : A'x \ge b'\}$$
$$\mathcal{Q}'' = \{x \in \mathbb{R}^n : A''x \ge b''\}$$

Denote  $\mathcal{P} = conv(\mathcal{F})$  and  $\mathcal{P}' = conv(\mathcal{F}')$ .

- Solution Assume that optimization (separation) over  $\mathcal{P}$  is *difficult*.
- Solution Assume that optimization (separation) over  $\mathcal{P}'$  can be done *effectively*.

### **Decomposition Methods**

- Develop lower bounds to embed in a branch and bound (BB) framework.
- Goal: Improve the bound given by the initial LP relaxation

#### $\min\{c^{\top}x:x\in\mathcal{Q}\}$

- Traditional Decomposition Methods
  - Dantzig-Wolfe Decomposition
  - Lagrangian Relaxation
  - Cutting Plane Methods

## Polyhedra, LP Bound, LD/DW/CP Bound



$$\mathcal{P} = conv(\{x \in \mathbb{Z}^n : Ax \ge b\})$$
$$\mathcal{P}' = conv(\{x \in \mathbb{Z}^n : A'x \ge b'\})$$
$$\mathcal{Q}' = \{x \in \mathbb{Q}^n : A'x \ge b'\}$$
$$\mathcal{Q}'' = \{x \in \mathbb{Q}^n : A''x \ge b''\}$$

#### **Dantzig-Wolfe Decomposition**

- Explicitly enforce membership in Q''
- Implicitly enforce membership in  $\mathcal{P}'$

$$\min\{c(\sum_{f\in\mathcal{F}'}f\lambda_f):A''(\sum_{f\in\mathcal{F}'}f\lambda_f)\geq b'',\sum_{f\in\mathcal{F}'}\lambda_f=1,\lambda_f\geq 0\;\forall f\in\mathcal{F}'\}$$

The optimal fractional solution  $\hat{x}$  and optimal decomposition  $\hat{\lambda}$ 

$$\hat{x} = \sum_{f \in \mathcal{F}'} f \hat{\lambda}_f \in \mathcal{P}'$$

- Solution method: column generation
- Subproblem: optimize over *P*'

- Explicitly enforce membership in  $\mathcal{F}'$
- Implicitly enforce membership in Q''

$$L_R(u) = \min\{(c - uA'')f + ub'' : f \in \mathcal{F}'\}$$
$$L_D = \max_{u \ge 0} L_R(u)$$

- Solution method: subgradient optimization (*L<sub>R</sub>(u)* is concave in *u*)
   Subproblem: *L<sub>R</sub>(u)* optimize over *P'*
- Rewriting  $L_D$  as a linear program is dual to the Dantzig-Wolfe LP

$$\max_{u_0, u \ge 0} \{ u_0 : u_0 \le (c - uA'')f + ub'', \forall f \in \mathcal{F}' \}$$

#### **Cutting Plane Methods**

- Explicitly enforce membership in Q''
- Implicitly enforce membership in  $\mathcal{P}'$
- Weyl's Theorem existence of  $[A'_I, b'_I]$  that describe  $\mathcal{P}'$

 $\min\{cx: A'_I x \ge b'_I, A'' x \ge b''\}$ 

- Solution method: cutting planes
- Subproblem: separation over  $\mathcal{P}'$

## Equivalence of Traditional Decomposition Methods

Equivalence of bounds (yet implementation very different)

$$\begin{split} \max_{u \ge 0} \min\{(c - uA'')f + ub'' : f \in \mathcal{F}'\} & (LD) \\ &= \max_{u_0, u \ge 0}\{u_0 : u_0 \le (c - uA'')f + ub'', \forall f \in \mathcal{F}'\} \\ &= \min\{c(\sum_{f \in \mathcal{F}'} f\lambda_f) : A''(\sum_{f \in \mathcal{F}'} f\lambda_f) \ge b'', \sum_{f \in \mathcal{F}'} \lambda_f = 1, \lambda_f \ge 0 \ \forall f \in \mathcal{F}'\} & (DW) \\ &= \min\{cx : x \in \mathcal{P}', A''x \ge b''\} \\ &= \min\{cx : A_I'x \ge b_I', A''x \ge b''\} & (CP) \\ &\ge \min\{cx : A_I'x \ge b', A''x \ge b''\} & (LP) \end{split}$$

#### Improving the LD/DW/CP Bound

- Let  $\mathcal{L}$  be a class of valid inequalities for  $\mathcal{P}$ .
- Consider the setting:
  - The optimization problem over  $\mathcal{P}$  is difficult.
  - The optimization problem over  $\mathcal{P}'$  can be solved effectively.
  - Separation of a fractional solution from *P* using members of *L* is difficult.
  - Separation of a member of *F*' from *P* using members of *L* can be solved effectively.
- Does this occur in practice? Yes

**ILP Formulation:** 

$$\sum_{e \in \delta(0)} x_e = 2k \qquad (1)$$

$$\sum_{e \in \delta(i)} x_e = 2 \qquad \forall i \in V \setminus \{0\} \qquad (2)$$

$$\sum_{e \in \delta(S)} x_e \ge 2b(S) \quad \forall S \subset V \setminus \{0\}, \ |S| > 1 \qquad (3)$$

b(S) = lower bound on the number of trucks required to service  $S = \left[ \left( \sum_{i \in S} d_i \right) / C \right]$  (normally)

- Relaxations:
  - Multiple Traveling Salesman Problem: Set  $C = \sum_{i \in S} d_i$ .
  - k-Tree: Set  $C = \sum_{i \in S} d_i$ . Relax (2) but leave  $\sum_{e \in E} x_e = n + k$ .
- Separation of the GSECs (3) in this formulation is  $\mathcal{NP}$ -Complete.
- Given the incidence vector of an MTSP or a k-Tree ( $\in \mathcal{F}'$ ), we can easily determine whether it satisfies all of these inequalities.

## Example of Decomposition VRP/k-TSP



#### **ILP Formulation:**

$$\sum_{e \in \bar{E}} x_e = |\bar{V}| - 1 \qquad (4)$$

$$\sum_{e \in \bar{E}(S)} x_e \leq |S| - 1 \quad \forall S \subseteq \bar{V} \qquad (5)$$

$$x_{0i} + x_{ij} \leq 1 \quad \forall i \in V \setminus T, \{i, j\} \in \delta(i) \qquad (6)$$

Relaxation: Minimum Spanning Tree - Relax (6).

Lifted Subtour Elimination Constraints:

 $\begin{aligned}
\sum_{e \in \bar{E}(S)} x_e + \sum_{i \in S \setminus T} x_{0i} &\leq |S| - 1 \quad \forall S \subseteq \bar{V}, S \cap T \neq \emptyset \quad (\mathcal{L}_1) \\
\sum_{e \in \bar{E}(S)} x_e + \sum_{i \in S \setminus k} x_{0i} &\leq |S| - 1 \quad \forall S \subseteq \bar{V}, S \cap T \neq \emptyset, k \in S \quad (\mathcal{L}_2), \\
\sum_{e \in \bar{E}(X,Y)} x_e &\leq 1 \quad \forall X, Y \subseteq \bar{V}, X \cap T \neq \emptyset \\
& Y \cap T \neq \emptyset, X \cap Y = \emptyset \quad (\mathcal{L}_3)
\end{aligned}$ 

- Separation of  $\mathcal{L}_1, \mathcal{L}_2$  and  $\mathcal{L}_3$  for a fractional point:  $O(|\bar{V}|^4)$  Gomory-Hu.
- Separation of  $\mathcal{L}_1, \mathcal{L}_2$  and  $\mathcal{L}_3$  for a MST:  $O(|\bar{E}|)$  Breadth-First Search.

## Dynamic Cut Generation in Lagrangian Relaxation

- Consider a solution  $(f \in \mathcal{F}')$  to the Lagrangian dual  $L_D$ .
- Attempt to separate f from  $\mathcal{P}$  using the class of inequalities  $\mathcal{L}$ .
- If successful, dualize the violated inequalities on the fly.
- Origins of relax and cut:
  - Christofidos and Balas, "A Restricted Lagrangean Approach to the TSP", Mathematical Programming 1981
  - M.L. Fisher, "Optimal Solution of VRPs Using Minimum K-Trees", Wharton Tech Report 1990
- Applications: Couple Constrained Assignment Problem [Aboudi 91], Steiner Problem in Graphs [Lucena 92], Quadratic Knapsack [Palmeria et al 99], Edge-Weighted Clique Problem [Hunting et al 01] and Rectangular Partitions [Calheiros et al 02] (coming - survey paper by Lucena).
- Guignard/Ralphs: Adding these inequalities might not improve the bound.
- Why? Using subgradient method, cannot obtain the optimal fractional solution so, without reoptimization cannot tell if bound will improve.

## Dynamic Cut Generation using Dantzig-Wolfe Decomposition

**Proposition 1** Let  $\hat{x} \in \mathbb{R}^n$  such that  $\hat{x} = \sum_{f \in \mathcal{F}'} f\lambda_f$ ,  $\sum_{f \in \mathcal{F}'} \lambda_f = 1$ , and  $\lambda_f \ge 0 \ \forall f \in \mathcal{F}'$ . If  $(a, b) \in \mathcal{L}$  and  $a^{\top} \hat{x} < b$ , then for some  $f \in \mathcal{F}'$  with  $\lambda^f > 0$ ,  $a^{\top} f < b$ .

- Solution Provide a consider an optimal fractional solution  $\hat{x} \in \mathbb{R}^n$  to the D-W LP, and let D = {f ∈ F' :  $\hat{\lambda}_f > 0$ }.
- Attempt to separate each  $f \in D$  from  $\mathcal{P}$  using the class of inequalities  $\mathcal{L}$ .
- In this case, we can check for improvement in the bound without reoptimization.

#### Origins:

- **J** T.K. Ralphs, "Parallel Branch and Cut for VRP", Cornell Thesis 1995
- L. Kopman, "A New Generic Separation Routine and Its Application In a Branch and Cut Algorithm for the CVRP", Cornell Thesis 1999
- T.K. Ralphs, L. Kopman, W.R. Pulleyblank and L.E.Trotter Jr., "On the CVRP", *Mathematical Programming* 2001.

#### Outline

- Preliminaries, Decomposition Methods
- Decomposition Algorithm
- Implementation and Extensions
- Summary

# Decomposition-Based Separation Algorithm

#### <u>Input:</u> $\hat{x} \in \mathbb{R}^n$

<u>Output:</u> A valid inequality for  $\mathcal{P}$  which is violated by  $\hat{x}$ , if one is found.

- Step 0. Apply separation algorithms and heuristics for  $\mathcal{P}$  and  $\mathcal{P}'$ . If one of these returns a violated inequality, then output the violated inequality and STOP.
- **Step 1.** Otherwise, attempt to decompose  $\hat{x}$  into a convex combination of members of  $\mathcal{F}'$  by solving the LP

$$\max\{\mathbf{0}^{\top}\lambda : T\lambda = \hat{x}, \mathbf{1}^{\top}\lambda = 1, \lambda \ge 0\},$$
(2)

where T is a matrix whose columns are members of  $\mathcal{F}'$ .

- Step 2a. If a decomposition  $\hat{\lambda}$  exists, let D represent the columns of T participating in the convex combination of  $\hat{x}$ . Scan the members of  $\mathcal{F}'$  corresponding to the columns in D. For each inequality in  $\mathcal{L}$  violated by a column of D, check whether it is also violated by  $\hat{x}$ . If a constraint violated by  $\hat{x}$  is encountered, output it and STOP.
  - Step 2b. If a decomposition does not exist, output a Farkas inequality  $(\alpha, -\gamma)$  for  $\mathcal{P}'$  that is violated by  $\hat{x}$  and STOP.

## Example of Separation Using Decomposition



<u>Input:</u>  $\hat{x} \in \mathbb{R}^n$ <u>Output:</u> Either (1) a decomposition of  $\hat{x}$  into members of  $\mathcal{F}'$ or (2) a valid inequality for  $\mathcal{P}'$  violated by  $\hat{x}$ 

- Step 1.0. Generate a matrix T' containing a small subset of members of  $\mathcal{F}'$  and set T = T'.
- Step 1.1. Solve (2) using the dual simplex. If this LP is feasible, output the members of  $\mathcal{F}'$  participating in the decomposition, then STOP.
- Step 1.2. Otherwise, let r be the row in which the dual unboundedness condition was discovered, and let  $(\alpha, \gamma)$  be the  $r^{th}$  row of the basis inverse. Optimize over  $\mathcal{P}'$  with cost vector  $\alpha$ . Let  $t^* \in \mathcal{F}'$  be the result.
- Step 1.3. If  $\alpha t^* + \gamma < 0$ , then  $t^*$  is a column eligible to enter the basis. Add  $t^*$  to T and go to 1.1. Otherwise, the LP is infeasible and  $\hat{x} \notin \mathcal{P}'$ . Output the Farkas inequality  $(\alpha, -\gamma)$  and STOP.

#### Outline

- Preliminaries, Decomposition Methods
- Decomposition Algorithm
- Implementation and Extensions
- Summary

#### Questions

- How can we better deal with the column generation subroutine?
  - Can we do a better job initializing our search?
  - Can we be smarter about adding members to T?
- How can we be smarter in our search for *effective* members of  $\mathcal{L}$ ?
- What is the trade-off between the strength of the relaxation and the ease of finding violated members of  $\mathcal{L}$ ?
- Can we take advantage of distributed systems?

Assume COP, i.e.,  $x \in \mathbb{B}^n$ . Let  $E = \{1, ..., n\}$ .

Consistency Condition - restrict column generation of T

**Proposition 2** Assume  $\hat{x} = \sum_{f \in \mathcal{F}'} f\lambda_f$ ,  $\sum_{f \in \mathcal{F}'} \lambda_f = 1$  and  $\lambda_f \ge 0 \ \forall f \in \mathcal{F}'$ . Let  $D = \{f \in F' : \lambda_f > 0\}$ . Then, for each  $f \in D, \forall e \in E$ , the following two conditions must be true

if  $\hat{x}_e = 1$ , then  $f_e = 1$ ; if  $\hat{x}_e = 0$ , then  $f_e = 0$ 

Define  $M \ge \max{\{\gamma - \alpha x : x \in \mathcal{P}\}}$  (a LB for opt over  $\mathcal{P}$  with cost  $\alpha$ ).

$$\sigma_e = \begin{cases} M & \text{if } e \in E_0 = \{e : \hat{x}_e = 0\}; \\ -M & \text{if } e \in E_1 = \{e : \hat{x}_e = 1\}; \\ \alpha & \text{otherwise} \end{cases}$$

for  $e \in E$  and  $\beta = \gamma - \sum_{e \in E_1} (-M - \alpha_e)$ .

- Lifting the Farkas Inequalities
  - bigM Method
  - Sequential Lifting
- **Solution** For general ILPs, decomposition into members of  $\mathcal{F}$  [Kopman 99]
  - Column generation subproblem is an optimization problem over  $\mathcal{P}$ !!
  - Siven a proof (Farkas cut) that  $\hat{x} \notin \mathcal{P}$ , this will improve the bound.
  - D. Applegate, R. Bixby, V. Chvátal, and W. Cook, "TSP Cuts Which Do Not Conform to the Template Paradigm", Computational Combinatorial Optimization 2001

#### Implementation Extensions

- Initialization of T:
  - Consider the solution to a LP relaxation  $\hat{x}_0 = T_0 \lambda$ , where  $T_0$  is the set of enumerated columns from which the optimal decomposition was found.
  - Let  $\hat{x}_1$  be the solution to the next LP relaxation.
  - If  $||\hat{x}_1 \hat{x}_0|| \le \epsilon$ , initialize  $T_1 = T_0$ , else, continue as before (setting  $T_1$  randomly / brute force).
- Column Pool:
  - Analogous to *cut pools* in branch and cut.
  - Keep a set of columns that have participated in a decomposition recently and use this (or part of this) to initialize T.
- Is it necessary to be exact in solving the column generation problem? No
  - Try optimizing over P' heuristically first all we need is a column that destroys the proof of infeasibility.
  - Also, solve a relaxed version of the feasibility problem  $\max\{\mathbf{0}^{\top}\lambda : \hat{x} - \epsilon \leq T\lambda \leq \hat{x} + \epsilon, \mathbf{1}^{\top}\lambda = 1, \lambda \geq 0\},$

#### Implementation Extensions

#### Metrics for Effectiveness

- Consider a solution  $\hat{x} \in \mathbb{R}^n$  to the initial LP,  $D = \{f \in \mathcal{F}' : \hat{\lambda}_f > 0\}$ .
- The class  $\mathcal{L}$  might contain an exponential number of inequalities that violate f, only some of which violate  $\hat{x}$ .
- Sort *D* from least to greatest by normalized distance :  $||\hat{x} f||$
- Spend more computation time enumerating inequalities for extreme points *closer* to the fractional point.
- Parallel Implementation
  - Column generation subproblem is an optimization problem over P' - for each dual ray.
  - Separation problem for each extreme point in  $D \subseteq \mathcal{F}'$ .

### **DECOMP** Library

- An abstract base class in C++ which can be derived for a specific application.
- *pure virtual methods*, the user must derive
  - virtual double optimize\_over\_relaxation( const vector<double> & cost, vector<variable> & solution\_relax)
- *virtual methods*, the user can derive

### Outline

- Preliminaries, Decomposition Methods
- Decomposition Algorithm
- Implementation and Extensions
- Summary

### Summary

- DECOMP Library base algorithm
- Computational Study previous work / relax and cut literature
  - VRP (k-TSP or k-Tree : GSECs, Combs, Multistars)
  - Couple Constrained Assignment Problem (AP : SVIs)
  - Steiner Problem in Graphs (Minimum Spanning Tree : Lifted SECs)
- Computational Study proposed new applications
  - Edge-Weighted Clique Problem (Tree Relaxation : Trees, Cliques)
  - 2-Connected Network with Bounded Rings (2-CN : ??)
  - VRP with Time Windows (kTSPTW : k-Path Cuts) Galexis
  - Generalized Assignment Problem (m-Knap or AP : SVIs) FabTime
  - Service Constrained Network Flow (Network Flow : ??) IBM
  - Generalized Minimum Spanning Tree (MST : ??)

### Summary

- Implementation previous extensions (generalize from COPs to ILPs)
  - Consistency condition
  - Lifting of the Farkas inequality
- Alternative methods for lifting the Farkas inequalities.
- **Solution** Explore the use of decomposition into members of  $\mathcal{F}$ .
- Implementation proposed new extensions
  - Column pool
  - Heuristic solution to column generation subproblem
  - Metric for effectiveness
  - Parallel implementation
- Theoretical ties between relax and cut and DECOMP.