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Preliminaries
Consider the following integer linear program (ILP):

min{c>x : x ∈ F}

where

F = {x ∈ Z
n : A′x ≥ b′, A′′x ≥ b′′} Q = {x ∈ R

n : A′x ≥ b′, A′′x ≥ b′′}

F ′ = {x ∈ Z
n : A′x ≥ b′} Q′ = {x ∈ R

n : A′x ≥ b′}

Q′′ = {x ∈ R
n : A′′x ≥ b′′}

Denote P = conv(F) and P ′ = conv(F ′).

Assume that optimization (separation) over P is difficult.

Assume that optimization (separation) over P ′ can be done effectively.
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Decomposition Methods

Develop lower bounds to embed in a branch and bound (BB) framework.

Goal: Improve the bound given by the initial LP relaxation

min{c>x : x ∈ Q}

Traditional Decomposition Methods
Dantzig-Wolfe Decomposition
Lagrangian Relaxation
Cutting Plane Methods
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Polyhedra, LP Bound, LD/DW/CP
Bound

P = conv({x ∈ Zn : Ax ≥ b})

P′ = conv({x ∈ Zn : A
′
x ≥ b

′})

Q′ = {x ∈ Qn : A
′
x ≥ b

′}

Q′′ = {x ∈ Qn : A
′′

x ≥ b
′′}

P′

P

Q′ ∩ Q′′ (LP Bound) P′ ∩ Q′′ (LD/DW/CP Bound)

Figure 1: Polyhedra, LP Bound, LD/DW/CP Bound
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Dantzig-Wolfe Decomposition

Explicitly enforce membership in Q′′

Implicitly enforce membership in P ′

min{c(
∑

f∈F′

fλf ) : A
′′(

∑

f∈F′

fλf ) ≥ b′′,
∑

f∈F′

λf = 1, λf ≥ 0 ∀f ∈ F ′}

The optimal fractional solution x̂ and optimal decomposition λ̂

x̂ =
∑

f∈F′

fλ̂f ∈ P
′

Solution method: column generation

Subproblem: optimize over P ′
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Lagrangian Relaxation

Explicitly enforce membership in F ′

Implicitly enforce membership in Q′′

LR(u) = min{(c− uA′′)f + ub′′ : f ∈ F ′}

LD = max
u≥0

LR(u)

Solution method: subgradient optimization (LR(u) is concave in u)

Subproblem: LR(u) - optimize over P ′

Rewriting LD as a linear program is dual to the Dantzig-Wolfe LP

max
u0,u≥0

{u0 : u0 ≤ (c− uA′′)f + ub′′, ∀f ∈ F ′}
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Cutting Plane Methods

Explicitly enforce membership in Q′′

Implicitly enforce membership in P ′

Weyl’s Theorem - existence of [A′I , b
′
I ] that describe P ′

min{cx : A′Ix ≥ b′I , A
′′x ≥ b′′}

Solution method: cutting planes

Subproblem: separation over P ′
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Equivalence of Traditional
Decomposition Methods

Equivalence of bounds (yet implementation very different)

max
u≥0

min{(c− uA′′)f + ub′′ : f ∈ F ′} (LD)

= max
u0,u≥0

{u0 : u0 ≤ (c− uA′′)f + ub′′, ∀f ∈ F ′}

= min{c(
∑

f∈F′

fλf ) : A
′′(

∑

f∈F′

fλf ) ≥ b′′,
∑

f∈F′

λf = 1, λf ≥ 0 ∀f ∈ F ′} (DW )

= min{cx : x ∈ P ′, A′′x ≥ b′′}

= min{cx : A′Ix ≥ b′I , A
′′x ≥ b′′} (CP )

≥ min{cx : A′x ≥ b′, A′′x ≥ b′′} (LP )
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Improving the LD/DW/CP Bound

Let L be a class of valid inequalities for P.

Consider the setting:
The optimization problem over P is difficult.

The optimization problem over P ′ can be solved effectively.
Separation of a fractional solution from P using members
of L is difficult.
Separation of a member of F ′ from P using members
of L can be solved effectively.

Does this occur in practice? Yes
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Vehicle Routing Problem

ILP Formulation:

∑

e∈δ(0) xe = 2k (1)
∑

e∈δ(i) xe = 2 ∀i ∈ V \ {0} (2)
∑

e∈δ(S) xe ≥ 2b(S) ∀S ⊂ V \ {0}, |S| > 1 (3)

b(S) = lower bound on the number of trucks required to service S
=

⌈(
∑

i∈S di
)

/C
⌉

(normally)

Relaxations:
Multiple Traveling Salesman Problem: Set C =

∑

i∈S di.

k-Tree: Set C =
∑

i∈S di. Relax (2) but leave
∑

e∈E xe = n+ k.

Separation of the GSECs (3) in this formulation is NP-Complete.

Given the incidence vector of an MTSP or a k-Tree (∈ F ′), we can
easily determine whether it satisfies all of these inequalities.
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Example of Decomposition
VRP/k-TSP
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Steiner Problem in Graphs

ILP Formulation:

∑

e∈Ē xe = |V̄ | − 1 (4)
∑

e∈Ē(S) xe ≤ |S| − 1 ∀S ⊆ V̄ (5)
x0i + xij ≤ 1 ∀i ∈ V \ T, {i, j} ∈ δ(i) (6)

Relaxation: Minimum Spanning Tree - Relax (6).

Lifted Subtour Elimination Constraints:

∑

e∈Ē(S) xe +
∑

i∈S\T x0i ≤ |S| − 1 ∀S ⊆ V̄ , S ∩ T 6= ∅ (L1)
∑

e∈Ē(S) xe +
∑

i∈S\k x0i ≤ |S| − 1 ∀S ⊆ V̄ , S ∩ T 6= ∅, k ∈ S (L2),
∑

e∈Ē(X,Y ) xe ≤ 1 ∀X,Y ⊆ V̄ , X ∩ T 6= ∅
Y ∩ T 6= ∅, X ∩ Y = ∅ (L3)

Separation of L1,L2 and L3 for a fractional point: O(|V̄ |4) - Gomory-Hu.

Separation of L1,L2 and L3 for a MST: O(|Ē|) - Breadth-First Search.
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Dynamic Cut Generation in
Lagrangian Relaxation

Consider a solution (f ∈ F ′) to the Lagrangian dual LD.

Attempt to separate f from P using the class of inequalities L.

If successful, dualize the violated inequalities on the fly.

Origins of relax and cut:
Christofidos and Balas, “A Restricted Lagrangean Approach to the
TSP”, Mathematical Programming 1981
M.L. Fisher, “Optimal Solution of VRPs Using Minimum K-Trees”,
Wharton Tech Report 1990

Applications: Couple Constrained Assignment Problem [Aboudi 91],
Steiner Problem in Graphs [Lucena 92], Quadratic Knapsack [Palmeria et
al 99], Edge-Weighted Clique Problem [Hunting et al 01] and Rectangular
Partitions [Calheiros et al 02] (coming - survey paper by Lucena).

Guignard/Ralphs: Adding these inequalities might not improve the bound.

Why? Using subgradient method, cannot obtain the optimal fractional
solution - so, without reoptimization cannot tell if bound will improve.
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Dynamic Cut Generation using
Dantzig-Wolfe Decomposition

Proposition 1 Let x̂ ∈ R
n such that x̂ =

∑

f∈F′ fλf ,
∑

f∈F′ λf = 1, and

λf ≥ 0 ∀f ∈ F ′. If (a, b) ∈ L and a>x̂ < b, then for some f ∈ F ′ with λf > 0,
a>f < b.

Consider an optimal fractional solution x̂ ∈ R
n to the D-W LP,

and let D = {f ∈ F ′ : λ̂f > 0}.

Attempt to separate each f ∈ D from P using the class of inequalities L.

In this case, we can check for improvement in the bound without
reoptimization.

Origins:
T.K. Ralphs, “Parallel Branch and Cut for VRP”, Cornell Thesis 1995
L. Kopman, “A New Generic Separation Routine and Its Application
In a Branch and Cut Algorithm for the CVRP”, Cornell Thesis 1999
T.K. Ralphs, L. Kopman, W.R. Pulleyblank and L.E.Trotter Jr., “On the
CVRP”, Mathematical Programming 2001.
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Decomposition-Based
Separation Algorithm

Input: x̂ ∈ R
n

Output: A valid inequality for P which is violated by x̂, if one is found.

Step 0. Apply separation algorithms and heuristics for P and P ′. If one of
these returns a violated inequality, then output the violated inequality and
STOP.

Step 1. Otherwise, attempt to decompose x̂ into a convex combination of
members of F ′ by solving the LP

max{0>λ : Tλ = x̂,1>λ = 1, λ ≥ 0}, (2)

where T is a matrix whose columns are members of F ′.

Step 2a. If a decomposition λ̂ exists, let D represent the columns of T
participating in the convex combination of x̂. Scan the members of F ′

corresponding to the columns in D. For each inequality in L violated by a
column of D, check whether it is also violated by x̂. If a constraint
violated by x̂ is encountered, output it and STOP.

Step 2b. If a decomposition does not exist, output a Farkas inequality
(α,−γ) for P ′ that is violated by x̂ and STOP.

Decomposition Methods for Large-Scale Discrete Optimization – p.17



Example of Separation Using
Decomposition

*

fractional point

*

fractional point

P

Farkas ineqaulity
for P

P
′

P
′

P

valid ineqaulity

(a) x̂ ∈ P
′ (b) x̂ /∈ P

′
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Column Generation Subroutine
Input: x̂ ∈ R

n

Output: Either (1) a decomposition of x̂ into members of F ′

or (2) a valid inequality for P ′ violated by x̂

Step 1.0. Generate a matrix T ′ containing a small subset of members of
F ′ and set T = T ′.

Step 1.1. Solve (2) using the dual simplex. If this LP is feasible, output the
members of F ′ participating in the decomposition, then STOP.

Step 1.2. Otherwise, let r be the row in which the dual unboundedness
condition was discovered, and let (α, γ) be the rth row of the basis
inverse. Optimize over P ′ with cost vector α. Let t∗ ∈ F ′ be the result.

Step 1.3. If αt∗ + γ < 0, then t∗ is a column eligible to enter the basis. Add
t∗ to T and go to 1.1. Otherwise, the LP is infeasible and x̂ /∈ P ′. Output
the Farkas inequality (α,−γ) and STOP.
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Questions

How can we better deal with the column generation subroutine?
Can we do a better job initializing our search?
Can we be smarter about adding members to T?

How can we be smarter in our search for effective members of L?

What is the trade-off between the strength of the relaxation and the ease
of finding violated members of L?

Can we take advantage of distributed systems?
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Implementation Extensions

Assume COP, i.e., x ∈ B
n. Let E = {1, ..., n}.

Consistency Condition - restrict column generation of T

Proposition 2 Assume x̂ =
∑

f∈F′ fλf ,
∑

f∈F′ λf = 1 and

λf ≥ 0 ∀f ∈ F ′. Let D = {f ∈ F ′ : λf > 0}. Then, for each
f ∈ D, ∀e ∈ E, the following two conditions must be true

if x̂e = 1, then fe = 1;

if x̂e = 0, then fe = 0

Define M ≥ max{γ − αx : x ∈ P} (a LB for opt over P with cost α).

σe =

{

M if e ∈ E0 = {e : x̂e = 0};
−M if e ∈ E1 = {e : x̂e = 1};
α otherwise

for e ∈ E and β = γ −
∑

e∈E1
(−M − αe).
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Implementation Extensions

Lifting the Farkas Inequalities
bigM Method
Sequential Lifting

For general ILPs, decomposition into members of F [Kopman 99]
Column generation subproblem is an optimization problem over P!!

Given a proof (Farkas cut) that x̂ /∈ P, this will improve the bound.
D. Applegate, R. Bixby, V. Chvátal, and W. Cook, "TSP Cuts Which
Do Not Conform to the Template Paradigm", Computational
Combinatorial Optimization 2001
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Implementation Extensions

Initialization of T :
Consider the solution to a LP relaxation x̂0 = T0λ, where T0 is the set
of enumerated columns from which the optimal decomposition was
found.
Let x̂1 be the solution to the next LP relaxation.
If ‖x̂1 − x̂0‖ ≤ ε, initialize T1 = T0,
else, continue as before (setting T1 randomly / brute force).

Column Pool:
Analogous to cut pools in branch and cut.
Keep a set of columns that have participated in a decomposition
recently and use this (or part of this) to initialize T .

Is it necessary to be exact in solving the column generation problem? No

Try optimizing over P ′ heuristically first - all we need is a column that
destroys the proof of infeasibility.
Also, solve a relaxed version of the feasibility problem
max{0>λ : x̂− ε ≤ Tλ ≤ x̂+ ε,1>λ = 1, λ ≥ 0},
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Implementation Extensions

Metrics for Effectiveness

Consider a solution x̂ ∈ R
n to the initial LP, D = {f ∈ F ′ : λ̂f > 0}.

The class L might contain an exponential number of inequalities
that violate f , only some of which violate x̂.
Sort D from least to greatest by normalized distance : ‖x̂− f‖

Spend more computation time enumerating inequalities for
extreme points closer to the fractional point.

Parallel Implementation
Column generation subproblem is an optimization problem
over P ′ - for each dual ray.

Separation problem for each extreme point in D ⊆ F ′.
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DECOMP Library

An abstract base class in C++ which can be derived for a specific
application.

pure virtual methods, the user must derive
virtual double optimize_over_relaxation(

const vector<double> & cost,
vector<variable> & solution_relax)

virtual void separate_member_of_relaxation(
const vector<variable> & solution_lp,
const vector<variable> & solution_relax,
vector<rc_vector> & new_rows)

virtual methods, the user can derive
virtual void find_initial_columns_decomp(

vector<rc_vector> & initial_columns)

virtual void lift_farkas_inequality(
rc_vector & farkas)
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Summary

DECOMP Library - base algorithm

Computational Study - previous work / relax and cut literature
VRP (k-TSP or k-Tree : GSECs, Combs, Multistars)
Couple Constrained Assignment Problem (AP : SVIs)
Steiner Problem in Graphs (Minimum Spanning Tree : Lifted SECs)

Computational Study - proposed new applications
Edge-Weighted Clique Problem (Tree Relaxation : Trees, Cliques)
2-Connected Network with Bounded Rings (2-CN : ??)
VRP with Time Windows (kTSPTW : k-Path Cuts) - Galexis
Generalized Assignment Problem (m-Knap or AP : SVIs) - FabTime
Service Constrained Network Flow (Network Flow : ??) - IBM
Generalized Minimum Spanning Tree (MST : ??)
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Summary

Implementation - previous extensions (generalize from COPs to ILPs)
Consistency condition
Lifting of the Farkas inequality

Alternative methods for lifting the Farkas inequalities.

Explore the use of decomposition into members of F .

Implementation - proposed new extensions
Column pool
Heuristic solution to column generation subproblem
Metric for effectiveness
Parallel implementation

Theoretical ties between relax and cut and DECOMP.
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