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Preliminaries

Consider the following pure integer linear program (PILP):

zIP = min
x∈F
{c>x} = min

x∈P
{c>x} = min

x∈Zn
{c>x : Ax ≥ b}

where

F = {x ∈ Zn : A′x ≥ b′, A′′x ≥ b′′} Q = {x ∈ Rn : A′x ≥ b′, A′′x ≥ b′′}

F ′ = {x ∈ Zn : A′x ≥ b′} Q′ = {x ∈ Rn : A′x ≥ b′}

Q′′ = {x ∈ Rn : A′′x ≥ b′′}

Denote P = conv(F) and P ′ = conv(F ′).

Assume that optimization/separation over P is difficult.

Assume that optimization/separation over P ′ can be done effectively.
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Polyhedra, LP Bound, LD/DW/CP Bound

P = conv({x ∈ Zn : Ax ≥ b})

P′ = conv({x ∈ Zn : A′x ≥ b′})

P′

P

Q′ = {x ∈ Rn : A′x ≥ b′}

Q′′ = {x ∈ Rn : A′′x ≥ b′′}

Q′

Q′′
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Bounding

Goal: Compute a lower bound on zIP .

The most straightforward approach is to solve the initial LP relaxation

zLP = min
x∈Q
{c>x} = min

x∈Rn
{c>x : A′x ≥ b′, A′′x ≥ b′′}

Decomposition approaches attempt to improve on this bound by utilizing our
implicit knowledge of P ′.

Express the constraints of Q′′ explicitly.

Express the constraints of P ′ implicitly through solution of a subproblem.
Dantzig-Wolfe Decomposition
Lagrangian Relaxation
Cutting Plane Method
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Polyhedra, LP Bound, LD/DW/CP Bound

P = conv({x ∈ Zn : Ax ≥ b})

P′ = conv({x ∈ Zn : A′x ≥ b′})

P′

P

Q′ = {x ∈ Rn : A′x ≥ b′}

Q′′ = {x ∈ Rn : A′′x ≥ b′′}

Q′

Q′′

Q′

Q′′

Q = Q′ ∩ Q′′ (LP Bound)
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Dantzig-Wolfe Decomposition

The bound is obtained by solving the Dantzig-Wolfe LP:

zDW = min
λ∈RF′+

{c>(
∑

s∈F′

sλs) : A′′(
∑

s∈F′

sλs) ≥ b′′,
∑

s∈F′

λs = 1} (1)

Solution method: simplex algorithm with dynamic column generation

Subproblem: optimization over P ′

Let λ̂ be an optimal solution to (1) and

x̂ =
∑

s∈F′

sλ̂s ∈ P
′

(2)

Then, zIP ≥ zDW = c>x̂ ≥ zLP .
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Lagrangian Relaxation

The bound is obtained by solving the Lagrangian dual:

zLR(u) = min
s∈F′
{(c> − u>A′′)s+ u>b′′} (3)

zLD = max
u∈Rm′′+

{zLR(u)} (4)

Solution method: subgradient optimization

Subproblem: optimization over P ′

Rewriting zLD as an LP we see it is the dual of the Dantzig-Wolfe LP

zLD = max
α∈R,u∈Rm′′+

{α+ u>b′′ : α ≤ (c> − u>A′′)s ∀s ∈ F ′} (5)

So we have zIP ≥ zLD = zDW ≥ zLP .
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Cutting Plane Methods

The bound is obtained by augmenting the initial LP relaxation with facets of P ′.

This approach yields the bound

zCP = min
x∈P′
{c>x : A′′x ≥ b′′} (6)

Solution method: simplex algorithm with dynamic cut generation

Subproblem: separation from P ′

Note that x̂ from (2) is an optimal solution to (6), so zIP ≥ zCP = zDW ≥ zLP .
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A Common Framework

All three decomposition methods compute the same quantity [Geoffrion74].

zIP ≥ c>x̂ = zLD = zDW = zCP ≥ zLP

The basic ingredients are the same:
the original polyhedron (P),
an implicit polyhedron (P ′), and
an explicit polyhedron (Q′′).

The essential difference is how the implicit polyhedron is represented:
CP : as the intersection of half-spaces (the outer representation), or
DW/LD : as the convex hull of a finite set (inner representation).
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Polyhedra, LP Bound, LD/DW/CP Bound

P = conv({x ∈ Zn : Ax ≥ b})

P′ = conv({x ∈ Zn : A′x ≥ b′})

P′

P

Q′ = {x ∈ Rn : A′x ≥ b′}

Q′′ = {x ∈ Rn : A′′x ≥ b′′}

P′ ∩ Q′′ (LD/DW/CP Bound)

P′
Q′

Q′′

Q′

Q′′ Q′′

Q = Q′ ∩ Q′′ (LP Bound)
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Cutting Plane Method

Cutting Plane Method (CPM)

1. Construct the initial LP relaxation LP0 and set i← 0.
zLP = minx∈Rn{c

>x : A′x ≥ b′, A′′x ≥ b′′}

2. Solve LPi to obtain an optimal solution x̂i and lower bound zi ← c>x̂i.
3. Attempt to separate x̂i from P , generating violated inequalities [Di, di].

4. If [Di, di] 6= ∅, set [A′′, b′′]←
[

A′′ b′′

Di di

]

, i← i+ 1 and go to Step 2, else output zi.

Advantage (over traditional decomposition methods): Step 3 may generate
inequalities that cut off parts of P ′.

The traditional cutting plane paradigm attempts to generate inequalities that
violate x̂.

Adding a cut that violates x̂ does not necessarily improve the bound.
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Improving Inequalities

An improving inequality is a valid inequality that when added to the explicit
polyhedron results in an increase in the bound.

Theorem 1 Let F be the face of optimal solutions to LPi. Then (a, β) ∈ Rn+1 is
an improving inequality if and only if a>y < β for all y ∈ F .

Violation of the optimal face is a necessary and sufficient condition for an
inequality to be improving but is difficult to verify.

Corollary 1 If (a, β) ∈ Rn+1 is an improving inequality, then a>x̂ < β.

Violation of x̂ is necessary (not sufficient) but is easy to verify.
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Dynamic Decomposition Methods

Goal: Improve the bound minx∈P′{c
>x : A′′x ≥ b′′} by dynamic tightening of the

explicit polyhedron (Q′′).

Dynamic Decomposition Method

1. Construct the initial bounding subproblem P0 and set i← 0.
zDW = min

λ∈RF′+
{c>(

∑

s∈F′ sλs) : A′′(
∑

s∈F′ sλs) ≥ b′′,
∑

s∈F′ λs = 1}

zLD = maxu∈Rn+ minx∈P′{(c
> − u>A′′)x+ u>b′′}

zCP = minx∈P′{c
>x : A′′x ≥ b′′}

2. Solve Pi to obtain a lower bound zi.
3. Attempt to generate a set of improving inequalities [Di, di].

4. If [Di, di] 6= ∅, set [A′′, b′′]←
[

A′′ b′′

Di di

]

, i← i+ 1 and go to Step 2,

else output zi.

The key is Step 3 where we attempt to generate improving inequalities.
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Price and Cut (PC)

Price and Cut : use DW as the bounding subproblem

zDW = min
λ∈RF′+

{c>(
∑

s∈F′

sλs) : A′′(
∑

s∈F′

sλs) ≥ b′′,
∑

s∈F′

λs = 1}

and attempt to separate x̂ =
∑

s∈F′ sλ̂s.

Generation of the cuts takes place in original space - which maintains the
structure of the column generation subproblem (optimization over P ′).

PC vs CPM:
Both try to separate x̂ from P (which is typically hard)
Corollary 1 provides us with motivation.

Question: Can we take advantage of the additional information in PC (the optimal

decomposition λ̂) to help improve the bound?
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Relax and Cut (RC)

Relax and Cut : use LD as the bounding subproblem and attempt to separate ŝ ∈ F ′.

zLD = max
u∈Rn+

min
s∈F′
{(c> − u>A′′)s+ u>b′′}

RC vs CPM - Advantage: It is often much easier to separate a member of F ′ from
P than an arbitrary real vector, such as x̂.

RC vs CPM - Disadvantage: Solving LD with subgradient — no access to original
primal solution x̂ — no way to verify the necessary condition in Corollary 1.

Questions:
Can we improve our chances of generating an improving inequality?
Can we characterize the relationship between ŝ and x̂?
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Improving Inequalities (Cont.)

The set of alternative optimal primal solutions to LD is

S = {s ∈ F ′ : (c> − û>A′′)s = (c> − û>A′′)ŝ}

and ŝ is any optimal primal solution to the Lagrangian dual.

Theorem 2 The convex hull of S is a face of P ′ and the optimal LP face F of
minx∈P′{c

>x : A′′x ≥ b′′} is contained in conv(S).

Note that separation of S is sufficient for an inequality to be improving.

Theorem 3 If λ̂ is an optimal solution to the DW-LP, then
D = {s ∈ F ′ : λ̂s > 0} ⊆ S

Any s ∈ D is an optimal primal solution for the Lagrangian dual.

Theorem 4 If (a, β) ∈ R(n+1) is an improving inequality, then there must exist an
s ∈ D such that a>s < β.
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Price and Cut (revisited)

Idea: Rather than (or in addition to) separating x̂, separate each s ∈ D.

PC vs CPM - Advantage:
Theorem 4 gives us an alternative necessary condition for finding improving
inequalities. PC gives us the optimal decomposition D.
Recall: It is often much easier to separate a member of F ′ from P than an
arbitrary real vector, such as x̂.

PC vs RC - Advantage: RC only gives us one member of S, while PC gives us a
set D ⊆ S.
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Illustration

ŝ0 ŝ1

x∗ = x̂

P′

c>

Q′′

ŝ2
Q′

x∗

ŝ0

x̂

ŝ1

c> = c> − û>A′′

P′

Q′′

Q′

ŝ0

x∗
x̂

ŝ1

c> − û>A′′

c>

P′

Q′′

Q′

(a) zDW = zLD = zLP (b) zDW = zLD > zLP (c) zDW = zLD > zLP

S = {x ∈ P′ : (c> − û>A′′)x = (c> − û>A′′)ŝ}

s ∈ F′ : λ̂s > 0
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Decompose and Cut (DC)

Decompose and Cut : use CP as the bounding subproblem.

zCP = min
x∈P′
{c>x : A′′x ≥ b′′}

Idea: Using a standard CPM framework — given a fractional point x̂, compute the

decomposition λ̂, then separate each s ∈ D as in PC (inverse DW ).

PC vs DC - Advantage: DC may be more efficient than PC since we only compute
the decomposition when standard CPM separation fails.

(a) x̂ ∈ P′

P

P′

forP

x̂

(b) x̂ /∈ P′

P

P′

x̂

s ∈ F′ : λ̂s > 0

valid inequality Farkas inequality
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Decompose and Cut Algorithm

Separation in Decompose and Cut

1. Attempt to decompose x̂ into a convex combination of members of F ′ by
solving the LP:

max
λ∈RF′+

{0>λ :
∑

s∈F′

sλs = x̂,
∑

s∈F′

λs = 1}, (7)

2.1 If (7) is feasible, set D = {s ∈ F ′ : λ̂s > 0}

2.2 Else, return a Farkas Cut (a, β) valid for P ′ ⊆ P which violates x̂.
3. Separate each s ∈ D and return any cuts that also violate x̂.

Column Generation in Decompose and Cut

1.0 Generate an initial subset G of F ′.
1.1 Solve (7) over G using the dual simplex algorithm.

1.2a If (7) is feasible, return D = {s ∈ F ′ : λ̂s > 0}.
1.2b Else, optimize over P ′ using the resulting Farkas inequality (row of B−1). If

the result has negative reduced cost, add it to G and go to Step 1.1, else
return the Farkas inequality.
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Vehicle Routing Problem

ILP Formulation:

∑

e∈δ(0) xe = 2k (1)
∑

e∈δ(i) xe = 2 ∀i ∈ V \ {0} (2)
∑

e∈δ(S) xe ≥ 2b(S) ∀S ⊂ V \ {0}, |S| > 1 (3)

b(S) = lower bound on the number of trucks required to service S

=
⌈(
∑

i∈S di
)

/C
⌉

(normally)

Relaxations:
Multiple Traveling Salesman Problem: Set C =

∑

i∈S di.
k-Tree: Set C =

∑

i∈S di. Relax (2) but leave
∑

e∈E xe = n+ k.

Facets of VRP (under certain conditions): GSECs (3), Combs, Multistars

Decompose and Cut - VRP/kTSP for GSECs [Ralphs, et al. On the Capacitated
Vehicle Routing Problem, Mathematical Programming 03]

Relax and Cut - VRP/kTree for GSECs, Combs, Multistars [Martinhon, Lucena,
Maculan, Stronger K-Tree Relaxations for the VRP, unpublished 01]
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Example of Decomposition VRP/k-TSP

Optimization over kTSP can be done efficiently - TSP
Separation of x̂ for GSECs NP-Complete
Separation of a kTSP ∈ F ′ for GSECs in O(n)

0

1100

700

800

1400

2100
400

800

100

500

600
1200

1300

1300

300 900

2100

1000 900

2500

1800

700

1/3

1/3

1/3

2/3
1/3

1/3

2/3

1/3

1/3

2/3

2/3

x̂ λ̂1 =
1
3

λ̂2 =
1
3

λ̂3 =
1
3
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Example of Decomposition VRP/k-Tree

Optimization over kTree in O(n2 logn) [Wei and Yu]
Separation of x̂

for GSECs NP-Complete
for Combs and Multistars is difficult

Separation of a kTree ∈ F ′

for GSECs in O(n)

for Combs and Multistars can be done efficiently

1700

1900
1700

1600

(a) x̂ (b) λ̂1
=

1
2 (c) λ̂ =

1
2
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Axial Assignment Problem

PILP Formulation:

min
∑

(i,j,k)∈T cijkxijk
∑

(j,k)∈J×K xijk = 1 ∀i ∈ I (1)
∑

(i,k)∈I×K xijk = 1 ∀j ∈ J (2)
∑

(i,j)∈I×J xijk = 1 ∀k ∈ K (3)

xijk ∈ {0, 1} ∀(i, j, k) ∈ T = I × J ×K (4)

Relaxation: Assignment Problem - relax (1)

Facets of AAP: Q1(u) and P1(u, v) - cliques of the intersection graph of Kn,n,n

Let C(u) = {w ∈ T : |u ∩ w| = 2}, C(u, v) = {w ∈ T : |u ∩ w| = 1, |w ∩ v| = 2}

xu +
∑

w∈C(u) xw ≤ 1 ∀u ∈ T (5)

xu +
∑

w∈C(u,v) xw ≤ 1 ∀u, v ∈ T, u ∩ v = ∅ (6)

Relax and Cut - AP3/AP for Q1 [Balas and Saltzman, An Algorithm for the
Three-Index Assignment Problem Operations Research 91]
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Example of Decomposition AAP/AP

Optimization over AP in O(n5/2 log(nC))

Separation of x̂ for Clique Facets in O(n3)

Separation of an AP ∈ F ′ for Clique Facets in O(n)

0
0

3

2

1

0
1 2 3

1

2
3

(0, 0, 3) 1/3 (0, 3, 1) 2/3

(1, 0, 1) 1/3 (1, 1, 2) 2/3

(2, 1, 0) 1/3 (2, 2, 0) 1/3

(2, 3, 2) 1/3 (3, 0, 0) 1/3

(3, 2, 3) 2/3

(a) x̂

(f)P1((0, 0, 3), (1, 3, 1))

∑

w∈C(0,0,1) x̂w = 1 1/3 > 1
∑

w∈C((0,0,3),(1,3,1)) x̂w = 1 1/3 > 1

(e)Q1(0, 0, 1)

(b) λ̂1 = 1
3

(c) λ̂2 = 1
3

(d) λ̂3 = 1
3

(3, 0, 0)

(0, 3, 1)

(1, 1, 2)

(3, 2, 3)

(2, 2, 0)

(0, 3, 1)

(1, 1, 2)

(0, 0, 3)

(2, 1, 0)

(1, 0, 1)

(2, 3, 2)

(3, 2, 3)
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DECOMP Library Framework

Goal: Framework to allow for direct comparison of all three dynamic
decomposition methods.

COIN-or: COmputational INfrastructure for Operations Research

BCP: Parallel Branch, Price and Cut (LP-based Bounding) [Ladányi, Ralphs]

ALPs: Abstract Library for Parallel Search [Ladányi, Ralphs, Saltzman]
BiCePS: Branch, Constrain and Price Software (Generic Bounding)
BLIS: BiCePS Linear Integer Solver = BCP

DECOMP provides
CGL-like full implementation of Decompose and Cut
BiCePS plug-and-play for Price and Cut and Relax and Cut

DECOMP user simply derives two methods:
solve relaxed problem (includes several built-in solvers)
separate relaxed point
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Decompose and Cut Implementation Details

Initialization of G: solve over P ′ with c = −x̂ε.

Active LP column management.

Lifting the Farkas inequality (x̂ /∈ P ′).

Consistency Condition - restriction of column generation search
x̂i = 0⇒ si = 0, ∀s ∈ D
x̂i = 1⇒ si = 1, ∀s ∈ D

Is it necessary to be exact in solving the column generation subproblem?

Try optimizing over P ′ heuristically first - need negative reduced cost.
Do we necessarily want extreme points of P ′?

Decomposition into members of F [Kopman 99]
Column generation subproblem is an optimization problem over P !!
Applegate, Bixby, Chvátal, and Cook, TSP Cuts Which Do Not Conform to the
Template Paradigm, Computational Combinatorial Optimization 2001
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Applications Under Development

Vehicle Routing Problem
k-Traveling Salesman Problem : GSECs
k-Tree : GSECs, Combs, Multistars

Axial Assignment Problem
Assignment Problem : Clique-Facets

Steiner Problem in Graphs
Minimum Spanning Tree : Lifted SECs, Partition Inequalities

Knapsack Constrained Circuit Problem
Knapsack Problem : Cycle Cover, Maximal-Set Inequalities

Edge-Weighted Clique Problem
Tree Relaxation : Trees, Cliques

Subtour Elimination Problem [G. Benoit / S. Boyd] (LP context)
Fractional 2-Factor Problem : SECs
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Conclusions

Provided some insight into the relationship between: the optimal LP face F , the
optimal DW solution x̂, the optimal LD solution ŝ and the knowledge gained from

the optimal decomposition λ̂.

Alternative (and often much easier) methods for separation: over F ′ vs Q.
Incorporated this idea into traditional Price and Cut .
Introduced a promising new paradigm for separation Decompose and Cut .

Presented a unifying framework for dynamic cut generation in traditional
decomposition methods.

We are currently in the process of developing a software framework DECOMP
to implement and directly compare each of these methods.
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