Decomposition and Dynamic Cut Generation in Integer Programming

Matthew V. Galati

Ted K. Ralphs

http://sagan.ie.lehigh.edu/mgalati

Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA

The International Symposium on Mathematical Programming The Technical University of Denmark, Copenhagen, Denmark, August 20, 2003

Outline

Preliminaries, Traditional Decomposition Methods

- Dantzig-Wolfe Decomposition
- Lagrangian Relaxation
- Cutting Plane Method
- Dynamic Decomposition Methods
 - Price and Cut
 - Relax and Cut
 - Decompose and Cut
- Applications/Examples
- DECOMP Library Framework

Preliminaries

Consider the following pure integer linear program (PILP):

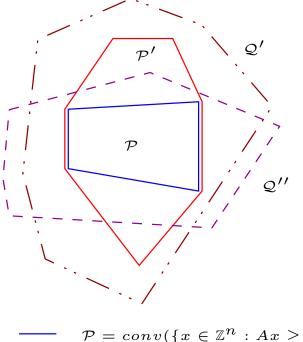
$$z_{IP} = \min_{x \in \mathcal{F}} \{ c^{\top} x \} = \min_{x \in \mathcal{P}} \{ c^{\top} x \} = \min_{x \in \mathbb{Z}^n} \{ c^{\top} x : Ax \ge b \}$$

where

$$\mathcal{F} = \{x \in \mathbb{Z}^n : A'x \ge b', A''x \ge b''\} \quad \mathcal{Q} = \{x \in \mathbb{R}^n : A'x \ge b', A''x \ge b''\}$$
$$\mathcal{F}' = \{x \in \mathbb{Z}^n : A'x \ge b'\} \quad \mathcal{Q}' = \{x \in \mathbb{R}^n : A'x \ge b'\}$$
$$\mathcal{Q}'' = \{x \in \mathbb{R}^n : A''x \ge b''\}$$

- Denote $\mathcal{P} = conv(\mathcal{F})$ and $\mathcal{P}' = conv(\mathcal{F}')$.
- Assume that optimization/separation over \mathcal{P} is *difficult*.
- Assume that optimization/separation over \mathcal{P}' can be done *effectively*.

Polyhedra, LP Bound, LD/DW/CP Bound



$$\mathcal{P} = conv(\{x \in \mathbb{Z}^{n} : Ax \ge b\})$$
$$\mathcal{P}' = conv(\{x \in \mathbb{Z}^{n} : A'x \ge b'\})$$
$$\mathcal{Q}' = \{x \in \mathbb{R}^{n} : A'x \ge b'\}$$
$$-- \mathcal{Q}'' = \{x \in \mathbb{R}^{n} : A''x \ge b''\}$$

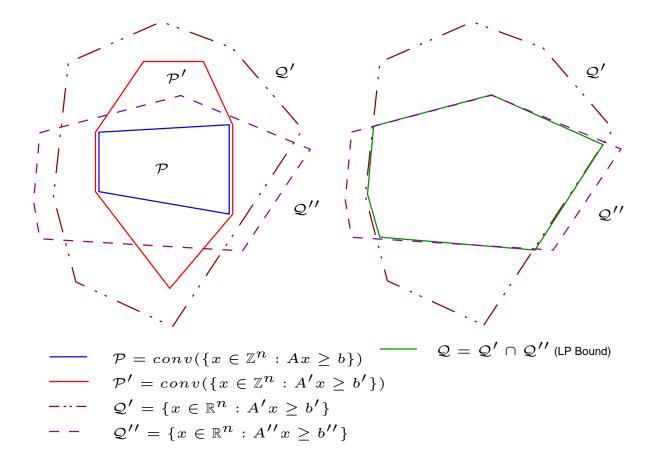
Bounding

- Goal: Compute a lower bound on z_{IP} .
- The most straightforward approach is to solve the initial LP relaxation

$$z_{LP} = \min_{x \in \mathcal{Q}} \{ c^{\top} x \} = \min_{x \in \mathbb{R}^n} \{ c^{\top} x : A' x \ge b', A'' x \ge b'' \}$$

- Decomposition approaches attempt to improve on this bound by utilizing our implicit knowledge of *P*['].
- Express the constraints of Q'' explicitly.
- Express the constraints of \mathcal{P}' implicitly through solution of a subproblem.
 - Dantzig-Wolfe Decomposition
 - Lagrangian Relaxation
 - Cutting Plane Method

Polyhedra, LP Bound, LD/DW/CP Bound



Dantzig-Wolfe Decomposition

The bound is obtained by solving the Dantzig-Wolfe LP:

$$z_{DW} = \min_{\lambda \in \mathbb{R}_{+}^{\mathcal{F}'}} \{ c^{\top} (\sum_{s \in \mathcal{F}'} s\lambda_s) : A'' (\sum_{s \in \mathcal{F}'} s\lambda_s) \ge b'', \sum_{s \in \mathcal{F}'} \lambda_s = 1 \}$$
(1)

- Solution method: simplex algorithm with dynamic column generation
- **Subproblem:** optimization over \mathcal{P}'
- Let $\hat{\lambda}$ be an optimal solution to (1) and

$$\hat{x} = \sum_{s \in \mathcal{F}'} s \hat{\lambda}_s \in \mathcal{P}' \tag{2}$$

Then, $z_{IP} \ge z_{DW} = c^{\top} \hat{x} \ge z_{LP}$.

Lagrangian Relaxation

The bound is obtained by solving the Lagrangian dual:

$$z_{LR}(u) = \min_{s \in \mathcal{F}'} \{ (c^{\top} - u^{\top} A'') s + u^{\top} b'' \}$$

$$z_{LD} = \max_{u \in \mathbb{R}_{+}^{m''}} \{ z_{LR}(u) \}$$
(4)

- Solution method: subgradient optimization
- Subproblem: optimization over \mathcal{P}'
- Rewriting z_{LD} as an LP we see it is the dual of the Dantzig-Wolfe LP

$$z_{LD} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}^{m''}_+} \{ \alpha + u^\top b'' : \alpha \le (c^\top - u^\top A'') s \ \forall s \in \mathcal{F}' \}$$
(5)

• So we have
$$z_{IP} \ge z_{LD} = z_{DW} \ge z_{LP}$$
.

Cutting Plane Methods

- The bound is obtained by augmenting the initial LP relaxation with facets of \mathcal{P}' .
- This approach yields the bound

$$z_{CP} = \min_{x \in \mathcal{P}'} \{ c^\top x : A'' x \ge b'' \}$$
(6)

- Solution method: simplex algorithm with dynamic cut generation
- **Subproblem:** separation from \mathcal{P}'
- Note that \hat{x} from (2) is an optimal solution to (6), so $z_{IP} \ge z_{CP} = z_{DW} \ge z_{LP}$.

A Common Framework

All three decomposition methods compute the same quantity [Geoffrion74].

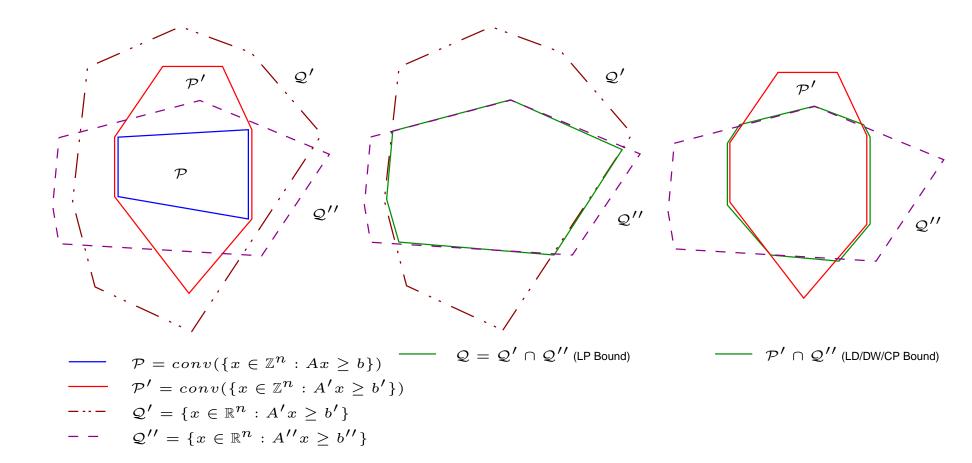
 $z_{IP} \ge c^{\top} \hat{x} = z_{LD} = z_{DW} = z_{CP} \ge z_{LP}$

- The basic ingredients are the same:
 - the original polyhedron (\mathcal{P}) ,
 - an implicit polyhedron (\mathcal{P}'), and
 - an explicit polyhedron (Q'').

The essential difference is how the implicit polyhedron is represented:

- CP : as the intersection of half-spaces (the outer representation), or
- DW/LD : as the convex hull of a finite set (inner representation).

Polyhedra, LP Bound, LD/DW/CP Bound



Outline

Preliminaries, Traditional Decomposition Methods

- Dantzig-Wolfe Decomposition
- Lagrangian Relaxation
- Cutting Plane Method
- Dynamic Decomposition Methods
 - Price and Cut
 - Relax and Cut
 - Decompose and Cut
- Applications/Examples
- DECOMP Library Framework

Cutting Plane Method (CPM)

1. Construct the initial LP relaxation LP^0 and set $i \leftarrow 0$.

 $z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x : A'x \ge b', A''x \ge b'' \}$

- 2. Solve LP^{*i*} to obtain an optimal solution \hat{x}^i and lower bound $z^i \leftarrow c^T \hat{x}^i$.
- 3. Attempt to separate \hat{x}^i from \mathcal{P} , generating violated inequalities $[D^i, d^i]$.
- 4. If $[D^i, d^i] \neq \emptyset$, set $[A'', b''] \leftarrow \begin{bmatrix} A'' & b'' \\ D^i & d^i \end{bmatrix}$, $i \leftarrow i+1$ and go to Step 2, else output z^i .
- Advantage (over traditional decomposition methods): Step 3 may generate inequalities that cut off parts of *P*['].
- The traditional cutting plane paradigm attempts to generate inequalities that violate \hat{x} .
- Adding a cut that violates \hat{x} does not necessarily improve the bound.

Improving Inequalities

An improving inequality is a valid inequality that when added to the explicit polyhedron results in an increase in the bound.

Theorem 1 Let *F* be the face of optimal solutions to LP^i . Then $(a, \beta) \in \mathbb{R}^{n+1}$ is an improving inequality if and only if $a^{\top}y < \beta$ for all $y \in F$.

Violation of the optimal face is a necessary and sufficient condition for an inequality to be improving but is difficult to verify.

Corollary 1 If $(a, \beta) \in \mathbb{R}^{n+1}$ is an improving inequality, then $a^{\top} \hat{x} < \beta$.

• Violation of \hat{x} is necessary (not sufficient) but is easy to verify.

Dynamic Decomposition Methods

● Goal: Improve the bound $\min_{x \in \mathcal{P}'} \{c^T x : A'' x \ge b''\}$ by dynamic tightening of the explicit polyhedron (\mathcal{Q}'').

Dynamic Decomposition Method

1. Construct the initial bounding subproblem P^0 and set $i \leftarrow 0$.

 $z_{DW} = \min_{\lambda \in \mathbb{R}^{\mathcal{F}'}_+} \{ c^\top (\sum_{s \in \mathcal{F}'} s\lambda_s) : A'' (\sum_{s \in \mathcal{F}'} s\lambda_s) \ge b'', \sum_{s \in \mathcal{F}'} \lambda_s = 1 \}$ $z_{LD} = \max_{u \in \mathbb{R}^n_+} \min_{x \in \mathcal{P}'} \{ (c^\top - u^\top A'') x + u^\top b'' \}$

 $z_{CP} = \min_{x \in \mathcal{P}'} \{ c^\top x : A'' x \ge b'' \}$

- 2. Solve P^i to obtain a lower bound z^i .
- 3. Attempt to generate a set of improving inequalities $[D^i, d^i]$.
- 4. If $[D^i, d^i] \neq \emptyset$, set $[A'', b''] \leftarrow \begin{bmatrix} A'' & b'' \\ D^i & d^i \end{bmatrix}, i \leftarrow i+1$ and go to Step 2, else output z^i .
- The key is Step 3 where we attempt to generate improving inequalities.

Price and Cut: use DW as the bounding subproblem

$$z_{DW} = \min_{\lambda \in \mathbb{R}_{+}^{\mathcal{F}'}} \{ c^{\top} (\sum_{s \in \mathcal{F}'} s\lambda_s) : A'' (\sum_{s \in \mathcal{F}'} s\lambda_s) \ge b'', \sum_{s \in \mathcal{F}'} \lambda_s = 1 \}$$

and attempt to separate $\hat{x} = \sum_{s \in \mathcal{F}'} s \hat{\lambda}_s$.

• Generation of the cuts takes place in original space - which maintains the structure of the column generation subproblem (optimization over \mathcal{P}').

PC vs CPM:

- Both try to separate \hat{x} from \mathcal{P} (which is typically hard)
- Corollary 1 provides us with motivation.
- Question: Can we take advantage of the additional information in PC (the optimal decomposition $\hat{\lambda}$) to help improve the bound?

Relax and Cut: use LD as the bounding subproblem and attempt to separate $\hat{s} \in \mathcal{F}'$.

$$z_{LD} = \max_{u \in \mathbb{R}^n_+} \min_{s \in \mathcal{F}'} \{ (c^\top - u^\top A'') s + u^\top b'' \}$$

- **P** RC vs CPM Advantage: It is often much easier to separate a member of \mathcal{F}' from \mathcal{P} than an arbitrary real vector, such as \hat{x} .
- **Proof** RC vs CPM Disadvantage: Solving LD with subgradient no access to original primal solution \hat{x} no way to verify the necessary condition in Corollary 1.

Questions:

- Can we improve our chances of generating an improving inequality?
- Can we characterize the relationship between \hat{s} and \hat{x} ?

Improving Inequalities (Cont.)

The set of alternative optimal primal solutions to LD is

 $\mathcal{S} = \{ s \in \mathcal{F}' : (c^\top - \hat{u}^\top A'') s = (c^\top - \hat{u}^\top A'') \hat{s} \}$

and \hat{s} is any optimal primal solution to the Lagrangian dual.

Theorem 2 The convex hull of *S* is a face of \mathcal{P}' and the optimal LP face *F* of $\min_{x \in \mathcal{P}'} \{ c^{\top}x : A''x \ge b'' \}$ is contained in conv(S).

• Note that separation of S is sufficient for an inequality to be improving.

Theorem 3 If $\hat{\lambda}$ is an optimal solution to the DW-LP, then $D = \{s \in \mathcal{F}' : \hat{\lambda}_s > 0\} \subseteq S$

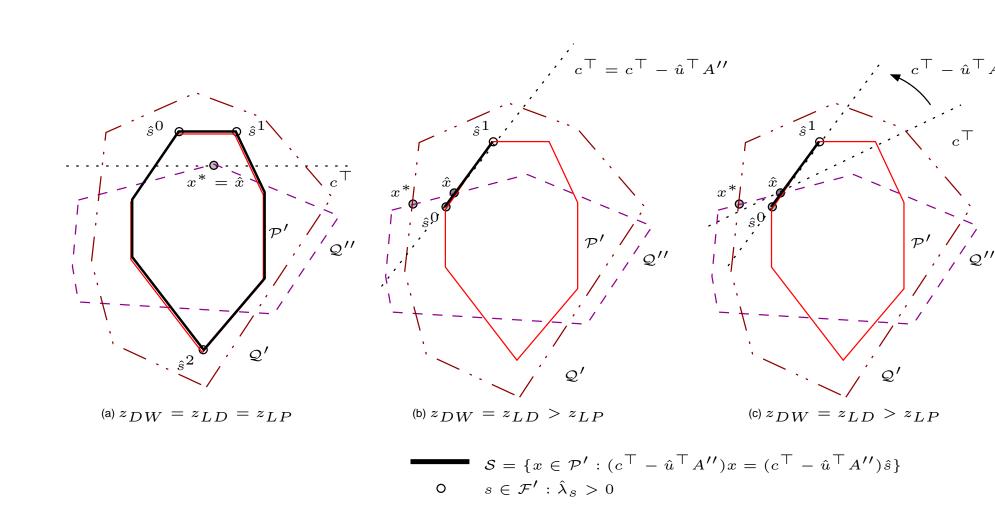
• Any $s \in D$ is an optimal primal solution for the Lagrangian dual.

Theorem 4 If $(a, \beta) \in \mathbb{R}^{(n+1)}$ is an improving inequality, then there must exist an $s \in D$ such that $a^{\top}s < \beta$.

Price and Cut (revisited)

- Idea: Rather than (or in addition to) separating \hat{x} , separate each $s \in D$.
- PC vs CPM Advantage:
 - Theorem 4 gives us an alternative necessary condition for finding improving inequalities. PC gives us the optimal decomposition *D*.
 - Recall: It is often much easier to separate a member of \mathcal{F}' from \mathcal{P} than an arbitrary real vector, such as \hat{x} .
- PC vs RC Advantage: RC only gives us one member of *S*, while PC gives us a set $D \subseteq S$.

Illustration

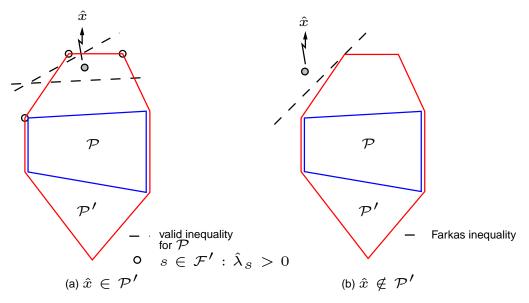


Decompose and Cut (DC)

Decompose and Cut: use CP as the bounding subproblem.

$$z_{CP} = \min_{x \in \mathcal{P}'} \{ c^\top x : A'' x \ge b'' \}$$

- Idea: Using a standard CPM framework given a fractional point \hat{x} , compute the decomposition $\hat{\lambda}$, then separate each $s \in D$ as in PC (*inverse DW*).
- PC vs DC Advantage: DC may be more efficient than PC since we only compute the decomposition when standard CPM separation fails.



Decompose and Cut Algorithm

Separation in Decompose and Cut

1. Attempt to decompose \hat{x} into a convex combination of members of \mathcal{F}' by solving the LP:

$$\max_{\lambda \in \mathbb{R}_{+}^{\mathcal{F}'}} \{ \mathbf{0}^{\top} \lambda : \sum_{s \in \mathcal{F}'} s \lambda_s = \hat{x}, \ \sum_{s \in \mathcal{F}'} \lambda_s = 1 \},$$
(7)

- 2.1 If (7) is feasible, set $D = \{s \in \mathcal{F}' : \hat{\lambda}_s > 0\}$
- **2.2** Else, return a *Farkas Cut* (a, β) valid for $\mathcal{P}' \subseteq \mathcal{P}$ which violates \hat{x} .
- **3.** Separate each $s \in D$ and return any cuts that also violate \hat{x} .

Column Generation in Decompose and Cut

- **1.0** Generate an initial subset \mathcal{G} of \mathcal{F}' .
- **1.1** Solve (7) over \mathcal{G} using the dual simplex algorithm.
- **1.2a** If (7) is feasible, return $D = \{s \in \mathcal{F}' : \hat{\lambda}_s > 0\}$.
- **1.2b** Else, optimize over \mathcal{P}' using the resulting Farkas inequality (row of B^{-1}). If the result has negative reduced cost, add it to \mathcal{G} and go to Step 1.1, else return the Farkas inequality.

Outline

Preliminaries, Traditional Decomposition Methods

- Dantzig-Wolfe Decomposition
- Lagrangian Relaxation
- Cutting Plane Method
- Dynamic Decomposition Methods
 - Price and Cut
 - Relax and Cut
 - Decompose and Cut
- Applications/Examples
- DECOMP Library Framework

Vehicle Routing Problem

ILP Formulation:

$$\sum_{e \in \delta(0)} x_e = 2k \tag{1}$$

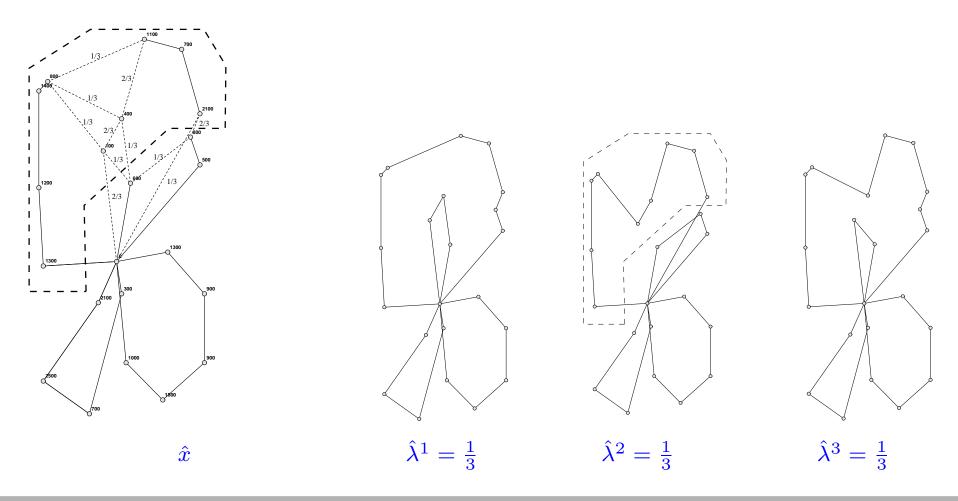
$$\sum_{e \in \delta(i)} x_e = 2 \quad \forall i \in V \setminus \{0\}$$

$$\sum_{e \in \delta(S)} x_e \geq 2b(S) \quad \forall S \subset V \setminus \{0\}, \ |S| > 1$$
(2)
(3)

- b(S) = lower bound on the number of trucks required to service $S = \left[\left(\sum_{i \in S} d_i \right) / C \right]$ (normally)
- Relaxations:
 - Multiple Traveling Salesman Problem: Set $C = \sum_{i \in S} d_i$.
 - k-Tree: Set $C = \sum_{i \in S} d_i$. Relax (2) but leave $\sum_{e \in E} x_e = n + k$.
- Facets of VRP (under certain conditions): GSECs (3), Combs, Multistars
- Decompose and Cut VRP/kTSP for GSECs [Ralphs, et al. On the Capacitated Vehicle Routing Problem, Mathematical Programming 03]
- Relax and Cut VRP/kTree for GSECs, Combs, Multistars [Martinhon, Lucena, Maculan, Stronger K-Tree Relaxations for the VRP, unpublished 01]

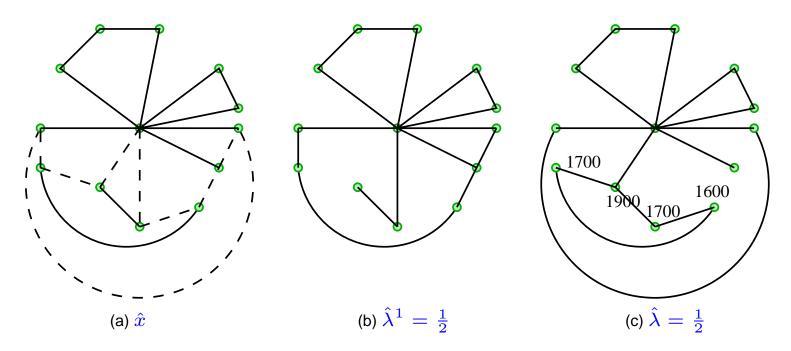
Example of Decomposition VRP/k-TSP

- Optimization over kTSP can be done efficiently TSP
- Separation of \hat{x} for GSECs \mathcal{NP} -Complete
- Separation of a $kTSP \in \mathcal{F}'$ for GSECs in O(n)



Example of Decomposition VRP/k-Tree

- Optimization over kTree in $O(n^2 \log n)$ [Wei and Yu]
- Separation of \hat{x}
 - for GSECs *NP*-Complete
 - for Combs and Multistars is difficult
- Separation of a $kTree \in \mathcal{F}'$
 - for GSECs in O(n)
 - for Combs and Multistars can be done efficiently



Axial Assignment Problem

PILP Formulation:

$$\min \begin{array}{ll} \sum_{(i,j,k)\in T} c_{ijk} x_{ijk} \\ \sum_{(j,k)\in J\times K} x_{ijk} \\ \sum_{(i,k)\in I\times K} x_{ijk} \\ \sum_{(i,k)\in I\times K} x_{ijk} \\ \sum_{(i,j)\in I\times J} x_{ijk} \\ x_{ijk}\in\{0,1\} \end{array} = \begin{array}{ll} \forall i\in I \\ \forall i\in I \\ \forall j\in J \\ \forall j\in J \\ \forall k\in K \\ \forall (i,j,k)\in T=I\times J\times K \end{array}$$
(1)
$$\begin{array}{ll} (1) \\ (2) \\ (3) \\ \forall (i,j,k)\in T=I\times J\times K \end{array}$$
(2)

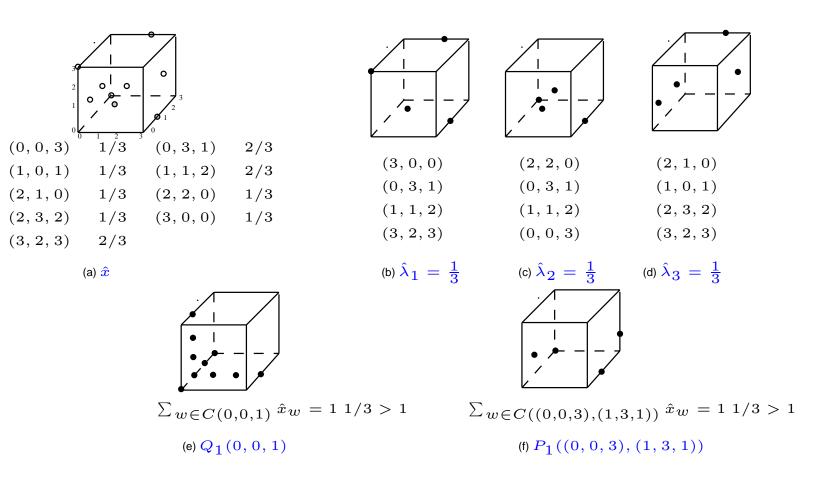
- Relaxation: Assignment Problem relax (1)
- Facets of AAP: $Q_1(u)$ and $P_1(u, v)$ cliques of the intersection graph of $K_{n,n,n}$

• Let $C(u) = \{ w \in T : |u \cap w| = 2 \}$, $C(u, v) = \{ w \in T : |u \cap w| = 1, |w \cap v| = 2 \}$ $x_u + \sum_{w \in C(u)} x_w \leq 1 \quad \forall u \in T \qquad (5)$ $x_u + \sum_{w \in C(u, v)} x_w \leq 1 \quad \forall u, v \in T, u \cap v = \emptyset \qquad (6)$

Relax and Cut - AP3/AP for Q1 [Balas and Saltzman, An Algorithm for the Three-Index Assignment Problem Operations Research 91]

Example of Decomposition AAP/AP

- Optimization over AP in $O(n^{5/2} \log(nC))$
- Separation of \hat{x} for Clique Facets in $O(n^3)$
- Separation of an $AP \in \mathcal{F}'$ for Clique Facets in O(n)



Outline

Preliminaries, Traditional Decomposition Methods

- Dantzig-Wolfe Decomposition
- Lagrangian Relaxation
- Cutting Plane Method
- Dynamic Decomposition Methods
 - Price and Cut
 - Relax and Cut
 - Decompose and Cut
- Applications/Examples
- DECOMP Library Framework

DECOMP Library Framework

- Goal: Framework to allow for direct comparison of all three dynamic decomposition methods.
- COIN-or: COmputational INfrastructure for Operations Research
- BCP: Parallel Branch, Price and Cut (LP-based Bounding) [Ladányi, Ralphs]
- ALPs: Abstract Library for Parallel Search [Ladányi, Ralphs, Saltzman]
 - BiCePS: Branch, Constrain and Price Software (Generic Bounding)
 - BLIS: BiCePS Linear Integer Solver = BCP
- DECOMP provides
 - CGL-like full implementation of *Decompose and Cut*
 - BiCePS plug-and-play for Price and Cut and Relax and Cut
- DECOMP user simply derives two methods:
 - solve_relaxed_problem (includes several built-in solvers)
 - separate_relaxed_point

Decompose and Cut Implementation Details

- Initialization of \mathcal{G} : solve over \mathcal{P}' with $c = -\hat{x}^{\epsilon}$.
- Active LP column management.
- Lifting the Farkas inequality ($\hat{x} \notin \mathcal{P}'$).
- Consistency Condition restriction of column generation search
 - $\hat{x}_i = 0 \Rightarrow s_i = 0, \forall s \in D$
 - $\hat{x}_i = 1 \Rightarrow s_i = 1, \forall s \in D$
- Is it necessary to be exact in solving the column generation subproblem?
 - Try optimizing over \mathcal{P}' heuristically first need negative reduced cost.
 - Do we necessarily want extreme points of \mathcal{P}' ?
- Decomposition into members of \mathcal{F} [Kopman 99]
 - Column generation subproblem is an optimization problem over *P*!!
 - Applegate, Bixby, Chvátal, and Cook, TSP Cuts Which Do Not Conform to the Template Paradigm, Computational Combinatorial Optimization 2001

Applications Under Development

Vehicle Routing Problem

- k-Traveling Salesman Problem : GSECs
- k-Tree : GSECs, Combs, Multistars
- Axial Assignment Problem
 - Assignment Problem : Clique-Facets
- Steiner Problem in Graphs
 - Minimum Spanning Tree : Lifted SECs, Partition Inequalities
- Knapsack Constrained Circuit Problem
 - Knapsack Problem : Cycle Cover, Maximal-Set Inequalities
- Edge-Weighted Clique Problem
 - Tree Relaxation : Trees, Cliques
- Subtour Elimination Problem [G. Benoit / S. Boyd] (LP context)
 - Fractional 2-Factor Problem : SECs

Conclusions

- Provided some insight into the relationship between: the optimal LP face F, the optimal DW solution \hat{x} , the optimal LD solution \hat{s} and the knowledge gained from the optimal decomposition $\hat{\lambda}$.
- Alternative (and often much easier) methods for separation: over \mathcal{F}' vs \mathcal{Q} .
 - Incorporated this idea into traditional *Price and Cut*.
 - Introduced a promising new paradigm for separation Decompose and Cut.
- Presented a unifying framework for dynamic cut generation in traditional decomposition methods.
 - We are currently in the process of developing a software framework DECOMF to implement and directly compare each of these methods.