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Decomposition Methods
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Preliminaries

■ Consider the following integer linear program (ILP):

zIP = min
x∈F
{c>x} = min

x∈P
{c>x} = min

x∈Zn
{c>x : Ax ≥ b}

where

F = {x ∈ Z
n : A′x ≥ b′, A′′x ≥ b′′} Q = {x ∈ R

n : A′x ≥ b′, A′′x ≥ b′′}

F ′ = {x ∈ Z
n : A′x ≥ b′} Q′ = {x ∈ R

n : A′x ≥ b′}

Q′′ = {x ∈ R
n : A′′x ≥ b′′}

■ Denote P = conv(F) and P ′ = conv(F ′).

■ OPT (c, X): Subroutine returns x ∈ X that minimizes c>x.

■ SEP (x, X): Subroutine returns (a, β) which separates x from X (if exists).
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Preliminaries

■ Assumption:

◆ OPT (c,P) and SEP (x,P) are “hard”.

◆ OPT (c,P ′) and SEP (x,P ′) are “easy”.

◆ Q′′ can be represented explicitly (description has polynomial size).

◆ P ′ must be represented implicitly (description has exponential size).

■ Classical Example - Traveling Salesman Problem

P

e∈δ(u) xe = 2 ∀u ∈ V
P

e∈δ(S) xe ≥ 2 ∀S ⊂ V, 2 ≤ |S| ≤ |V | − 1

xe ∈ {0, 1} ∀e ∈ E

■ One classical decomposition of TSP is to look for a spanning subgraph with
|V | edges (P ′ = 1-Tree) that satisfies the 2-degree constraints (Q′′).
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Example - Polyhedra

min x1

7x1 − x2 ≥ 13 (1)

x2 ≥ 1 (2)

−x1 + x2 ≥ −3 (3)

−x2 ≥ −5 (4)

0.2x1 − x2 ≥ −4 (5)

−x1 − x2 ≥ −8 (6)

−0.4x1 + x2 ≥ 0.3 (7)

x1 + x2 ≥ 4.5 (8)

3x1 + x2 ≥ 9.5 (9)

0.25x1 − x2 ≥ −3 (10)

x ∈ Z
2 (11)

Q′ = {x ∈ R
n | x satisfies (1)− (5)}

Q′′ = {x ∈ R
n | x satisfies (6)− (10)}

P ′ = conv(Q′ ∩ Z
n)

Q′

Q′′

(2,1)
P

P′
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Bounding

■ Goal: Compute a lower bound on zIP by building an approximation to P .

■ The most straightforward approach is to use the continuous approximation

zLP = min
x∈Q
{c>x} = min

x∈Rn
{c>x : A′x ≥ b′, A′′x ≥ b′′}

■ Decomposition approaches attempt to improve on this bound by utilizing the
fact that OPT (c,P ′) or SEP (x,P ′) is easy.

zD = min
x∈P′

{c>x | A′′x ≥ b′′} = min
x∈F′∩Q′′

{c>x} = min
x∈P′∩Q′′

{c>x} ≥ zLP

■ P ′ is represented implicitly through solution of a subproblem.

■ Decomposition Methods

◆ Cutting Plane Method (Outer Method)

◆ Dantzig-Wolfe Decomposition / Lagrangian Relaxation (Inner Methods)
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Example - Polyhedra

Q′

Q′′

P

Q′ ∩ Q′′

P

P′ ∩ Q′′

(2,1) (2,1) (2,1)

c>

P

P′

zLP = 2.25 < zD = 2.42 < zIP = 3.0
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Cutting Plane Method

■ Cutting Plane Method (CPM) gives an approximation of P by building an outer
approximation of P ′ intersected with Q′′.

■ Let [D, d] denote the facets of P ′, so that

P ′ = {x ∈ R
n : Dx ≥ d}

Cutting Plane Method
1. Initialize: Form outer approximation with [D0, d0] = [A′′, b′′] and set t← 0.
P0

O = {x ∈ <n | D0x ≥ d0} ⊇ P ′ ∩Q′′

2. Master Problem: Solve an LP to obtain an optimal primal solution xt
CP .

zt
CP = minx∈<n{c>x | Dtx ≥ dt}

3. Subproblem: Call SEP (xt
CP ,P ′) to generate improving v.i.s for P , violated by xt

CP

4. Update: If found, form a new outer approximation, set t← t + 1 and goto step 2.
Pt+1

O
= {x ∈ <n | Dt+1x ≤ dt+1} ⊇ P

■ The method converges to the bound

zCP = c>x̂CP = zD

.
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Cutting Plane Method

(a) (b)

P

P′P′

P0
O = Q′ ∩ Q′′ P1

O = P0
O ∩ {x ∈ R

n | 3x1 − x2 ≥ 5}

P

x0
CP = (2.25, 2.75) x1

CP = (2.42, 2.25)
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Dantzig-Wolfe Decomposition

■ Dantzig-Wolfe Decomposition (DW) gives an approximation of P by building
an inner description of P ′ intersected with Q′′.

■ Let E denote the extreme points of P ′, so that

P ′ = {x ∈ <n | x =
X

s∈E

sλs,
X

s∈E

λs = 1, λs ≥ 0 ∀s ∈ E}.

Dantzig-Wolfe Decomposition
1. Initialize: Form inner approximation with E0 ⊂ E and set t← 0.
P0

I = {x ∈ <n | x =
P

s∈E0 sλs,
P

s∈E0 λs = 1, λs ≥ 0 ∀s ∈ E0} ⊆ P ′

2. Master Problem: Solve the DW-LP to obtain optimal dual solution (ut
DW , αt

DW ).
z̄t
DW = min

λ∈<Et
+

{c>(
P

s∈Et sλs) | A′′(
P

s∈Et sλs) ≥ b′′,
P

s∈Et λs = 1}

3. Subproblem: Call OPT (c> − (ut
DW )>A′′,P ′), to generate improving e.p.s with

reduced cost rc(s) = (c> − (ut
DW )>A′′)s− αt

DW < 0.

4. Update: If found, form a new inner approximation, set t← t + 1 and goto Step 2.
Pt+1

I
= {x ∈ <n | x =

P

s∈Et+1 sλs,
P

s∈Et+1 λs = 1, λs ≥ 0 ∀s ∈ Et+1} ⊆ P ′

■ The method converges to the bound

zDW = c>(
X

s∈E

sλ̂s) = c>x̂DW = zD
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Dantzig-Wolfe Decomposition

(a) (b) (c)

Q′′

P

P′

c>

x0
DW = (4.25, 2)

ŝ = (2, 1)

Q′′

P

P′

x2
DW = (2.42, 2.25)

ŝ = (3, 4) ŝ = (2, 1)

x1
DW = (2.64, 1.86)

c> − û>A′′

c> − û>A′′

c> − û>A′′

PI
1 = conv(E1)PI

0 = conv(E0) PI
2 = conv(E2)

Q′′

P

P′
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Lagrangian Relaxation

■ Lagrangian Relaxation (LD) formulates a relaxation to the original ILP as
finding the minimal extreme point of P ′ with respect to a cost which is
penalized if the point lies outside of Q′′.

■ The Lagrangian Dual is a piecewise-linear concave function

zLD = max
u∈R

m′′
+

{min
s∈E
{c>s + u>(b′′ −A′′s)}}

■ Rewriting LD as an LP gives the dual of the DW-LP.

zLD = max
α∈R,u∈R

m′′
+

{α + b′′>u | α ≤ (c> − u>A′′)s ∀s ∈ E}.

■ So, zLD = zDW and Lagrangian Relaxation also achieves the bound zD .

Lagrangian Relaxation
1. Initialize: Define s0 ∈ E , initialize dual multipliers u0

LD for [A′′, b′′] and set t← 0.

2. Master Problem: Update the dual multipliers using directional information from st.

3. Subproblem: Call the subroutine OPT (c− (ut
LD)>A′′,P ′), to obtain a new direction

st+1 ∈ E . If the stopping criterion is not met, go to Step 2.
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Common Framework

■ The continuous approximation of P is formed as the intersection of two
explicitly defined polyhedra (both with a small description).

zLP = min
x∈Rn

{c>x | x ∈ Q′ ∩ Q′′}

■ Decomposition Methods form an approximation as the intersection of one
explicitly defined polyhedron (with a small description) and one implicitly
defined polyhedron (with a large description).

zD = min
x∈Rn

{c>x | x ∈ P ′ ∩ Q′′} ≥ zLP

■ Each of the traditional decomposition methods contain two primary steps

◆ Master Problem: Update the primal or dual solution information.

◆ Subproblem: Update the approximation of P : SEP (x,P ′) or OPT (c,P ′).

■ Integrated Decomposition Methods form an approximation as the intersection
of two implicitly defined polyhedra (both with a large description).

■ So, we improve on the bound zD by building both an inner approximation PI

of P ′ intersected with some outer approximation PO ⊂ Q
′′.
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Integrated Decomposition Methods
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Price and Cut

■ Price and Cut (PC) gives an approximation of P by building an inner
description of P ′ (as in DW) intersected with an outer approximation of P .

Price and Cut
1. Initialize: Form inner approximation with E0 ⊂ E , an outer approximation with

[D0, d0] = [A′′, b′′] and set t← 0.
P0

I = {x ∈ <n | x =
P

s∈E0 sλs,
P

s∈E0 λs = 1, λs ≥ 0 ∀s ∈ E0} ⊆ P ′

P0
O = {x ∈ <n | D0x ≥ d0} ⊇ P

2. Master Problem: Solve the DW-LP to obtain the optimal dual solution (ut
PC , αt

PC) and
the optimal decomposition λt

PC ∈ <
E , which yields the optimal primal solution xt

PC .
z̄t
PC = min

λ∈R
Et
+

{c>(
P

s∈Et sλs) | Dt(
P

s∈Et sλs) ≥ dt,
P

s∈Et λs = 1}

3. Do either (a) or (b).
(a) Pricing Subproblem and Update: Call OPT (c> − (ut

PC)>Dt,P ′), to generate

improving e.p.s with rc(s) < 0. If found, form a new inner approximation Pt+1
I

, set
t← t + 1 and go to Step 2.

(b) Cutting Subproblem and Update: Call SEP (xt
PC ,P) to generate improving v.i.s. If

found, form a new outer approximation Pt+1
O

, set t← t + 1 and go to Step 2.
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Relax and Cut

■ Relax and Cut (RC) improves on the bound zD using LD and augmenting the
multiplier space with valid inequalities that are violated by the solution to the
Lagrangian subproblem.

Relax and Cut
1. Initialize: Define s0 ∈ E , [D0, d0] = [A′′, b′′], initialize dual multipliers u0

LD for [D0, d0]

and set t← 0.
2. Master Problem: Update the dual multipliers using directional information from st.
3. Do either (a) or (b).

(a) Pricing Subproblem: Call the subroutine OPT (c− (ut
LD)>Dt,P ′), to obtain a new

direction st+1 ∈ E . If the stopping criterion is not met, go to Step 2.
(b) Cutting Subproblem: Call the subroutine SEP (st,P) to generate improving v.i.s. If

found, add them to [Dt, dt] along with new dual multipliers, and go to Step 2.
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Structured Separation

■ In general, the complexity of OPT (c, X) = SEP (x, X).

■ Observation: Restrictions on the input or output of these subroutines can
change their complexity.

■ Template Paradigm, restricts the output of SEP (x, X) to valid inequalities
(a, β) that conform to a certain structure. This class of inequalities forms a
polyhedron C ⊃ X.

■ For example, let P be the convex hull of solutions to the TSP.

◆ SEP (x,P) is NP -Complete.

◆ SEP (x, C) is polynomially solvable, for C ⊃ P the Subtour Polytope
(Min-Cut) or Blossom Polytope (Padberg-Rao).

■ Structured Separation, restricts the input of SEP (x, X), such that x conforms
to some structure. For example, if x is restricted to solutions to a
combinatorial problem, then separation often becomes much easier.
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Example - TSP

■ Traveling Salesman Problem Formulation:

x(δ(u)) = 2 ∀u ∈ V

x(δ(S)) ≥ 2 ∀S ⊂ V, 2 ≤ |S| ≤ |V | − 1

xe ∈ {0, 1} ∀e ∈ E

■ P ′ = 1-Tree Relaxation: OPT (c, 1− Tree) in O(m log m)

x(E) = |V |

x(δ(S)) ≥ 1 ∀S ⊂ V, 2 ≤ |S| ≤ |V | − 1

xe ∈ {0, 1} ∀e ∈ E

■ P ′ = 2-Matching Relaxation: OPT (c, 2−Match) in polynomial time

x(δ(u)) = 2 ∀u ∈ V

xe ∈ {0, 1} ∀e ∈ E
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Example - TSP
■ Separation of Subtour Inequalities:

x(δ(S)) ≥ 2

■ SEP (x, Subtour), for x ∈ R
n can be solved in O(|V |4) (Min-Cut)

■ SEP (s, Subtour), for s a 2-matching, can be solved in O(|V |)

◆ Simply determine the connected components Ci, and set S = Ci for each
componenet (each gives a violation of 2).
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Example - TSP
■ Separation of Blossom Inequalities:

x(E(H)) +

k
X

i=1

x(E(Ti)) ≤ |H|+

k
X

i=1

(|Ti| − 1)− dk/2e

■ SEP (x, Blossoms), for x ∈ R
n can be solved in O(|V |5) (Padberg-Rao)

■ SEP (s, Blossoms), for s a 1-Tree, can be solved in O(|V |)

◆ Simply determine the cycle C, and set H = C and Ti to be chains
originating at nodes in C (gives a violation of dk/2e).
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x ∈ R
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Motivation

■ In Relax and Cut, the solutions to the Lagrangian subproblem s ∈ E typically
have some nice combinatorial structure. So, the cutting step in Relax and Cut
SEP (s,P), can be relatively easy as opposed to general separation.

■ Question: Can we take advantage of this in other contexts?

■ LP theory tells us that in order to improve the bound, it is necessary and
sufficient to cut off the entire face of optimal solutions F .

■ This condition is difficult to verify, so we typically use the necessary condition
that the generated inequality be violated by some member of that face, x ∈ F .

◆ In the Cutting Plane Method, we search for inequalities that violate
xt

CP ∈ F t, where F t is optimal face over Pt
O ∩Q

′′.

◆ In the Price and Cut Method, we search for inequalities that violate
xt

PC ∈ F t, where F t is optimal face over Pt
I ∩ P

t
O .
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Motivation

■ Now, consider the following set

S(u, α) = {s ∈ E | (c> − u>A′′)s = α},

■ Then, S(ut
DW , αt

DW ) is the set e.p.s with rc(s) = 0 in the DW-LP master or
the set of alternative optimal solutions to the Lagrangian subproblem.

Theorem 1 F t ⊆ conv(S(ut
DW , αt

DW ))

■ Therefore, separation of S(ut
DW , αt

DW ) gives an alternative necessary and
sufficient condition for an inequality to be improving.

■ By convexity, it is clear that every improving inequality must violate at least
one extreme point in the optimal decomposition.

Theorem 2 If (a, β) ∈ R
(n+1) is an improving then there must exist an

s ∈ D = {s ∈ E | λt
s > 0} such that a>s < β

Theorem 3 D = {s ∈ E | λt
s > 0} ⊆ S(ut

PC , αt
PC)

■ Theorems 1-3, along with the observation that structured separation can be
relatively easy, motivates the following revised PC method.
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Price and Cut (Revisited)

■ Theorems 1-3 give us an alternative necessary condition for finding improving
inequalities. PC gives us the optimal decomposition D = {s ∈ E | λs > 0}.

■ Key Idea: In the cutting subproblem, rather than (or in addition to) separating
xt

PC , separate each s ∈ D.

■ The violated subtour found by separating the 2-Matching also violates the
fractional point, but was found at little cost.
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Decomp and Cut

■ In the context of the traditional CPM, we can construct (inverse DW) the
decomposition λ from the current fractional solution xCP by solving the
following LP

max
λ∈R

E
+

{0>λ :
X

s∈E

sλs = xCP ,
X

s∈E

λs = 1},

■ If we find a decomposition D, then we separate each s ∈ D, as in revised PC.

■ If we fail, then the LP proof of infeasibility (Farkas Cut) gives us a separating
hyperplane which can be used to cut off the current fractional point.

P′

Farkas ineqaulity

P P

P′

xCP xCP

s ∈ E : λs > 0

(a) xCP ∈ P′ (b) xCP /∈ P′

valid ineqaulity for P
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DECOMP Framework
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DECOMP Framework

■ DECOMP provides a flexible software framework for testing and extending the
theoretical framework presented thus far, with the primary goal of minimal
user responsibility.

■ DECOMP was built around data structures and interfaces provided by
COIN-OR: COmputational INfrastructure for Operations Research.

■ BCP provides a framework for parallel implementation of PC in a branch and
bound framework with LP-Based Bounding.

■ A generalization of BCP currently under development:

◆ ALPs: Abstract Library for Parallel Search

◆ BiCePS: Branch, Constrain and Price [Generic Bounding]

◆ BLIS: BiCePS Linear Integer Solver = BCP

■ DECOMP could provide an implementation of the BiCePS layer.
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DECOMP Framework

■ The framework, written in C++, is accessed through two user interfaces:

◆ Applications Interface: DecompApp

◆ Algorithms Interface: DecompAlgo

■ One important feature of DECOMP is that the user only needs to provide
methods for their application in the original space (x-space), rather than in the
space of a particular reformulation.

■ This allows for users to consider cuts and variables in their most intuitive form
and greatly simplifies the process of expansion into rows and columns.

■ Features:

◆ Automatic reformulation - row and column expansion in DW master,
dualization and multiplier updates in RC, etc...

◆ One interface to all default algorithms: CPM/DC, DW, LD, PC, RC.

◆ Built on top of the COIN/OSI interface, so easily interchange LP solvers.

◆ Active LP compression, variable and cut pool management.

◆ Easily switch between relaxations (choice of P ′).
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Applications Interface

■ In order to develop an application, the user must derive the following
methods/objects. All other methods have appropriate defaults but are
virtual and may be overridden.

◆ DecompApp::createCore(). Define [A′′, b′′].

◆ DecompVar. Define a variable s ∈ F ′ in terms of x-space.

◆ DecompCut. Define a cut (a, β) in terms of x-space.

◆ DecompApp::solveRelaxedProblem(). Provide a subroutine for
OPT (c,P ′), given a cost vector c, that returns a set of solutions as
DecompVar objects ∈ F ′.

◆ DecompApp::generateCuts(s). Provide a subroutine SEP (s,P),
given a DecompVar ∈ F ′, that returns a set of DecompCut objects.

■ If the user wishes to do traditional CPM or PC, they must also provide

◆ DecompApp::generateCuts(x). Provide a subroutine SEP (x,P),
given a arbitrary real vector, that returns a set of DecompCut objects.
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Applications Interface

■ By default, DecompVar is a virtual object defined as a sparse vector of
index/value assignments in x-space.

◆ For some applications, it is possible to more compactly represent a
variable (many combinatorial problems). In this case, the user can derive
APPDecompVar, which defines the assignment in x-space.

■ By default, DecompCut is a virtual object defined as a sparse vector if
index/value assignments in x-space, and a right-hand side, a>x ≥ β.

◆ For template cuts, it is often possible to more compactly represent a cut. In
this case, the user can derive APPDecompCut, which defines the
expansion of a cut in x-space.
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Algorithms Interface

■ The base class DecompAlgo provides the shell (master / subproblem) for
integrated decomposition methods.

■ Each of the methods described have derived default implementations
DecompAlgoX : public DecompAlgo.

■ New, hybrid or extended methods can be easily derived by overriding the
various subroutines which are called from the base class. For example,

◆ Alternative methods for solving the master LP in DW, such as interior
point methods or ACCPM.

◆ The user might choose to add a stabilizing factor to the dual updates in LD,
as in bundle methods.

◆ The user might choose the Volume algorithm for solving the LD, which
provides an approximation primal solution for which cuts can be generated.
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Applications Under Development

■ Steiner Tree Problem
◆ Minimum Spanning Tree : Lifted SECs, Partition - RC* [Lucena 92]

■ Traveling Salesman Problem
◆ One-Tree: Blossoms, Combs
◆ Matching: SECs

■ Vehicle Routing Problem
◆ k-Traveling Salesman Problem : GSECs - DC [Ralphs, et al. 03]
◆ k-Tree : GSECs, Combs, Multistars - RC* [Marthinhon, et al. 01]

■ Axial Assignment Problem
◆ Assignment Problem : Clique-Facets - RC [Balas, Saltzman 91]

■ Knapsack Constrained Circuit Problem
◆ Knapsack Problem : Cycle Cover, Maximal-Set Inequalities
◆ Circuit Problem: Cycle Cover, Maximal-Set Inequalities

■ Edge-Weighted Clique Problem
◆ Tree Relaxation : Trees, Cliques - RC [Hunting, et al. 01]

■ Subtour Elimination Problem [G. Benoit / S. Boyd]
◆ Fractional 2-Factor Problem : SECs - DC / LP Context [Benoit, Boyd 03]
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Summary

■ Decomposition Methods approximate P as P ′ ∩Q′′, where P ′ may have a
large description.

■ Integrated Decomposition Methods optimize over PI ∩ PO , where PI ⊂ P
′

and PO ⊃ P . Both polyhedra may have a large description.

■ Structured separation can be much easier than general separation.

■ We gave some motivation for two new techniques: revised-PC and DC.

◆ The question remains: Empirically, how good are the cuts generated by
separation of s ∈ D?

◆ However, for some facet classes, it doesn’t matter - we simply don’t know
how to separate x ∈ R

n. These ideas provide a starting point.

■ DECOMP provides an easy-to-use framework for comparing and developing
various decomposition-based methods.

■ The code is open-source, currently released under CPL and will eventually be
available through the COIN-OR project repository www.coin-or.org.
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