DECOMP: A Framework for Decomposition in Integer Programming

Matthew V. Galati
Ted K. Ralphs
SAS Institute - Analytical Solutions - Operations Research and Development, Cary, NC Lehigh University - Department of Industrial and Systems Engineering, Bethlehem, PA http://sagan.ie.lehigh.edu/mgalati

Outline

■ Decomposition Methods

- Cutting Plane Method
- Dantzig-Wolfe Decomposition
- Lagrangian Relaxation
- Integrated Decomposition Methods
- Price and Cut
- Relax and Cut
- Structured Separation and Motivation
- Decomp and Cut

■ DECOMP Framework

- Preliminaries
- Preliminaries
- Example - Polyhedra
- Bounding
- Example - Polyhedra
- Cutting Plane Method
- Cutting Plane Method
- Dantzig-Wolfe Decomposition
- Dantzig-Wolfe Decomposition
- Lagrangian Relaxation
- Common Framework

Integrated Decomposition Methods

Preliminaries

■ Consider the following integer linear program (ILP):

$$
z_{I P}=\min _{x \in \mathcal{F}}\left\{c^{\top} x\right\}=\min _{x \in \mathcal{P}}\left\{c^{\top} x\right\}=\min _{x \in \mathbb{Z}^{n}}\left\{c^{\top} x: A x \geq b\right\}
$$

where

$$
\begin{array}{rlrl}
\mathcal{F} & =\left\{x \in \mathbb{Z}^{n}: A^{\prime} x \geq b^{\prime}, A^{\prime \prime} x \geq b^{\prime \prime}\right\} & \mathcal{Q} & =\left\{x \in \mathbb{R}^{n}: A^{\prime} x \geq b^{\prime}, A^{\prime \prime} x \geq b^{\prime \prime}\right\} \\
\mathcal{F}^{\prime}=\left\{x \in \mathbb{Z}^{n}: A^{\prime} x \geq b^{\prime}\right\} & \mathcal{Q}^{\prime} & =\left\{x \in \mathbb{R}^{n}: A^{\prime} x \geq b^{\prime}\right\} \\
& \mathcal{Q}^{\prime \prime} & =\left\{x \in \mathbb{R}^{n}: A^{\prime \prime} x \geq b^{\prime \prime}\right\}
\end{array}
$$

■ Denote $\mathcal{P}=\operatorname{conv}(\mathcal{F})$ and $\mathcal{P}^{\prime}=\operatorname{conv}\left(\mathcal{F}^{\prime}\right)$.

- $O P T(c, X)$: Subroutine returns $x \in X$ that minimizes $c^{\top} x$.

■ $S E P(x, X)$: Subroutine returns (a, β) which separates x from X (if exists).

- Outline

Decomposition Methods

- Preliminaries

Preliminaries

- Assumption:
- $\operatorname{OPT}(c, \mathcal{P})$ and $S E P(x, \mathcal{P})$ are "hard".
- $O P T\left(c, \mathcal{P}^{\prime}\right)$ and $\operatorname{SEP}\left(x, \mathcal{P}^{\prime}\right)$ are "easy".
- $\mathcal{Q}^{\prime \prime}$ can be represented explicitly (description has polynomial size).
- \mathcal{P}^{\prime} must be represented implicitly (description has exponential size).

■ Classical Example - Traveling Salesman Problem

$$
\begin{array}{ll}
\sum_{e \in \delta(u)} x_{e}=2 & \forall u \in V \\
\sum_{e \in \delta(S)} x_{e} \geq 2 & \forall S \subset V, 2 \leq|S| \leq|V|-1 \\
x_{e} \in\{0,1\} & \\
& \forall e \in E
\end{array}
$$

- One classical decomposition of TSP is to look for a spanning subgraph with $|V|$ edges ($\mathcal{P}^{\prime}=1$-Tree) that satisfies the 2-degree constraints ($\mathcal{Q}^{\prime \prime}$).

Example - Polyhedra

$$
\begin{aligned}
& \text { min } \\
& \begin{array}{rlll}
x_{1} & & \\
7 x_{1}-x_{2} & \geq 13 & (1) \\
x_{2} & \geq 1 & (2) \\
-x_{1}+x_{2} & \geq & -3 & (3) \\
-x_{2} & \geq & -5 & (4) \\
0.2 x_{1}-x_{2} & \geq & -4 & (5) \\
-x_{1}-x_{2} & \geq & -8 & (6) \\
-0.4 x_{1}+x_{2} & \geq & 0.3 & (7) \\
x_{1}+x_{2} & \geq & 4.5 & (8) \\
3 x_{1}+x_{2} & \geq 9.5 & (9) \\
0.25 x_{1}-x_{2} & \geq & -3 & (10) \\
& x \in \mathbb{Z}^{2} & (11)
\end{array} \\
& \mathcal{Q}^{\prime}=\left\{x \in \mathbb{R}^{n} \mid x \text { satisfies }(1)-(5)\right\} \\
& \mathcal{Q}^{\prime \prime}=\left\{x \in \mathbb{R}^{n} \mid x \text { satisfies (6) - (10) }\right\} \\
& \mathcal{P}^{\prime}=\operatorname{conv}\left(\mathcal{Q}^{\prime} \cap \mathbb{Z}^{n}\right)
\end{aligned}
$$

Decomposition Methods

- Preliminaries
- Preliminaries - Example - Polyhedra

- Bounding

- Example - Polyhedra
- Cutting Plane Method
- Cutting Plane Method
- Dantzig-Wolfe Decomposition
- Dantzig-Wolfe Decomposition
- Lagrangian Relaxation
- Common Framework

Integrated Decomposition Methods
DECOMP Framework

- Outline

Decomposition Methods

- Preliminaries

- Preliminaries
- Example - Polyhedra
- Example - Polyhedra
- Cutting Plane Method
- Cutting Plane Method
- Dantzig-Wolfe Decomposition
- Dantzig-Wolfe Decomposition
- Lagrangian Relaxation
- Common Framework

Integrated Decomposition Methods

Bounding

■ Goal: Compute a lower bound on $z_{I P}$ by building an approximation to \mathcal{P}.

- The most straightforward approach is to use the continuous approximation

$$
z_{L P}=\min _{x \in \mathcal{Q}}\left\{c^{\top} x\right\}=\min _{x \in \mathbb{R}^{n}}\left\{c^{\top} x: A^{\prime} x \geq b^{\prime}, A^{\prime \prime} x \geq b^{\prime \prime}\right\}
$$

- Decomposition approaches attempt to improve on this bound by utilizing the fact that $O P T\left(c, \mathcal{P}^{\prime}\right)$ or $\operatorname{SEP}\left(x, \mathcal{P}^{\prime}\right)$ is easy.

$$
z_{D}=\min _{x \in \mathcal{P}^{\prime}}\left\{c^{\top} x \mid A^{\prime \prime} x \geq b^{\prime \prime}\right\}=\min _{x \in \mathcal{F}^{\prime} \cap \mathcal{Q}^{\prime \prime}}\left\{c^{\top} x\right\}=\min _{x \in \mathcal{P}^{\prime} \cap \mathcal{Q}^{\prime \prime}}\left\{c^{\top} x\right\} \geq z_{L P}
$$

■ \mathcal{P}^{\prime} is represented implicitly through solution of a subproblem.

- Decomposition Methods
- Cutting Plane Method (Outer Method)
- Dantzig-Wolfe Decomposition / Lagrangian Relaxation (Inner Methods)

Example - Polyhedra

- Outline

Decomposition Methods

- Preliminaries

- Preliminaries
- Example - Polyhedra
- Bounding
- Example - Polyhedra
- Dantzig-Wolfe Decomposition
- Dantzig-Wolfe Decomposition
- Lagrangian Relaxation
- Common Framework

Integrated Decomposition Methods
DECOMP Framework

Cutting Plane Method

■ Cutting Plane Method (CPM) gives an approximation of \mathcal{P} by building an outer approximation of \mathcal{P}^{\prime} intersected with $\mathcal{Q}^{\prime \prime}$.
■ Let $[D, d]$ denote the facets of \mathcal{P}^{\prime}, so that

$$
\mathcal{P}^{\prime}=\left\{x \in \mathbb{R}^{n}: D x \geq d\right\}
$$

Cutting Plane Method

1. Initialize: Form outer approximation with $\left[D^{0}, d^{0}\right]=\left[A^{\prime \prime}, b^{\prime \prime}\right]$ and set $t \leftarrow 0$.

$$
\mathcal{P}_{O}^{0}=\left\{x \in \Re^{n} \mid D^{0} x \geq d^{0}\right\} \supseteq \mathcal{P}^{\prime} \cap \mathcal{Q}^{\prime \prime}
$$

2. Master Problem: Solve an LP to obtain an optimal primal solution $x_{C P}^{t}$.

$$
z_{C P}^{t}=\min _{x \in \Re}{ }^{n}\left\{c^{\top} x \mid D^{t} x \geq d^{t}\right\}
$$

3. Subproblem: Call $\operatorname{SEP}\left(x_{C P}^{t}, \mathcal{P}^{\prime}\right)$ to generate improving v.i.s for \mathcal{P}, violated by x_{C}^{t}.
4. Update: If found, form a new outer approximation, set $t \leftarrow t+1$ and goto step 2.

$$
\mathcal{P}_{O}^{t+1}=\left\{x \in \Re^{n} \mid D^{t+1} x \leq d^{t+1}\right\} \supseteq \mathcal{P}
$$

- The method converges to the bound

$$
z_{C P}=c^{\top} \hat{x}_{C P}=z_{D}
$$

Cutting Plane Method

(a)

(b)

Dantzig-Wolfe Decomposition

■ Dantzig-Wolfe Decomposition (DW) gives an approximation of \mathcal{P} by building an inner description of \mathcal{P}^{\prime} intersected with $\mathcal{Q}^{\prime \prime}$.
■ Let \mathcal{E} denote the extreme points of \mathcal{P}^{\prime}, so that

$$
\mathcal{P}^{\prime}=\left\{x \in \Re^{n} \mid x=\sum_{s \in \mathcal{E}} s \lambda_{s}, \sum_{s \in \mathcal{E}} \lambda_{s}=1, \lambda_{s} \geq 0 \forall s \in \mathcal{E}\right\} .
$$

Dantzig-Wolfe Decomposition

1. Initialize: Form inner approximation with $\mathcal{E}^{0} \subset \mathcal{E}$ and set $t \leftarrow 0$.

$$
\mathcal{P}_{I}^{0}=\left\{x \in \Re^{n} \mid x=\sum_{s \in \mathcal{E}^{0}} s \lambda_{s}, \sum_{s \in \mathcal{E}^{0}} \lambda_{s}=1, \lambda_{s} \geq 0 \forall s \in \mathcal{E}^{0}\right\} \subseteq \mathcal{P}^{\prime}
$$

2. Master Problem: Solve the DW-LP to obtain optimal dual solution $\left(u_{D W}^{t}, \alpha_{D W}^{t}\right)$.

$$
\bar{z}_{D W}^{t}=\min _{\lambda \in \Re_{+} \mathcal{E}^{t}}\left\{c^{\top}\left(\sum_{s \in \mathcal{E}^{t}} s \lambda_{s}\right) \mid A^{\prime \prime}\left(\sum_{s \in \mathcal{E}^{t}} s \lambda_{s}\right) \geq b^{\prime \prime}, \sum_{s \in \mathcal{E}^{t}} \lambda_{s}=1\right\}
$$

3. Subproblem: Call $O P T\left(c^{\top}-\left(u_{D W}^{t}\right)^{\top} A^{\prime \prime}, \mathcal{P}^{\prime}\right)$, to generate improving e.p.s with reduced cost $r c(s)=\left(c^{\top}-\left(u_{D W}^{t}\right)^{\top} A^{\prime \prime}\right) s-\alpha_{D W}^{t}<0$.
4. Update: If found, form a new inner approximation, set $t \leftarrow t+1$ and goto Step 2.

$$
\mathcal{P}_{I}^{t+1}=\left\{x \in \Re^{n} \mid x=\sum_{s \in \mathcal{E}^{t+1}} s \lambda_{s}, \sum_{s \in \mathcal{E}^{t+1}} \lambda_{s}=1, \lambda_{s} \geq 0 \forall s \in \mathcal{E}^{t+1}\right\} \subseteq
$$

- The method converges to the bound

$$
z_{D W}=c^{\top}\left(\sum_{s \in \mathcal{E}} s \hat{\lambda}_{s}\right)=c^{\top} \hat{x}_{D W}=z_{D}
$$

Dantzig-Wolfe Decomposition

Lagrangian Relaxation

■ Lagrangian Relaxation (LD) formulates a relaxation to the original ILP as finding the minimal extreme point of \mathcal{P}^{\prime} with respect to a cost which is penalized if the point lies outside of $\mathcal{Q}^{\prime \prime}$.

- The Lagrangian Dual is a piecewise-linear concave function

$$
z_{L D}=\max _{u \in \mathbb{R}_{+}^{m \prime \prime}}\left\{\min _{s \in \mathcal{E}}\left\{c^{\top} s+u^{\top}\left(b^{\prime \prime}-A^{\prime \prime} s\right)\right\}\right\}
$$

■ Rewriting LD as an LP gives the dual of the DW-LP.

$$
z_{L D}=\max _{\alpha \in \mathbb{R}, u \in \mathbb{R}_{+}^{m^{\prime \prime}}}\left\{\alpha+b^{\prime \prime \top} u \mid \alpha \leq\left(c^{\top}-u^{\top} A^{\prime \prime}\right) s \forall s \in \mathcal{E}\right\} .
$$

- So, $z_{L D}=z_{D W}$ and Lagrangian Relaxation also achieves the bound z_{D}.

Lagrangian Relaxation

1. Initialize: Define $s^{0} \in \mathcal{E}$, initialize dual multipliers $u_{L D}^{0}$ for $\left[A^{\prime \prime}, b^{\prime \prime}\right]$ and set $t \leftarrow 0$.
2. Master Problem: Update the dual multipliers using directional information from s^{t}.
3. Subproblem: Call the subroutine $O P T\left(c-\left(u_{L D}^{t}\right)^{\top} A^{\prime \prime}, \mathcal{P}^{\prime}\right)$, to obtain a new direct $s^{t+1} \in \mathcal{E}$. If the stopping criterion is not met, go to Step 2 .

- Outline

Decomposition Methods

- Preliminaries
- Preliminaries
- Example - Polyhedra
- Bounding
- Example - Polyhedra
- Cutting Plane Method
- Cutting Plane Method
- Dantzig-Wolfe Decomposition
- Dantzig-Wolfe Decomposition
- Lagrangian Relaxation

Common Framework

- The continuous approximation of \mathcal{P} is formed as the intersection of two explicitly defined polyhedra (both with a small description).

$$
z_{L P}=\min _{x \in \mathbb{R}^{n}}\left\{c^{\top} x \mid x \in \mathcal{Q}^{\prime} \cap \mathcal{Q}^{\prime \prime}\right\}
$$

- Decomposition Methods form an approximation as the intersection of one explicitly defined polyhedron (with a small description) and one implicitly defined polyhedron (with a large description).

$$
z_{D}=\min _{x \in \mathbb{R}^{n}}\left\{c^{\top} x \mid x \in \mathcal{P}^{\prime} \cap \mathcal{Q}^{\prime \prime}\right\} \geq z_{L P}
$$

- Each of the traditional decomposition methods contain two primary steps
- Master Problem: Update the primal or dual solution information.
- Subproblem: Update the approximation of $\mathcal{P}: S E P\left(x, \mathcal{P}^{\prime}\right)$ or $O P T\left(c, \mathcal{P}^{\prime}\right)$.
- Integrated Decomposition Methods form an approximation as the intersection of two implicitly defined polyhedra (both with a large description).
■ So, we improve on the bound z_{D} by building both an inner approximation \mathcal{P}_{I} of \mathcal{P}^{\prime} intersected with some outer approximation $\mathcal{P}_{O} \subset \mathcal{Q}^{\prime \prime}$.

- Price and Cut
- Relax and Cut
- Structured Separation
- Example - TSP
- Example - TSP
- Example - TSP
- Motivation
- Motivation
- Price and Cut (Revisited)
- Decomp and Cut

DECOMP Framework

Integrated Decomposition Methods

Price and Cut

- Price and Cut (PC) gives an approximation of \mathcal{P} by building an inner description of \mathcal{P}^{\prime} (as in DW) intersected with an outer approximation of \mathcal{P}.

Price and Cut

1. Initialize: Form inner approximation with $\mathcal{E}^{0} \subset \mathcal{E}$, an outer approximation with

$$
\begin{aligned}
& {\left[D^{0}, d^{0}\right]=\left[A^{\prime \prime}, b^{\prime \prime}\right] \text { and set } t \leftarrow 0} \\
& \mathcal{P}_{I}^{0}=\left\{x \in \Re^{n} \mid x=\sum_{s \in \mathcal{E}^{0}} s \lambda_{s}, \sum_{s \in \mathcal{E}^{0}} \lambda_{s}=1, \lambda_{s} \geq 0 \forall s \in \mathcal{E}^{0}\right\} \subseteq \mathcal{P}^{\prime} \\
& \mathcal{P}_{O}^{0}=\left\{x \in \Re^{n} \mid D^{0} x \geq d^{0}\right\} \supseteq \mathcal{P}
\end{aligned}
$$

2. Master Problem: Solve the DW-LP to obtain the optimal dual solution $\left(u_{P C}^{t}, \alpha_{P C}^{t}\right)$ the optimal decomposition $\lambda_{P C}^{t} \in \Re^{\mathcal{E}}$, which yields the optimal primal solution x_{F}^{t}

$$
\bar{z}_{P C}^{t}=\min _{\lambda \in \mathbb{R}_{+}^{\mathcal{E}}}\left\{c^{\top}\left(\sum_{s \in \mathcal{E}^{t}} s \lambda_{s}\right) \mid D^{t}\left(\sum_{s \in \mathcal{E}^{t}} s \lambda_{s}\right) \geq d^{t}, \sum_{s \in \mathcal{E}^{t}} \lambda_{s}=1\right\}
$$

3. Do either (a) or (b).
(a) Pricing Subproblem and Update: Call $\operatorname{OPT}\left(c^{\top}-\left(u_{P C}^{t}\right)^{\top} D^{t}, \mathcal{P}^{\prime}\right)$, to generate improving e.p.s with $r c(s)<0$. If found, form a new inner approximation \mathcal{P}_{I}^{t+1} $t \leftarrow t+1$ and go to Step 2.
(b) Cutting Subproblem and Update: Call $S E P\left(x_{P C}^{t}, \mathcal{P}\right)$ to generate improving v.i.s. found, form a new outer approximation \mathcal{P}_{O}^{t+1}, set $t \leftarrow t+1$ and go to Step 2.

- Outline

Decomposition Methods
Integrated Decomposition Methods

- Price and Cut
- Relax and Cut
- Structured Separation
- Example - TSP
- Example - TSP
- Example - TSP
- Motivation
- Motivation
- Price and Cut (Revisited)
- Decomp and Cut

DECOMP Framework

Relax and Cut

- Relax and Cut (RC) improves on the bound z_{D} using LD and augmenting the multiplier space with valid inequalities that are violated by the solution to the Lagrangian subproblem.

Relax and Cut

1. Initialize: Define $s^{0} \in \mathcal{E},\left[D^{0}, d^{0}\right]=\left[A^{\prime \prime}, b^{\prime \prime}\right]$, initialize dual multipliers $u_{L D}^{0}$ for $\left[D^{0}\right.$ and set $t \leftarrow 0$.
2. Master Problem: Update the dual multipliers using directional information from s^{t}.
3. Do either (a) or (b).
(a) Pricing Subproblem: Call the subroutine $O P T\left(c-\left(u_{L D}^{t}\right)^{\top} D^{t}, \mathcal{P}^{\prime}\right)$, to obtain a 1 direction $s^{t+1} \in \mathcal{E}$. If the stopping criterion is not met, go to Step 2.
(b) Cutting Subproblem: Call the subroutine $\operatorname{SEP}\left(s^{t}, \mathcal{P}\right)$ to generate improving v.i.s found, add them to $\left[D^{t}, d^{t}\right]$ along with new dual multipliers, and go to Step 2.

Outline
Decomposition Methods
Integrated Decomposition Methods

- Price and Cut
- Relax and Cut
- Structured Separation
- Example - TSP
- Example - TSP
- Example - TSP
- Motivation
- Motivation
- Price and Cut (Revisited)
- Decomp and Cut

DECOMP Framework

Structured Separation

■ In general, the complexity of $\operatorname{OPT}(c, X)=S E P(x, X)$.
■ Observation: Restrictions on the input or output of these subroutines can change their complexity.

- Template Paradigm, restricts the output of $\operatorname{SEP}(x, X)$ to valid inequalities (a, β) that conform to a certain structure. This class of inequalities forms a polyhedron $C \supset X$.
- For example, let \mathcal{P} be the convex hull of solutions to the TSP.
- $\operatorname{SEP}(x, \mathcal{P})$ is $N P$-Complete.
- $\operatorname{SEP}(x, \mathcal{C})$ is polynomially solvable, for $\mathcal{C} \supset \mathcal{P}$ the Subtour Polytope (Min-Cut) or Blossom Polytope (Padberg-Rao).
- Structured Separation, restricts the input of $\operatorname{SEP}(x, X)$, such that x conforms to some structure. For example, if x is restricted to solutions to a combinatorial problem, then separation often becomes much easier.

Example - TSP

■ Traveling Salesman Problem Formulation:

$$
\begin{array}{ll}
x(\delta(u))=2 & \forall u \in V \\
x(\delta(S)) \geq 2 & \forall S \subset V, 2 \leq|S| \leq|V|-1 \\
x_{e} \in\{0,1\} & \forall e \in E
\end{array}
$$

■ $\mathcal{P}^{\prime}=1$-Tree Relaxation: $O P T(c, 1-$ Tree $)$ in $O(m \log m)$

$$
\begin{array}{llll}
x(E) & = & |V| & \\
x(\delta(S)) \geq & 1 & \forall S \subset V, 2 \leq|S| \leq|V|-1 \\
x_{e} \in\{0,1\} & & \forall e \in E
\end{array}
$$

■ $\mathcal{P}^{\prime}=2$-Matching Relaxation: $O P T(c, 2-$ Match $)$ in polynomial time

$$
\begin{array}{ll}
x(\delta(u))=2 & \forall u \in V \\
x_{e} \in\{0,1\} & \forall e \in E
\end{array}
$$

- Outline

Decomposition Methods
Integrated Decomposition Methods

- Price and Cut
- Relax and Cut
- Structured Separation
- Example - TSP
- Example - TSP
- Example - TSP
- Motivation
- Motivation
- Price and Cut (Revisited)
- Decomp and Cut DECOMP Framework

Example - TSP

■ Separation of Subtour Inequalities:

$$
x(\delta(S)) \geq 2
$$

■ $S E P(x$, Subtour $)$, for $x \in \mathbb{R}^{n}$ can be solved in $O\left(|V|^{4}\right)$ (Min-Cut)

- $S E P(s, S u b t o u r)$, for s a 2-matching, can be solved in $O(|V|)$
- Simply determine the connected components C_{i}, and set $S=C_{i}$ for each componenet (each gives a violation of 2).

- Outline

Decomposition Methods
Integrated Decomposition Methods

- Price and Cut
- Relax and Cut
- Structured Separation
- Example - TSP
- Example - TSP
- Motivation
- Motivation
- Price and Cut (Revisited)
- Decomp and Cut

DECOMP Framework

Example - TSP

■ Separation of Blossom Inequalities:

$$
x(E(H))+\sum_{i=1}^{k} x\left(E\left(T_{i}\right)\right) \leq|H|+\sum_{i=1}^{k}\left(\left|T_{i}\right|-1\right)-\lceil k / 2\rceil
$$

■ $\operatorname{SEP}(x$, Blossoms $)$, for $x \in \mathbb{R}^{n}$ can be solved in $O\left(|V|^{5}\right)$ (Padberg-Rao)

- $S E P(s, B l o s s o m s)$, for s a 1-Tree, can be solved in $O(|V|)$
- Simply determine the cycle C, and set $H=C$ and T_{i} to be chains originating at nodes in C (gives a violation of $\lceil k / 2\rceil$).

- Outline

Decomposition Methods

Integrated Decomposition Methods

- Price and Cut
- Relax and Cut
- Structured Separation
- Example - TSP
- Example - TSP
- Example - TSP
- Price and Cut (Revisited)
- Decomp and Cut

DECOMP Framework

Motivation

- In Relax and Cut, the solutions to the Lagrangian subproblem $s \in \mathcal{E}$ typically have some nice combinatorial structure. So, the cutting step in Relax and Cut $S E P(s, \mathcal{P})$, can be relatively easy as opposed to general separation.

■ Question: Can we take advantage of this in other contexts?
■ LP theory tells us that in order to improve the bound, it is necessary and sufficient to cut off the entire face of optimal solutions F.

- This condition is difficult to verify, so we typically use the necessary condition that the generated inequality be violated by some member of that face, $x \in F$.
- In the Cutting Plane Method, we search for inequalities that violate $x_{C P}^{t} \in F^{t}$, where F^{t} is optimal face over $\mathcal{P}_{O}^{t} \cap \mathcal{Q}^{\prime \prime}$.
- In the Price and Cut Method, we search for inequalities that violate $x_{P C}^{t} \in F^{t}$, where F^{t} is optimal face over $\mathcal{P}_{I}^{t} \cap \mathcal{P}_{O}^{t}$.

- Outline

Decomposition Methods

Motivation

- Now, consider the following set

$$
\mathcal{S}(u, \alpha)=\left\{s \in \mathcal{E} \mid\left(c^{\top}-u^{\top} A^{\prime \prime}\right) s=\alpha\right\},
$$

■ Then, $\mathcal{S}\left(u_{D W}^{t}, \alpha_{D W}^{t}\right)$ is the set e.p.s with $r c(s)=0$ in the DW-LP master or the set of alternative optimal solutions to the Lagrangian subproblem.

Theorem $1 F^{t} \subseteq \operatorname{conv}\left(\mathcal{S}\left(u_{D W}^{t}, \alpha_{D W}^{t}\right)\right)$
■ Therefore, separation of $\mathcal{S}\left(u_{D W}^{t}, \alpha_{D W}^{t}\right)$ gives an alternative necessary and sufficient condition for an inequality to be improving.

- By convexity, it is clear that every improving inequality must violate at least one extreme point in the optimal decomposition.

Theorem 2 If $(a, \beta) \in \mathbb{R}^{(n+1)}$ is an improving then there must exist an $s \in \mathcal{D}=\left\{s \in \mathcal{E} \mid \lambda_{s}^{t}>0\right\}$ such that $a^{\top} s<\beta$

Theorem $3 \mathcal{D}=\left\{s \in \mathcal{E} \mid \lambda_{s}^{t}>0\right\} \subseteq \mathcal{S}\left(u_{P C}^{t}, \alpha_{P C}^{t}\right)$

- Theorems 1-3, along with the observation that structured separation can be relatively easy, motivates the following revised PC method.

Price and Cut (Revisited)

- Theorems 1-3 give us an alternative necessary condition for finding improving inequalities. PC gives us the optimal decomposition $D=\left\{s \in \mathcal{E} \mid \lambda_{s}>0\right\}$.
- Key Idea: In the cutting subproblem, rather than (or in addition to) separating $x_{P C}^{t}$, separate each $s \in D$.
- The violated subtour found by separating the 2-Matching also violates the fractional point, but was found at little cost.

Decomposition Methods

Integrated Decomposition Methods

- Price and Cut
- Relax and Cut
- Structured Separation
- Example - TSP
- Example - TSP
- Example - TSP
- Motivation
- Motivation
- Price and Cut (Revisited)

Decomp and Cut

- In the context of the traditional CPM, we can construct (inverse DW) the decomposition λ from the current fractional solution $x_{C P}$ by solving the following LP

$$
\max _{\lambda \in \mathbb{R}_{+}^{\mathcal{E}}}\left\{\mathbf{0}^{\top} \lambda: \sum_{s \in \mathcal{E}} s \lambda_{s}=x_{C P}, \sum_{s \in \mathcal{E}} \lambda_{s}=1\right\},
$$

- If we find a decomposition \mathcal{D}, then we separate each $s \in \mathcal{D}$, as in revised PC.
- If we fail, then the LP proof of infeasibility (Farkas Cut) gives us a separating hyperplane which can be used to cut off the current fractional point.

(a) $x_{C P} \in \mathcal{P}^{\prime}$

(b) $x_{C P} \notin \mathcal{P}^{\prime}$

- Algorithms Interface
- Applications Under Development
- Summary

DECOMP Framework

- Outline

Decomposition Methods
Integrated Decomposition Methods
DECOMP Framework

- DECOMP Framework
- DECOMP Framework
- Applications Interface
- Applications Interface
- Algorithms Interface
- Applications Under Development - Summary

DECOMP Framework

■ DECOMP provides a flexible software framework for testing and extending the theoretical framework presented thus far, with the primary goal of minimal user responsibility.

- DECOMP was built around data structures and interfaces provided by COIN-OR: COmputational INfrastructure for Operations Research.

■ BCP provides a framework for parallel implementation of PC in a branch and bound framework with LP-Based Bounding.
■ A generalization of BCP currently under development:

- ALPs: Abstract Library for Parallel Search
- BiCePS: Branch, Constrain and Price [Generic Bounding]
- BLIS: BiCePS Linear Integer Solver = BCP

■ DECOMP could provide an implementation of the BiCePS layer.

- Outline

Decomposition Methods

- Algorithms Interface
- Applications Under Development - Summary

DECOMP Framework

■ The framework, written in C++, is accessed through two user interfaces:

- Applications Interface: DecompApp
- Algorithms Interface: DecompAlgo
- One important feature of DECOMP is that the user only needs to provide methods for their application in the original space (x-space), rather than in the space of a particular reformulation.
■ This allows for users to consider cuts and variables in their most intuitive form and greatly simplifies the process of expansion into rows and columns.

■ Features:

- Automatic reformulation - row and column expansion in DW master, dualization and multiplier updates in RC, etc...
- One interface to all default algorithms: CPM/DC, DW, LD, PC, RC.
- Built on top of the COIN/OSI interface, so easily interchange LP solvers.
- Active LP compression, variable and cut pool management.
- Easily switch between relaxations (choice of \mathcal{P}^{\prime}).

Applications Interface

- In order to develop an application, the user must derive the following methods/objects. All other methods have appropriate defaults but are virtual and may be overridden.
- DecompApp: :createCore(). Define $\left[A^{\prime \prime}, b^{\prime \prime}\right]$.
- DecompVar. Define a variable $s \in \mathcal{F}^{\prime}$ in terms of x-space.
- DecompCut. Define a cut (a, β) in terms of x-space.
- DecompApp::solveRelaxedProblem(). Provide a subroutine for $O P T\left(c, \mathcal{P}^{\prime}\right)$, given a cost vector c, that returns a set of solutions as DecompVar objects $\in \mathcal{F}^{\prime}$.
- DecompApp: :generateCuts (s). Provide a subroutine $\operatorname{SEP}(s, \mathcal{P})$, given a DecompVar $\in \mathcal{F}^{\prime}$, that returns a set of DecompCut objects.
■ If the user wishes to do traditional CPM or PC, they must also provide
- DecompApp: :generateCuts (x). Provide a subroutine $S E P(x, \mathcal{P})$, given a arbitrary real vector, that returns a set of DecompCut objects.

Applications Interface

- By default, DecompVar is a virtual object defined as a sparse vector of index/value assignments in x-space.
- For some applications, it is possible to more compactly represent a variable (many combinatorial problems). In this case, the user can derive APPDecompVar, which defines the assignment in x-space.
■ By default, DecompCut is a virtual object defined as a sparse vector if index/value assignments in x-space, and a right-hand side, $a^{\top} x \geq \beta$.
- For template cuts, it is often possible to more compactly represent a cut. In this case, the user can derive APPDecompCut, which defines the expansion of a cut in x-space.

- Outline

Decomposition Methods
Integrated Decomposition Methods
DECOMP Framework

- DECOMP Framework
- DECOMP Framework
- Applications Interface - Applications Interface

Algorithms Interface

■ The base class DecompAlgo provides the shell (master / subproblem) for integrated decomposition methods.
■ Each of the methods described have derived default implementations DecompAlgoX : public DecompAlgo.

■ New, hybrid or extended methods can be easily derived by overriding the various subroutines which are called from the base class. For example,

- Alternative methods for solving the master LP in DW, such as interior point methods or ACCPM.
- The user might choose to add a stabilizing factor to the dual updates in LD, as in bundle methods.
- The user might choose the Volume algorithm for solving the LD, which provides an approximation primal solution for which cuts can be generated.

Uutine
Decomposition Methods
Integrated Decomposition Methods
DECOMP Framework

- DECOMP Framework
- DECOMP Framework
- Applications Interface
- Applications Interface
- Algorithms Interface - Applications Under Developm
- Summary

Applications Under Development

- Steiner Tree Problem
- Minimum Spanning Tree : Lifted SECs, Partition - RC* [Lucena 92]
- Traveling Salesman Problem
- One-Tree: Blossoms, Combs
- Matching: SECs
- Vehicle Routing Problem
- k-Traveling Salesman Problem : GSECs - DC [Ralphs, et al. 03]
- k-Tree : GSECs, Combs, Multistars - RC* [Marthinhon, et al. 01]
- Axial Assignment Problem
- Assignment Problem : Clique-Facets - RC [Balas, Saltzman 91]

■ Knapsack Constrained Circuit Problem

- Knapsack Problem : Cycle Cover, Maximal-Set Inequalities
- Circuit Problem: Cycle Cover, Maximal-Set Inequalities

■ Edge-Weighted Clique Problem

- Tree Relaxation : Trees, Cliques - RC [Hunting, et al. 01]

■ Subtour Elimination Problem [G. Benoit / S. Boyd]

- Fractional 2-Factor Problem : SECs - DC / LP Context [Benoit, Boyd 03]

Summary

■ Decomposition Methods approximate \mathcal{P} as $\mathcal{P}^{\prime} \cap \mathcal{Q}^{\prime \prime}$, where \mathcal{P}^{\prime} may have a large description.
■ Integrated Decomposition Methods optimize over $\mathcal{P}_{I} \cap \mathcal{P}_{O}$, where $\mathcal{P}_{I} \subset \mathcal{P}^{\prime}$ and $\mathcal{P}_{O} \supset \mathcal{P}$. Both polyhedra may have a large description.
■ Structured separation can be much easier than general separation.

- We gave some motivation for two new techniques: revised-PC and DC.
- The question remains: Empirically, how good are the cuts generated by separation of $s \in \mathcal{D}$?
- However, for some facet classes, it doesn't matter - we simply don't know how to separate $x \in \mathbb{R}^{n}$. These ideas provide a starting point.
■ DECOMP provides an easy-to-use framework for comparing and developing various decomposition-based methods.
- The code is open-source, currently released under CPL and will eventually be available through the COIN-OR project repository www.coin-or.org.

