IGERT Experience In Switzerland Logistics at Galenica Pharmaceutical

Matthew V Galati

Gérard Hêche

Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA, USA September 27, 2002

- École Polytechnique Fédérale de Lausanne, Suisse (EPFL) Travel
- Galenica Pharmaceutical Logistics
- Vehicle Routing Problem with Time Windows (VRPTW)
- Branch Cut and Price (BCP)
- BCP for VRPTW
 - Formulation
 - Pricing Problem
 - Cutting Planes
 - Stanching
- Implementation of BCP for VRPTW
- (Preliminary) Computational Results
- Current Research

- School of Basic Sciences Institute of Mathematics
 - Recherche Opérationnelle Sud Ouest (ROSO) Thomas Liebling
 - Recherche Opérationnelle Sud Est (ROSE) Dominique de Werra
- Student Proposals COIN-or.org
 - Preprocessing Techniques for Mixed Integer Programming
 - A Cut Generator Library for Integer Programming
- Seminar Series: Martine Labbé Universite Libre De Bruxelles
 - Branch-and-Cut for Network Design in Telecommunications
 - Two-Connected Network with Bounded Rings
- 3ème Cycle Romand de Recherche Opérationnelle Zinal, Switzerland
 - Alexander Schrijver of CWI (National Research Institute for Mathematics and Computer Science in the Netherlands), Amsterdam
 - Kurt Mehlhorn of Max-Planck-Institut f
 ür Informatik, Saarbr
 ücken

Common Optimization INterface for

Operations Research

- An initiative to spur the development of open source software for the operations research community.
- Current projects in the COIN repository www.coin-or.org:
 - **BCP:** a parallel branch-cut-price framework
 - CGL: a cut generation library
 - DFO: a package for solving general nonlinear optimization problems when derivatives are unavailable
 - VOL: the volume algorithm
 - OSI: an open solver interface layer
 - OTS: an open framework for tabu search
 - IPOPT: an interior point algorithm for general large-scale nonlinear optimization
 - CLP: a native simplex solver

- ROSO Seminar Series (May 2002): Decomposition-based Methods for Large-scale Discrete Optimization
- Galenica Pharmaceutical Logistics Optimization
 - Current system uses a greedy insertion heuristic
- Contribution
 - Improve the quality of the solutions provided by the heuristic methods
 - Provide some measurement or proof of optimality

- École Polytechnique Fédérale de Lausanne, Suisse (EPFL)
- Galenica Pharmaceutical Logistics
- Vehicle Routing Problem with Time Windows (VRPTW)
- Branch Cut and Price (BCP)
- BCP for VRPTW
 - Formulation
 - Pricing Problem
 - Cutting Planes
 - Stanching
- Implementation of BCP for VRPTW
- (Preliminary) Computational Results
- Current Research

- Major pharmaceutical corporation headquartered in Bern, Switzerland
- Several distribution centers (DCs) across the country
- Apriori set of customers (and demand) to be serviced each day of the week (from a given DC)
- Each customer has a (tight) fixed time window when delivery may occur (considered hard constraints).
- Routing between customers calculated by a street-level route generator.
- Cost is a linear combination of distance and time.

Galenica Logistics - Challenges

Design

- Delivery length is typically small so the same truck can make several cycles per day (load, depart from DC, delivery, return to DC).
- It is possible to use trailers with some trucks.
- What is the effect of soft time windows?

Depot

- Trucks sometimes require 60m maintenance on return to depot.
- During loading there are only n slots available at one time.

Trucks

- Some trucks are only available within a specificed time window.
- Trucks are capacitated by both weight and volume.

Route

- If the route exceeds 4 hours, the driver must take a 15 m break.
- Idle time at the customer must be less than 15m.

- École Polytechnique Fédérale de Lausanne, Suisse (EPFL)
- Galenica Pharmaceutical Logistics
- Vehicle Routing Problem with Time Windows (VRPTW)
- Branch Cut and Price (BCP)
- BCP for VRPTW
 - Formulation
 - Pricing Problem
 - Cutting Planes
 - Stanching
- Implementation of BCP for VRPTW
- (Preliminary) Computational Results
- Current Research

Vehicle Routing with Time Windows

- Set of customers C set of homogenous vehicles K with capacity q.
- Let N define the set of nodes 0, 1, 2, ..., n + 1.
- The set of arcs A is defined as $\{(i, j) : i \neq j, i \neq n+1, j \neq 0\}$.
- For each arc $(i, j) \in A$, we have cost c_{ij} and time t_{ij} which includes the service time at customer *i*.
- **Solution** Each customer $i \in C$ has a demand d_i and a time window $[a_i, b_i]$.
- Define the variable $x_{ijk} = 1$ if vehicle $k \in K$ drives along arc $(i, j) \in A$. Let s_{ik} define the time vehicle k starts to service customer i.

Vehicle Routing with Time Windows

Design a set of minimal cost routes, one for each vehicle,

 $\min\sum_{k\in K}\sum_{i\in N}\sum_{j\in N}c_{ij}x_{ijk}$

such that, each customer is serviced exactly once,

$$\sum_{k \in K} \sum_{j \in N} x_{ijk} = 1 \ \forall i \in C$$
(1)

every route originates at vertex 0 and ends at vertex n + 1,

$$\sum_{j \in N} x_{ojk} = 1 \ \forall k \in K$$
 (2)

$$\sum_{i \in N} x_{ihk} - \sum_{j \in N} x_{hjk} = 0 \ \forall h \in C, k \in K$$
(3)

$$\sum_{i \in N} x_{i,n+1,k} = 1 \quad \forall k \in K$$
(4)

Vehicle Routing with Time Windows

the time windows and capacity constraints are observed and

$$\sum_{i \in C} d_i \sum_{j \in N} x_{ijk} \leq q \quad \forall k \in K$$
 (5)

$$s_{ik} + t_{ij} - M(1 - x_{ijk}) \leq s_{jk} \quad \forall i, j \in N, k \in K$$
(6)

$$a_i \le s_{ik} \le b_i \qquad \qquad \forall i \in N, k \in K \tag{7}$$

assignments are integral.

$$x_{ijk} \in \{0,1\} \ \forall i,j \in N, k \in K$$

$$(8)$$

- École Polytechnique Fédérale de Lausanne, Suisse (EPFL)
- Galenica Pharmaceutical Logistics
- Vehicle Routing Problem with Time Windows (VRPTW)
- Branch Cut and Price (BCP)
- BCP for VRPTW
 - Formulation
 - Pricing Problem
 - Cutting Planes
 - Stanching
- Implementation of BCP for VRPTW
- (Preliminary) Computational Results
- Current Research

• Consider problem P:

 $\begin{array}{ll} \min \ c^T x \\ s.t. \quad Ax \ \leq \ b \\ x_i \ \in \ \mathbb{Z} \ \forall \ i \in I \end{array}$

where $(A, b) \in \mathbb{R}^{m \times n+1}, c \in \mathbb{R}^n$.

- Basic Algorithmic Approach
 - Use LP relaxations to produce lower bounds.
 - Branch using hyperplanes.
- Basic Algorithmic Elements
 - A method for producing and tightening the LP relaxations.
 - A method for branching.

Weyl-Minkowski

- $\exists (\bar{A}, \bar{b}) \in \mathbb{R}^{\bar{m} \times \bar{n}+1} \text{ s.t. } \mathcal{P} = \{ x \in \mathbb{R}^n : \bar{A}x \le \bar{b} \}$
- We want the solution to $min\{c^Tx : \bar{A}x \leq \bar{b}\}$.
- Solving this LP isn't practical (or necessary).

BCP Approach

- Form LP relaxations using submatrices of \overline{A} .
- The submatrices are defined by sets $\mathcal{V} \subseteq [1..\bar{n}]$ and $\mathcal{C} \subseteq [1..\bar{m}]$.

BCP Elements

- Pricing Algorithm Variable Generation
- Cutting Plane Algorithm Constraints Generation

- École Polytechnique Fédérale de Lausanne, Suisse (EPFL)
- Galenica Pharmaceutical Logistics
- Vehicle Routing Problem with Time Windows (VRPTW)
- Branch Cut and Price (BCP)
- BCP for VRPTW
 - Formulation
 - Pricing Problem
 - Cutting Planes
 - Stanching
- Implementation of BCP for VRPTW
- (Preliminary) Computational Results
- Current Research

- Set of elementary feasible routes \hat{R}
- Solution For each route *r* ∈ \hat{R} , let β_{ir} be the number of times route *r* visits customer *i* with cost *c_r*.

$$\min \sum_{r \in \hat{R}} c_r y_r$$

$$\sum_{r \in \hat{R}} \beta_{ir} y_r = 1 \qquad \forall i \in C \qquad (9)$$

$$\left[\sum_{i \in C} d_i / q \right] \leq \sum_{r \in \hat{R}} y_r \leq |K| \qquad (10)$$

$$y_r \in \{0, 1\} \qquad \forall r \in \hat{R} \qquad (11)$$

- Reduced cost of variable y_r is $c_r \sum_{i \in C \cup \{0\}} \pi_i \beta_{ir}$
- Corresponds to the modified arc costs $\hat{c}_{ij} = c_{ij} \pi_i$
- Does there exist a member of \hat{R} with negative reduced cost?
- Instance of Elementary Shortest Path Problem with Time Windows and Capacity Constraints (ESPPTWCC).
- ESPPTWCC is NP-hard and there is no known efficient algorithm.
- \blacksquare Let *R* be the set of all feasible routes (nonelementary routes are allowed).
- Now an instance of SPPTWCC (also NP-hard) but there exists an efficient pseudo-polynomial dynamic programming [Desrochers et al].

- Ideas of label setting and dominance from Dijkstras for SPP.
- Assumption: time and capacity are discretized.
- Define a state as c(i, t, d) for vertex *i*, current time *t* and accumulated demand *d*.

c(0,0,0) = 0 $c(j,t,d) = min_i \{ \hat{c} + c(i,t',d') | t' + t_{ij} = t \land d' + d_i = d \}$

- The number of possible states is $\Gamma = \sum_{i \in N} (b_i a_i)(q 1)$.
- Dominance: $(i, t_1, d_1) \prec (i, t_2, d_2)$ if and only if $c(i, t_1, d_1) \leq c(i, t_2, d_2), t_1 \leq t_2$ and $d_1 \leq d_2$.

<Initialization>

 $NPS = \{(0,0,0)\}, c(0,0,0) = 0$

repeat

(i, t, d) = BestLabel(NPS)

for j := 1 to n + 1 do

if $(i \neq j \text{ and } t + t_{ij} \leq b_j \wedge d + d_j \leq q)$ then

<Label Feasible>

if $c(j, max\{t + t_{ij}, a_j\}, d + d_j) > c(i, t, d) + \hat{c}_{ij}$ then

<New Label Better>

 $InsertLabel(NPS, (j, max\{t + t_{ij}, a_j\}, d + d_j))$

 $c(j, max\{t + t_{ij}, a_j\}, d + d_j) = c(i, t, d) + \hat{c}_{ij}$

until(i = n + 1)

return

SPP with Resource Constraints

- Can find a lot of path cycling between "good" vertices.
- Houck et al: 2-cycle Elimination $i \rightarrow j \rightarrow i$ extend the label to (*i*, *t*, *d*, *pred*) which increases the number of states by 2.
- Irnich: k-cylce Elimination can increase the number of states by $\binom{k}{2} + 1$.
 - Example: $k = 4 : i \rightarrow j \rightarrow k \rightarrow l \rightarrow i$

Data Structures

- N Linked Lists
- Generalized Buckets

- Let k(S) denote the least number of vehicles needed to serve each customer in S: NP-hard.
- Define the flow on an arc $x_{ij} = \sum_{r \in R} \gamma_{ij}^r y_r$.
- Let k be some integer no larger than k(S).
- Define the general k-Path Cut as

$$x(S) = \sum_{(i,j)\in\delta(S)} x_{ij} \ge k(S) \ge k$$

• $x(S) \ge 1$: Directed version of TSP subtour elimination constraints.

- Separation: Polynomial using max flow / min cut.
 - Appelgate, Bixby, Chvátal and Cook CONCORDE

- Larsen: Greedy search of neighborhood until $x(S) \ge 2$.
- Rich/Cook: Random contraction algorithm of Karger with high probability, finds all cuts with weight within a multiplicative factor α of the min cut in $O(n^{2\alpha} \log^3 n)$.

- Step 1: Is there sufficient capacity on a single vehicle to service S?
- Step 2: Is there a feasible route that leaves the depot, visits each customer in S once and returns to the depot?
- Step 2 is an instance of a TSPTW-feasibility problem: NP-complete.
- SPTW can be solved efficiently using a DP similiar to SPPTWCC.

- Is it valid? Greedy or Karger
- Is it violated? Instance of VRPTW-feasibility!!

- If number of vehicles $\sum_{r \in R} y_r$ is fractional branch on constraint (10).
- Else, choose the arc (i, j) which maximizes the $c_{ij} \min(x_{ij}, 1 x_{ij})$.
 - $x_{ij} = 0$, Fix routes containing arc (i, j) to 0.
 - $x_{ij} = 1$, Fix any route that visits *i* or *j* without using arc (i, j) to 0.
- Alternatives: Branching on resource constraints (TWs, capacity).

- École Polytechnique Fédérale de Lausanne, Suisse (EPFL)
- Galenica Pharmaceutical Logistics
- Vehicle Routing Problem with Time Windows (VRPTW)
- Branch Cut and Price (BCP)
- BCP for VRPTW
 - Formulation
 - Pricing Problem
 - Cutting Planes
 - Stanching
- Implementation of BCP for VRPTW
- (Preliminary) Computational Results
- Current Research

- Summer Sessions: http://sagan.ie.lehigh.edu/coin/coin.html
- Modules: TM, LP, VG, CG
- Tree Manager
 - _ create_root initial set of variables (routes)
- Linear Program
 - cuts_to_rows expand constraints given the current LP
 - vars_to_cols expand variables given the current LP
 - select_branching_candidates branching
- Variable Generator
 - generate_vars generate variables (SPPTWCC)

Cut Generator

generate_cuts - generate cuts (k-Path Cuts)

Galenica Logistics - Challenges

Design

Delivery length is typically small so the same truck can make several cycles per day (load, depart from DC, delivery, return to DC).

3 deliveries per day: morning, noon, night

It is possible to use trailers with some trucks. ??

- What is the effect of soft time windows?
 - Increase the TW and set a cost $p(s_i)$. Dominance criterion remains if cost is non-decreasing, i.e., penalty on late, not idle.

Depot

- Trucks sometimes require 60m maintenance on return to depot.
- During loading there are only n slots available at one time.
 - Allow lead time between deliveries for needed maintenance.

Galenica Logistics - Challenges

Trucks

- Some trucks are only available within a specificed time window.
- Trucks are capacitated by both weight and volume.
 - Heterogenous fleet means solving K instances of SPPRC at each iteration.

Route

- If the route exceeds 4 hours, the driver must take a 15 m break. ??
- Idle time at the customer must be less than 15m.
 - As a hard constraint can be restricted in column generator.

- École Polytechnique Fédérale de Lausanne, Suisse (EPFL)
- Galenica Pharmaceutical Logistics
- Vehicle Routing Problem with Time Windows (VRPTW)
- Branch Cut and Price (BCP)
- BCP for VRPTW
 - Formulation
 - Pricing Problem
 - Cutting Planes
 - Stanching
- Implementation of BCP for VRPTW
- (Preliminary) Computational Results
- Current Research

Computational Results

Benchmark Solomon Instances

- c1 instances: Clustered geography, short horizon (5-10 customers per route)
- r1 instances: Random geography, short horizon
- rc1 instances: Random and Clustered geography, short horizon
- c2 instances: Clustered geography, long horizon (more than 30 customers per route)
- ightarrow r2 instances: Random geography, long horizon
- rc2 instances: Random and Clustered geography, long horizon
- Rich/Cook: 300 MHz Pentium II with 256MB Cplex 5.0
- Galati : OSL V3.0

Solomon Instances - c1.25 instances

	Rich/Cook				Galati			
problem	nodes	cols	cuts	time	nodes	cols	cuts	time
c101.25	1	499	0	0.57	1	1146	0	0.57
c102.25	1	726	0	1.83	1	3713	0	2.63
c103.25	1	616	0	3.34	1	3430	0	4.41
c104.25	1	570	0	5.41	1	2898	0	15.62
c105.25	1	445	0	0.58	1	1487	0	0.66
c106.25	1	363	0	0.27	1	993	0	0.42
c107.25	1	472	0	0.50	1	1227	0	0.45
c108.25	1	380	0	0.69	1	2029	0	1.02
c109.25	1	383	0	1.20	3	1357	9	3.05
Total	9	4454	0	14.39	11	18280	9	28.83

Solomon Instances - c1.50 instances

	Rich/Cook				Galati			
problem	nodes	cols	cuts	time	nodes	cols	cuts	time
c101.50	1	956	0	1.52	1	2281	0	1.81
c102.50	1	1150	0	6.88	1	4684	0	5.90
c103.50	1	1192	0	27.00	1	6525	0	61.97
c104.50	4	2043	1	169.22	401	22387	1	1210.32
c105.50	1	1222	0	2.53	1	3341	0	2.80
c106.50	1	744	0	1.30	1	2440	0	1.81
c107.50	1	1176	0	3.58	1	3466	0	2.81
c108.50	1	1142	0	5.43	1	4363	0	4.81
c109.50	1	999	0	9.53	3	3382	9	14.57
Total	12	10624	1	226.99	411	52869	10	1306.8
Total/104	7	7625	0	56.25	9	28201	9	94.67

Solomon Instances - r1.25 instances

	Rich/Cook				Galati			
problem	nodes	cols	cuts	time	nodes	cols	cuts	time
r101.25	1	84	0	0.36	1	173	0	0.08
r102.25	1	152	2	0.43	1	567	3	0.26
r103.25	1	218	0	0.47	1	714	0	0.24
r104.25	1	277	0	1.02	1	1066	0	0.58
r105.25	1	124	0	0.17	1	320	0	0.08
r106.25	1	236	1	0.54	1	725	6	0.87
r107.25	1	278	2	0.89	2	929	0	0.81
r108.25	2	305	2	2.21	2	966	0	1.03
r109.25	1	192	0	0.25	1	515	0	0.14
r110.25	16	603	4	4.13	22	1506	1	5.14
Total	26	2469	11	10.47	33	7481	10	9.23

Solomon Instances - r1.50 instances

	Rich/Cook				Galati			
problem	nodes	cols	cuts	time	nodes	cols	cuts	time
r101.50	1	292	1	1.67	3	680	1	1.46
r102.50	1	418	0	1.43	1	1847	0	1.19
r103.50	49	2051	2	47.37	182	10431	0	78.56
r105.50	8	609	2	5.51	68	1929	15	29.00
r106.50	1	499	5	4.19	1	1584	3	2.11
r107.50	42	2262	3	67.07	180	10997	0	89.79
r109.50	140	1955	8	91.88	1200	25340	0	271.00
r110.50	3	666	3	12.16	690	18098	0	213.00
Total	245	8752	24	231.28	2325	70906	19	686.11
r104.50	74	3382	12	489.87	_	_	_	3600.00
108.50		_		_				—

- École Polytechnique Fédérale de Lausanne, Suisse (EPFL)
- Galenica Pharmaceutical Logistics
- Vehicle Routing Problem with Time Windows (VRPTW)
- Branch Cut and Price (BCP)
- BCP for VRPTW
 - Formulation
 - Pricing Problem
 - Cutting Planes
 - Stanching
- Implementation of BCP for VRPTW
- (Preliminary) Computational Results
- Current Research

Current Research

- DECOMP: A general separation algorithm for large-scale discrete optimization problems using decomposition methods.
- Optimization Seminar Series http://sagan.ie.lehigh.edu/ipseminar

