Small Chvátal Rank

Tristram Bogart

Math & Stat, Queen's University, Kingston

Rekha R. Thomas

Math, Univ. of Washington, Seattle

The Integer Hull

Fix
$$A \in \mathbb{Z}^{m \times n}$$
, rank $(A) = n$. For $\mathbf{b} \in \mathbb{Z}^m$, let

$$Q_{\mathbf{b}} := \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \le \mathbf{b} \}$$

$$Q_{\mathbf{b}}^{I} := \operatorname{conv}(Q_{\mathbf{b}} \cap \mathbb{Z}^{n})$$
 integer hull of $Q_{\mathbf{b}}$

- (1) $Q_{\mathbf{b}}^{I}$ is again a polyhedron.
- (2) There is no function f(m,n) that bounds $\#\text{vertices}(Q_{\mathbf{b}}^I)$. (Rubin 1970): $Q(k) := \{(x,y) \in \mathbb{R}^2_{\geq 0} : F_{2k}x + F_{2k+1}y \leq F_{2k+1}^2 1\}$ $F_k = k$ th Fibonacci number, $Q(k)^I$ has k+3 vertices (and edges)
- (3) (Cook, Hartmann, Kannan, McDiarmid 1992): $\operatorname{size}(\mathbf{a}_i\mathbf{x} \leq b_i) \leq \phi \ \Rightarrow \ \#\operatorname{vertices}(Q_{\mathbf{b}}^I) \leq 2m^n(6n^2\phi)^{n-1}$ (Barany, Howe, Lovász 1992): matching lower bound

MAIN GOAL: Given A, find $M \in \mathbb{Z}^{* \times n}$ such that for each $\mathbf{b} \in \mathbb{Z}^m$ there exists a $\mathbf{b}' \in \mathbb{Z}^*$ such that $Q_{\mathbf{b}}^I = \{\mathbf{x} \in \mathbb{R}^n : M\mathbf{x} \leq \mathbf{b}'\}$.

Theorem 17.4 (Schrijver): Given A, such an M exists.

Proof idea: $\Delta := \max | \text{subdet}(A) |$

Can cut out $Q_{\mathbf{h}}^{I}$ by $\mathbf{a}\mathbf{x} \leq \beta$ where $||\mathbf{a}||_{\infty} \leq n^{2n}\Delta^{n}$

Set {rows of M} = { $\mathbf{m} \in \mathbb{Z}^n : ||\mathbf{m}||_{\infty} \le n^{2n} \Delta^n, \ \mathbf{m} \in \text{cone}(\text{rows of } A)$ }.

Ex:
$$A = \begin{pmatrix} 1 & 2 \\ -2 & -3 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\Delta = 3$, $n^{2n}\Delta^n = 144$

In fact, it is necessary and sufficient! to augment

A by
$$(1,1), (0,-1), (-1,-2), (-1,-1)$$
 to get M .

Hilbert Bases

K rational polyhedral cone

 $\{\mathbf{h}_1, \dots, \mathbf{h}_t\} \subset K$ is a **Hilbert basis** of K if $\forall \mathbf{u} \in K \cap \mathbb{Z}^n$, there exists $\lambda_i \in \mathbb{N}$ such that $\mathbf{u} = \sum_{i=1}^t \lambda_i \mathbf{h}_i$.

Previous Example

Chvátal procedure

- $\mathcal{A} := \{ \text{rows of } A \} \subset \mathbb{Z}^n$
- ullet \forall vertex \mathbf{v} of $Q_{\mathbf{b}}$, let $\mathcal{A}_{\mathbf{v}} := \{\mathbf{a}_i \in \mathcal{A} : \mathbf{a}_i \mathbf{v} = b_i\}$
- ullet $\mathbf{h} \in \mathsf{HB}(\mathsf{cone}(\mathcal{A}_{\mathbf{v}})) \Rightarrow \mathbf{h}\mathbf{x} \leq \lfloor h\mathbf{v}
 floor$ is valid for $Q_{\mathbf{h}}^I$
- $\bullet \ \ Q_{\mathbf{b}}^{(1)} := \{\mathbf{x} \in \mathbb{R}^n : h\mathbf{x} \leq \lfloor h\mathbf{v} \rfloor \ \forall \ \mathbf{v} \ \mathsf{vertex} \ \mathsf{of} \ Q_{\mathbf{b}}, \ \mathbf{h} \in \mathsf{HB}(\mathsf{cone}(\mathcal{A}_{\mathbf{v}}))\}$
- $Q_{\mathbf{b}}^{(i+1)} := (Q_{\mathbf{b}}^{(i)})^{(1)}$

Chvátal Ranks

(Chvátal 1973, Schrijver 1980): There exists t such that $Q_{\mathbf{b}}^{I} = Q_{\mathbf{b}}^{(t)}$.

Definition:

- Chvátal rank of $A\mathbf{x} \leq \mathbf{b} = \min \{t : Q_{\mathbf{b}}^{I} = Q_{\mathbf{b}}^{(t)}\}$
- Chvátal rank of $A = \max \{ \text{ Chvátal rank } A\mathbf{x} \leq \mathbf{b} : \mathbf{b} \in \mathbb{Z}^m \}$

Theorem 23.4 (Schrijver): Chvátal rank of A is finite.

Iterated Basis Normalization (IBN)

- (1) Set $\mathcal{A}^{(0)} := \mathcal{A}$
- (2) for $k \ge 1$, let $\mathcal{A}^{(k)} := \bigcup \{\mathsf{HB}(\mathsf{cone}(\mathcal{A}^{(k-1)}_{\mathbf{O}})) : \mathcal{A}^{(k-1)}_{\mathbf{O}} \text{ basis}\}$
- (3) Stop if $\mathcal{A}^{(k+1)} = \mathcal{A}^{(k)}$

Lemma:

- When n = 2, $\mathcal{A}^{(1)} = \mathcal{A}^{(2)}$ and IBN stops in at most two iterations
- IBN may not terminate when $n \ge 3$

Key Fact: Vectors generated by IBN contain normals of all inequalities created in the Chvátal procedure.

Let $A^{(k)}$ be a matrix with rows the vectors in $\mathcal{A}^{(k)}$.

MAIN DEFINITIONS:

- (1) Small Chvátal rank (SCR) of $(A\mathbf{x} \leq \mathbf{b}) := \min k$ such that $Q_{\mathbf{b}}^{I} = \{\mathbf{x} \in \mathbb{R}^{n} : A^{(k)}\mathbf{x} \leq \mathbf{b}'\}$ for some integral \mathbf{b}' .
- (2) $SCR(A) := max\{SCR(Ax \leq b) : b \in \mathbb{Z}^m\}.$

Proposition:

- $SCR(Ax \le \mathbf{b}) \le Chvátal rank (Ax \le \mathbf{b})$
- $SCR(A) \leq Chvátal rank(A)$

Corollary: SCR is finite.

Example I: n = 2

$$n = 2 \Rightarrow \mathcal{A}^{(1)} = \mathcal{A}^{(2)} \Rightarrow \mathsf{SCR}(A) \leq 1.$$

When n = 2, Chvátal rank can be arbitrarily high!

Theorem (BT) For any $n \ge 2$ and $m \ge n+1$, there are systems $A\mathbf{x} \le \mathbf{b}$ with $A \in \mathbb{Z}^{m \times n}$ whose SCRs are one but Chvátal ranks are arbitrarily high.

Example II: Stable set polytope of K_n

 $\mathsf{STAB}(K_n) = \mathsf{conv}(\mathbf{0}, \mathbf{e}_1, \dots, \mathbf{e}_n)$ is the integer hull of

$$Q(K_n) := \left\{ \mathbf{x} \in \mathbb{R}^n : \begin{array}{l} x_v \ge 0 & v \in V(K_n) \\ x_v + x_w \le 1 & vw \in E(K_n) \end{array} \right\}$$

Only missing normal is $\mathbf{e} := (1, 1, \dots, 1) \in \mathbb{R}^n$

(Chvátal 1973): Chvátal rank $(Q(K_n)) = O(\log n)$.

Theorem (BT): SCR $(Q(K_n)) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even} \end{cases}$

Example III: More stable set polytopes (Annie Raymond 2007)

Defn: depth($\alpha \mathbf{x} \leq \beta$) = min k s.t. $\alpha \in \mathcal{A}^{(k)}$.

Theorem: For any graph G, and Q(G) as before,

- (i) depth(clique inequality) ≤ 2 ,
- (ii) depth(odd-cycle inequality) ≤ 1 ,
- (iii) depth(odd-antihole inequality) ≤ 2 ,
- (iv) depth(odd-wheel inequality) ≤ 2 ,

Corollary:

- (1) SCR $(Q(G)) \le 2$ if G is a perfect graph. (i)
- (2) SCR $(Q(G)) \le 1$ if G is a t-perfect graph. (ii)
- (3) SCR $(Q(G)) \le 2$ if G is a h-perfect graph. (i),(ii)

Chvátal rank = 0

Defn: \mathcal{A} is unimodular if $\forall \mathcal{A}' \subseteq \mathcal{A}$, \mathcal{A}' is a Hilbert basis for cone(\mathcal{A}').

Ex: U = vertex-edge incidence matrix of a bipartite graph

U totally unimodular matrix & $\mathcal{A} = \{\text{rows of } U^t\}$ unimodular

Theorem (well known): The following are equivalent:

- (1) \mathcal{A} unimodular
- (2) Every basis in \mathcal{A} is a basis for \mathbb{Z}^n
- (3) Every triangulation of \mathcal{A} is unimodular
- (4) $\forall \mathbf{b} \in \mathbb{Z}^m$, $Q_{\mathbf{b}}$ is integral
- (5) Chvátal rank (A) = 0

Supernormal Vector Configurations

Defn (Hoşten-Maclagan-Sturmfels 2004): \mathcal{A} is supernormal if $\forall \mathcal{A}' \subseteq \mathcal{A}$, $\mathcal{A} \cap \text{cone}(\mathcal{A}')$ is a Hilbert basis for $\text{cone}(\mathcal{A}')$.

$$\mathbf{Ex}: A = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ & & & \vdots & & \\ 0 & 0 & 0 & \cdots & 1 & 1 \\ \frac{1}{1} & 0 & 0 & \cdots & 0 & 1 \\ \hline 1 & 1 & 1 & \cdots & 1 & 1 \end{pmatrix} \qquad \mathcal{A} \text{ supernormal, not unimodular}$$

top part = edge-vertex incidence matrix of an odd cycle

SCR = 0

Defn: $A\mathbf{x} \leq \mathbf{b}$ is tight if for each i = 1, ..., m, $\mathbf{a}_i \mathbf{x} = b_i$ contains an integer point in $Q_{\mathbf{b}}$.

Theorem (BT): Let \mathcal{A} consist of primitive vectors. Then the following are equivalent:

- (1) \mathcal{A} supernormal
- (2) Every basis $\mathcal{A}'\subseteq\mathcal{A}$ has the property that $\mathcal{A}\cap\operatorname{cone}(\mathcal{A}')$ is a Hilbert basis of $\operatorname{cone}(\mathcal{A}')$
- (3) Every triangulation of \mathcal{A} that uses all the vectors is unimodular
- (4) $\forall \mathbf{b} \in \mathbb{Z}^m$, $Q_{\mathbf{b}}$ is integral whenever tight
- (5) SCR (A) = 0

Lower bounds on SCR

Theorem(BT): For m = n = 3 (extends to $m \ge n \ge 3$), SCR($A\mathbf{x} \le \mathbf{b}$) can be arbitrarily large and can grow exponentially in the size of the input.

Ex:
$$A_j = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & j & 2j-1 \end{pmatrix}$$
 $j \ge 2$, integer $\Rightarrow \text{SCR}(A_j) = j-1$

Proof:

(1)
$$\mathcal{A}_{j}^{(j-1)} = \mathcal{A}_{j}^{(j)} \Rightarrow \mathrm{SCR}(A_{j}) \leq j-1$$

(2) (1,j,j) is a facet normal for $\mathbf{b}=(0,0,j-1)^t$ $(1,j,j)\in\mathcal{A}_j^{(j-1)}\backslash\mathcal{A}_j^{(j-2)}$

Polytopes in the unit cube: Chvátal rank

 $P \subseteq [0,1]^n$ polytope in the unit cube

Every 0,1-polytope in $[0,1]^n$ has a linear relaxation in $[0,1]^n$

(Eisenbrand-Schulz 2003):

- (1) The Chvátal rank of $P \subseteq [0,1]^n$ is $O(n^2 \log n)$.
- (2) There are $P \subseteq [0,1]^n$ with Chvátal rank at least $(1+\varepsilon)n$.

Compare with convexification procedures in the 0,1-case by Adams-Sherali, Lovász-Schrijver, Lasserre that takes n steps Conjecture(Pokutta-Schulz-T.): $SCR(P \subseteq [0,1]^n) \le n$.

Polytopes in the unit cube: SCR

Theorem(BT): For each n, there are systems $A\mathbf{x} \leq \mathbf{b}$ with $Q_{\mathbf{b}} \subset [0,1]^n$ with SCR at least $\frac{n}{2} - o(n)$.

Proof idea:

- (1) (Alon-Vũ 1997, Ziegler 2000): \exists 0, 1-polytope in \mathbb{R}^n with facet normal \mathbf{v} with $||\mathbf{v}||_{\infty} \geq \frac{(n-1)^{\frac{n-1}{2}}}{2^{2n+o(n)}}$
- (2) every 0,1-polytope has a linear relaxation in $[0,1]^n$ with facet normals in $\{-1,0,1\}^n$
- (3) $\mathbf{v} \in \mathsf{HB}(\mathsf{cone}(\mathbf{v}_1, \dots, \mathbf{v}_n)) \Rightarrow ||\mathbf{v}||_{\infty} \leq n \cdot \mathsf{max}||\mathbf{v}_i||_{\infty}$
- (4) It takes $\geq \frac{n}{2} o(n)$ iterations of IBN to generate the \mathbf{v} in (1)

Open Questions

- (1) How does computing integer hulls with IBN compare in practice to existing methods?
- (2) What is the complexity of checking supernormality?
- (3) Characterize A with SCR(A) = k, k > 0.
- (4) Is there a better definition of SCR / different algorithm from IBN that generates facet normals of integer hulls? How to compute SCR(A) in general?