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The Integer Hull

Fix Ac Z™N  rank(A)=n. Forb e ZM let / \
Qp:={xeR": Ax<b} O
QL = conv(QpNZ") integer hull of Qp "/

(1) Q'b IS again a polyhedron.
(2) There is no function f(m, n) that bounds #vertices(QL).

( ): Q(K) :={(x,y) € REq : Fax+Foxy1y <P — 1}
F = kth Fibonacci number, Q(k)I has k-+ 3 vertices (and edges)
(3) ( ):

size(ajx < bj) < @ = #vertices(Ql,) < 2m"(6np)" 1

( ). matching lower bound



MAIN GOAL : Given A, find M € Z**" such that for each b € Z™ there
exists a b’ € Z* such that Q{) ={xeR": Mx < b'}.

Theorem 17.4 ( ): Given A, such an M exists.

Proof idea : A := max |subdet(A)|

Can cut out Q) by ax < B where ||a]]o < N°"AN

Set {rows of M} = {m € Z" : ||m||o < N?"A", m & cone(rows of A)}.

(1 2)

Ex: A= _i _g CA=3 AN =144
0 1)

In fact, it is necessary and sufficient! to augment

A by (17 1)7 (Oa _1)7 (_17 _2)7 (_17 _1) to get M.



Hilbert Bases

K rational polyhedral cone

{hq,...,ht} C Kis a Hilbert basis
of Kif Vue KNZ" there exists A
Aj € N such that u = Z}:l)\ihi.

Previous Example




Chvatal procedure

e 4:={rowsof A} C Z"

o Vvertex Vof Qp, let A, :={g € 4 : v =Db;}

e h € HB(cone(Ay)) = hx < |hv] is valid for QL

o le ={X € R” : hx < |hv| Vv vertex of Qp, h € HB(cone(A4y))}

¢ Qb+1 (Qb )



Chvatal Ranks
( ): There exists t such that QL = Qg).

Definition :

e Chvatal rank of AX < b =min {t : QL = Qg)}
e Chvatal rank of A=max { Chvatalrank Ax <b : be ZM}

Theorem 23.4 ( ): Chvatal rank of A is finite.



Iterated Basis Normalization (IBN)

1) set 209 = g
2) fork>1, let 2K := U{HB(cone(ﬁlc(;k_l))) ; ﬂlc(,k_l) basis}
3) Stop if AKk+D) = g(K)

Lemma:

e When n=2, 2(1) = 2(2) and IBN stops in at most two iterations

e IBN may not terminate when n> 3

Key Fact : Vectors generated by IBN contain normals of all inequalities

created in the Chvatal procedure.



Let A(k) be a matrix with rows the vectors in fil(k).

MAIN DEFINITIONS:

(1) Small Chvatal rank (SCR) of (AX < b) := min K such that
QL ={xeR": AK)x < b’} for some integral b’.
(2) SCR(A) ;= max{SCR(Ax < b) : be Z™M}.

Proposition :

e SCR(AX < b) < Chvatal rank (Ax < b)
e SCR(A) < Chvatal rank (A)

Corollary : SCR is finite.



Example|: n=2
n=2= 41 =232 = scr(A) <1

When n = 2, Chvatal rank can be arbitrarily high!
(U,1)

(,1/2 Chvatal rank > |

(0.0)

Theorem (BT) For any n> 2 and m> n+ 1, there are systems AX < b
with A € Z™ M whose SCRs are one but Chvéatal ranks are arbitrarily

high.



Example Il: Stable set polytope of Kp

STAB(Kp) = conv(0,eq,...,en) is the integer hull of

szo VEV(Kn)
Xy +Xw <1 we E(Kn)

Q(Kp) := {x cR":

Only missing normal is e:= (1,1,...,1) € R"

( ): Chvatal rank (Q(Kp)) = O(logn).

1 ifnisodd
Theorem (BT): SCR (Q(Kp)) = { 2 ifnis even



Example lll: More stable set polytopes (Annie Raymond 2007)
Defn: depth(aX <) =mink s.t. a & 2K

Theorem : For any graph G, and Q(G) as before,

(i) depth(cligue inequality) < 2,

(i) depth(odd-cycle inequality) < 1,
(iii) depth(odd-antihole inequality) < 2,
(iv) depth(odd-wheel inequality) < 2,

Corollary
(1) SCR (Q(G)) < 2if Gis a perfect graph. (i)

(2) SCR (Q(G)) < 1if Gis at-perfect graph. (ii)
(3) SCR (Q(G)) < 2if Gis a h-perfect graph. (i),(ii)



Chvatal rank = 0
Defn: 4 is unimodular if V 4’ C 4, 4" is a Hilbert basis for cone(.2").

Ex: U = vertex-edge incidence matrix of a bipartite graph

U totally unimodular matrix & 4 = {rows of U'} unimodular

Theorem ( ). The following are equivalent:

(1) A4 unimodular

(2) Every basis in 4 is a basis for Z"

(3) Every triangulation of A4 is unimodular
(4) Vb € Z™M Qy is integral

(5) Chvatal rank (A) =0



Supernormal Vector Configurations

Defn ( ): 4is supernormal if V 4’ C 4,
A Ncone(A') is a Hilbert basis for cone(.4').

(1 10 ---0 O\
011 ---00
Ex: A= 000 ... 11 A supernormal, not unimodular
100 .---01
\111 .11

top part = edge-vertex incidence matrix of an odd cycle



SCR=0

Defn: AX < b is tightif foreachi =1,...,m, @jX = bj contains an
integer point in Qp,.

Theorem (BT): Let A4 consist of primitive vectors. Then the following are

equivalent:

(1) A4 supernormal

(2) Every basis 4’ C 4 has the property that 4N cone(4’) is a Hilbert
basis of cone(2")

(3) Every triangulation of A that uses all the vectors is unimodular

(4) Vb € Z™M Qy is integral whenever tight

(5) SCR (A) =0



Lower bounds on SCR

Theorem (BT): For m= n = 3 (extends to m> n > 3), SCR(AX < b) can

be arbitrarily large and can grow exponentially in the size of the input.

Ex: Aj = j > 2, integer = SCR(Aj) =] —1

R O
— R O
N OO

Proof :

(1) ﬂlj(j_l) = :le(j) = SCR(Aj) < j—1

2) (1,],]) is afacet normal for b = (0,0, j — 1)t
. i—1), (j—2
(L) ea) ha)™?



Polytopes in the unit cube: Chv atal rank
P C [0,1]" polytope in the unit cube
Every 0, 1-polytope in [0,1]" has a linear relaxation in [0, 1]"

( ):

(1) The Chvatal rank of P C [0,1]" is O(n?logn).
(2) There are P C [0, 1]" with Chvatal rank at least (1+ €)n.

Compare with convexification procedures in the 0, 1-case by
that takes n steps
Conjecture ( ): SCR(P C [0,1]™) < n.



Polytopes in the unit cube: SCR

Theorem (BT): For each n, there are systems Ax < b with Qp C [0, 1]"
with SCR at least 5 — o(n).

Proof idea :
(1) ( ): 30, 1-polytope in R with facet
n—1
: n—1) 2
normal v with ||V||e > (22n+)o(n)

(2) every 0, 1-polytope has a linear relaxation in [0, 1] with facet
normals in {—1,0,1}"
(3) v € HB(cone(V1,...,Vn)) = ||V||e < N-max||Vi||e

(4) It takes > g— o(n) iterations of IBN to generate the v in (1)



Open Questions

(1) How does computing integer hulls with IBN compare in practice to
existing methods?

(2) What is the complexity of checking supernormality?

(3) Characterize Awith SCR(A) =k, k> 0.

(4) Is there a better definition of SCR / different algorithm from IBN that
generates facet normals of integer hulls? How to compute SCR(A)

In general?



