
Encoding combinatorial problems via systems of polynomials
Combinatorial Infeasibility and the Nullstellensatz

Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Hilbert’s Nullstellensatz and

an Algorithm for proving Combinatorial Infeasibility

Peter Malkin∗, UC Davis

joint work with J. De Loera, J. Lee and S. Margulies

MIP 2008

August 4th, 2008

*Research partly funded by an IBM OCR grant and the NSF.
Peter Malkin, UC Davis Nullstellensatz



Encoding combinatorial problems via systems of polynomials
Combinatorial Infeasibility and the Nullstellensatz

Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Traditional modeling versus modeling with polynomials
Combinatorial problems =⇒ systems of polynomial equations

Modeling combinatorial optimization problems

Traditional approach: Model combinatorial optimization
problems by linear equalities and inequalities, and
integrality constraints.

Solve model using branch-and-cut approach is the basis of
modern discrete optimization.

Very successful, but ... we are looking for alternatives.
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Different encodings

Traditional modeling versus modeling with polynomials
Combinatorial problems =⇒ systems of polynomial equations

Modeling combinatorial optimization problems

Traditional approach: Model combinatorial optimization
problems by linear equalities and inequalities, and
integrality constraints.

Solve model using branch-and-cut approach is the basis of
modern discrete optimization.

Very successful, but ... we are looking for alternatives.

Another paradigm: Model combinatorial optimization
problems by non-linear polynomial equalities and
inequalities.

Solve model using other tools (e.g SDP, algebraic geometry,
number theory, etc).
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Modeling combinatorial optimization problems...

From work by Shor (87), Nesterov, Lasserre, Laurent and
Parrilo (2000-), we can solve a polynomial optimization
problem by a growing sequence of semi-definite relaxations.

Applied to 0/1-problems, or any finite varieties. We know
that this sequence converges in a finite number of steps.
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Modeling combinatorial optimization problems...

From work by Shor (87), Nesterov, Lasserre, Laurent and
Parrilo (2000-), we can solve a polynomial optimization
problem by a growing sequence of semi-definite relaxations.

Applied to 0/1-problems, or any finite varieties. We know
that this sequence converges in a finite number of steps.

What are we going to talk about today?
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Traditional modeling versus modeling with polynomials
Combinatorial problems =⇒ systems of polynomial equations

Modeling combinatorial optimization problems...

From work by Shor (87), Nesterov, Lasserre, Laurent and
Parrilo (2000-), we can solve a polynomial optimization
problem by a growing sequence of semi-definite relaxations.

Applied to 0/1-problems, or any finite varieties. We know
that this sequence converges in a finite number of steps.

What are we going to talk about today?

We can solve a polynomial feasibility problem with only
equality constraints by a growing sequence of linear algebra
relaxations.

We will talk about the complexity and practicality of this
approach.

Peter Malkin, UC Davis Nullstellensatz
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Traditional modeling versus modeling with polynomials
Combinatorial problems =⇒ systems of polynomial equations

A typical combinatorial feasibility problem

Independent Set: Given a graph G and an integer k, does
there exist a subset of the vertices of size k such that no two
vertices in the subset are adjacent?

Recall, the independence number of a graph is the size of the
largest independent set in the graph and is written α(G ).
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Different encodings

Traditional modeling versus modeling with polynomials
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A typical combinatorial feasibility problem

Independent Set: Given a graph G and an integer k, does
there exist a subset of the vertices of size k such that no two
vertices in the subset are adjacent?

Recall, the independence number of a graph is the size of the
largest independent set in the graph and is written α(G ).

The Turán Graph T (5, 3) has no independent set of size 3.
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Traditional modeling versus modeling with polynomials
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Independent set modeled by a polynomial system

Given a graph G and an integer k:

One variable xi per vertex i ∈ {1, ..., n}.

For every vertex i = 1, . . . , n, let x2
i − xi = 0

For every edge (i , j) ∈ E , let xixj = 0

Finally, let n∑

i=1

xi − k = 0.
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Traditional modeling versus modeling with polynomials
Combinatorial problems =⇒ systems of polynomial equations

Independent set modeled by a polynomial system

Given a graph G and an integer k:

One variable xi per vertex i ∈ {1, ..., n}.

For every vertex i = 1, . . . , n, let x2
i − xi = 0

For every edge (i , j) ∈ E , let xixj = 0

Finally, let n∑

i=1

xi − k = 0.

Theorem: (Lovász) Let k be an integer and let G be a graph
encoded as the above system of equations. This system has a
solution if and only if G has an independent set of size k.
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Traditional modeling versus modeling with polynomials
Combinatorial problems =⇒ systems of polynomial equations

Turán graph T (5, 3): =⇒ system of polynomial equations

The following system of equations has a solution if and only if
T (5, 3) has an independent set of size 3.

x2
1 − x1 = 0, x2

2 − x2 = 0, x2
3 − x3 = 0, x2

4 − x4 = 0, x2
5 − x5 = 0,

x1x3 = 0, x1x4 = 0, x1x5 = 0, x2x3 = 0,

x2x4 = 0, x2x5 = 0, x3x5 = 0, x4x5 = 0,

x1 + x3 + x5 + x2 + x4 − 3 = 0.

Peter Malkin, UC Davis Nullstellensatz
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Traditional modeling versus modeling with polynomials
Combinatorial problems =⇒ systems of polynomial equations

Another typical combinatorial feasibility problem

Graph vertex coloring: Given a graph G and an integer k,
can the vertices be colored with k colors in such a way that
no two adjacent vertices are the same color?

E.g. the Petersen Graph is 3-colorable.

Peter Malkin, UC Davis Nullstellensatz
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Traditional modeling versus modeling with polynomials
Combinatorial problems =⇒ systems of polynomial equations

Graph coloring modeled by a polynomial system

One variable xi per vertex i ∈ {1, ..., n}.
Vertex polynomials: For every vertex i = 1, . . . , n,

xk
i − 1 = 0.

Edge polynomials: For every edge (i , j) ∈ E ,

xk−1
i + xk−2

i xj + · · · + xix
k−2
j + xk−1

j = 0.

Note that

xk
i − xk

j = (xi − xj )(x
k−1
i + xk−2

i xj + · · · + xix
k−2
j + xk−1

j ) = 0.
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Different encodings

Traditional modeling versus modeling with polynomials
Combinatorial problems =⇒ systems of polynomial equations

Graph coloring modeled by a polynomial system

One variable xi per vertex i ∈ {1, ..., n}.
Vertex polynomials: For every vertex i = 1, . . . , n,

xk
i − 1 = 0.

Edge polynomials: For every edge (i , j) ∈ E ,

xk−1
i + xk−2

i xj + · · · + xix
k−2
j + xk−1

j = 0.

Note that

xk
i − xk

j = (xi − xj )(x
k−1
i + xk−2

i xj + · · · + xix
k−2
j + xk−1

j ) = 0.

Theorem: (D. Bayer) Let k be an integer and let G be a
graph encoded as vertex and edge polynomials as above. This
system of polynomial equations has a solution if and only if G

is k-colorable.
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What if NulLA cannot determine infeasibility?
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Traditional modeling versus modeling with polynomials
Combinatorial problems =⇒ systems of polynomial equations

E.g. Petersen graph polynomial system of equations

This system has a solution iff the Petersen graph is 3-colorable.

x3
0 − 1 = 0, x3

1 − 1 = 0, x2
0 + x0x1 + x2

1 = 0, x2
0 + x0x4 + x2

4 = 0,

x3
2 − 1 = 0, x3

3 − 1 = 0, x2
0 + x0x5 + x2

5 = 0, x2
1 + x1x2 + x2

2 = 0,

x3
4 − 1 = 0, x3

5 − 1 = 0, x2
1 + x1x6 + x2

6 = 0, x2
2 + x2x7 + x2

7 = 0,

x3
6 − 1 = 0, x3

7 − 1 = 0, · · · · · · · · · · · ·

x3
8 − 1 = 0, x3

9 − 1 = 0, x2
6 + x6x8 + x2

8 = 0, x2
7 + x7x9 + x2

9 = 0.
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Hilbert’s Nullstellensatz and large-scale Linear Algebra

Hilbert’s Nullstellensatz

Theorem: Let K be a field and K its algebraic closure field.
Let f1, . . . , fs be polynomials in K[x1, . . . , xn]. The system of
equations f1 = f2 = · · · = fs = 0 has no solution over K if and
only if there exist α1, . . . , αs ∈ K[x1, . . . , xn] such that

1 =

s∑

i=1

αi fi .

This polynomial identity is a Nullstellensatz certificate.

Peter Malkin, UC Davis Nullstellensatz
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Hilbert’s Nullstellensatz and large-scale Linear Algebra

Hilbert’s Nullstellensatz

Theorem: Let K be a field and K its algebraic closure field.
Let f1, . . . , fs be polynomials in K[x1, . . . , xn]. The system of
equations f1 = f2 = · · · = fs = 0 has no solution over K if and
only if there exist α1, . . . , αs ∈ K[x1, . . . , xn] such that

1 =

s∑

i=1

αi fi .

This polynomial identity is a Nullstellensatz certificate.

If x ∈ K
n

was a solution, then
∑s

i=1 αi(x)fi (x) = 0 6= 1.

Nullstellensatz certificates are certificates of infeasibility.

Let d = max{deg(α1), deg(α2), . . . , deg(αs)}. Then, we say
that d is the degree of the Nullstellensatz certificate.

Peter Malkin, UC Davis Nullstellensatz
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Hilbert’s Nullstellensatz and large-scale Linear Algebra

How do we find a Nullstellensatz certificate

Key point:

For fixed degree, this is a linear algebra problem!!
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What if NulLA cannot determine infeasibility?

Different encodings

Hilbert’s Nullstellensatz and large-scale Linear Algebra

How do we find a Nullstellensatz certificate

Key point:

For fixed degree, this is a linear algebra problem!!

E.g. Consider the system of polynomial equations

f1 = x
2
1 − 1 = 0, f2 = x1 + x2 = 0, f3 = x1 + x3 = 0, f4 = x2 + x3 = 0

This system has no solution over C.
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Hilbert’s Nullstellensatz and large-scale Linear Algebra

How do we find a Nullstellensatz certificate

Key point:

For fixed degree, this is a linear algebra problem!!

E.g. Consider the system of polynomial equations

f1 = x
2
1 − 1 = 0, f2 = x1 + x2 = 0, f3 = x1 + x3 = 0, f4 = x2 + x3 = 0

This system has no solution over C.

Does this system have a Nullstellensatz certificate of degree 1?

1 = (c0x1 + c1x2 + c2x3 + c3)
| {z }

α1

(x2
1 − 1)

| {z }

f1

+ (c4x1 + c5x2 + c6x3 + c7)
| {z }

α2

(x1 + x2)
| {z }

f2

+ (c8x1 + c9x2 + c10x3 + c11)
| {z }

α3

(x1 + x3)
| {z }

f3

+ (c12x1 + c13x2 + c14x3 + c15)
| {z }

α4

(x2 + x3)
| {z }

f4

Peter Malkin, UC Davis Nullstellensatz
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Hilbert’s Nullstellensatz and large-scale Linear Algebra

Expand the Nullstellensatz certificate grouping by monomials.

1 = c0x
3
1 + c1x

2
1 x2 + c2x

2
1 x3 + (c3 + c4 + c8)x

2
1 + (c5 + c13)x

2
2 + (c10 + c14)x

2
3

+(c4 + c5 + c9 + c12)x1x2 + (c6 + c8 + c10 + c12)x1x3 + (c6 + c9 + c13 + c14)x2x3

+(c7 + c11 − c0)x1 + (c7 + c15 − c1)x2 + (c11 + c15 − c2)x3 − c3

Extract a linear system of equations from expanded certificate.

c0 = 0, . . . , c3 + c4 + c8 = 0, c11 + c15 − c2 = 0, −c3 = 1

Peter Malkin, UC Davis Nullstellensatz
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Hilbert’s Nullstellensatz and large-scale Linear Algebra

Expand the Nullstellensatz certificate grouping by monomials.

1 = c0x
3
1 + c1x

2
1 x2 + c2x

2
1 x3 + (c3 + c4 + c8)x

2
1 + (c5 + c13)x

2
2 + (c10 + c14)x

2
3

+(c4 + c5 + c9 + c12)x1x2 + (c6 + c8 + c10 + c12)x1x3 + (c6 + c9 + c13 + c14)x2x3

+(c7 + c11 − c0)x1 + (c7 + c15 − c1)x2 + (c11 + c15 − c2)x3 − c3

Extract a linear system of equations from expanded certificate.

c0 = 0, . . . , c3 + c4 + c8 = 0, c11 + c15 − c2 = 0, −c3 = 1

Solve the linear system. This linear system is feasible, so we
have found a certificate and proven the polynomial system is
infeasible. Note: the linear system is over R and not C.

Peter Malkin, UC Davis Nullstellensatz
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Hilbert’s Nullstellensatz and large-scale Linear Algebra

Expand the Nullstellensatz certificate grouping by monomials.

1 = c0x
3
1 + c1x

2
1 x2 + c2x

2
1 x3 + (c3 + c4 + c8)x

2
1 + (c5 + c13)x

2
2 + (c10 + c14)x

2
3

+(c4 + c5 + c9 + c12)x1x2 + (c6 + c8 + c10 + c12)x1x3 + (c6 + c9 + c13 + c14)x2x3

+(c7 + c11 − c0)x1 + (c7 + c15 − c1)x2 + (c11 + c15 − c2)x3 − c3

Extract a linear system of equations from expanded certificate.

c0 = 0, . . . , c3 + c4 + c8 = 0, c11 + c15 − c2 = 0, −c3 = 1

Solve the linear system. This linear system is feasible, so we
have found a certificate and proven the polynomial system is
infeasible. Note: the linear system is over R and not C.
Reconstruct the Nullstellensatz certificate from a solution of
the linear system.

1 = −(x2
1 − 1) +

1

2
x1(x1 + x2) −

1

2
x1(x2 + x3) +

1

2
x1(x1 + x3)

Peter Malkin, UC Davis Nullstellensatz
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Hilbert’s Nullstellensatz and large-scale Linear Algebra

Expand the Nullstellensatz certificate grouping by monomials.

1 = c0x
3
1 + c1x

2
1 x2 + c2x

2
1 x3 + (c3 + c4 + c8)x

2
1 + (c5 + c13)x

2
2 + (c10 + c14)x

2
3

+(c4 + c5 + c9 + c12)x1x2 + (c6 + c8 + c10 + c12)x1x3 + (c6 + c9 + c13 + c14)x2x3

+(c7 + c11 − c0)x1 + (c7 + c15 − c1)x2 + (c11 + c15 − c2)x3 − c3

Extract a linear system of equations from expanded certificate.

c0 = 0, . . . , c3 + c4 + c8 = 0, c11 + c15 − c2 = 0, −c3 = 1

Solve the linear system. This linear system is feasible, so we
have found a certificate and proven the polynomial system is
infeasible. Note: the linear system is over R and not C.
Reconstruct the Nullstellensatz certificate from a solution of
the linear system.

1 = −(x2
1 − 1) +

1

2
x1(x1 + x2) −

1

2
x1(x2 + x3) +

1

2
x1(x1 + x3)

If the linear system was not feasible, we would have had to try
a higher degree.

Peter Malkin, UC Davis Nullstellensatz
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Hilbert’s Nullstellensatz and large-scale Linear Algebra

Bounds for the Nullstellensatz degree

Question:

How big can the degree of a Nullstellensatz certificate be?
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Hilbert’s Nullstellensatz and large-scale Linear Algebra

Bounds for the Nullstellensatz degree

Question:

How big can the degree of a Nullstellensatz certificate be?

The most general bound...

Theorem: (Kollár)

The degree is bounded by max{3,D}n, where n is the number of
variables and D = max{deg(f1), deg(f2), . . . , deg(fs)}.

Peter Malkin, UC Davis Nullstellensatz
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Hilbert’s Nullstellensatz and large-scale Linear Algebra

Bounds for the Nullstellensatz degree

Question:

How big can the degree of a Nullstellensatz certificate be?

The most general bound...

Theorem: (Kollár)

The degree is bounded by max{3,D}n, where n is the number of
variables and D = max{deg(f1), deg(f2), . . . , deg(fs)}.

But for k-coloring and independent sets, we have a better bound:

Theorem: (Lazard)

The degree is bounded by n(D − 1).

Peter Malkin, UC Davis Nullstellensatz
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Hilbert’s Nullstellensatz and large-scale Linear Algebra

NulLA: Nullstellensatz linear algebra algorithm

Input: A system of polynomial equations
F = {f1 = 0, f2 = 0, . . . , fs = 0}.

Set d = 0.

While d ≤ HNBound and no solution found for Ld :

Construct a tentative Nullstellensatz certificate of degree d .
Extract a linear system of equations Ld .
Solve the linear system Ld .
If there is a solution, then reconstruct the certificate
and Output: F is INFEASIBLE.
Else Set d = d + 1.

If d = HNBound and no solution found for Ld , then
Output: F is FEASIBLE.

Peter Malkin, UC Davis Nullstellensatz
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Hilbert’s Nullstellensatz and large-scale Linear Algebra

What is the performance of the NulLA algorithm for

combinatorial problems??

Peter Malkin, UC Davis Nullstellensatz
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What if NulLA cannot determine infeasibility?

Different encodings

Computational Investigations (over F2)

Nullstellensatz certificates for independents sets

Lemma: (De Loera, Lee, Margulies, Onn) If P 6= NP, then there
must exist an infinite family of graphs without independent sets of
size k for whom the degree of a Nullstellensatz certificate grows
with respect to |V | and |E |.

Peter Malkin, UC Davis Nullstellensatz
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Different encodings

Computational Investigations (over F2)

Nullstellensatz certificates for independents sets

Lemma: (De Loera, Lee, Margulies, Onn) If P 6= NP, then there
must exist an infinite family of graphs without independent sets of
size k for whom the degree of a Nullstellensatz certificate grows
with respect to |V | and |E |.

Question (L. Lovász): Can we explicitly describe such graphs?
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Computational Investigations (over F2)

Nullstellensatz certificates for independents sets

Lemma: (De Loera, Lee, Margulies, Onn) If P 6= NP, then there
must exist an infinite family of graphs without independent sets of
size k for whom the degree of a Nullstellensatz certificate grows
with respect to |V | and |E |.

Question (L. Lovász): Can we explicitly describe such graphs?

Theorem: (DLMO) A graph G with no independent set of size k

has a minimum-degree Nullstellensatz certificate of degree α(G )
that contains at least one term for every independent set in G .

Peter Malkin, UC Davis Nullstellensatz
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Computational Investigations (over F2)

Nullstellensatz certificates for independents sets

Lemma: (De Loera, Lee, Margulies, Onn) If P 6= NP, then there
must exist an infinite family of graphs without independent sets of
size k for whom the degree of a Nullstellensatz certificate grows
with respect to |V | and |E |.

Question (L. Lovász): Can we explicitly describe such graphs?

Theorem: (DLMO) A graph G with no independent set of size k

has a minimum-degree Nullstellensatz certificate of degree α(G )
that contains at least one term for every independent set in G .

E.g. The disjoint union of triangles has a Nullstellensatz
certificate of degree at least n/3 and at least 4n/3 terms.

Peter Malkin, UC Davis Nullstellensatz
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Computational Investigations (over F2)

Turán graph T (5, 3): reduced certificate example
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Encoding combinatorial problems via systems of polynomials
Combinatorial Infeasibility and the Nullstellensatz

Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Computational Investigations (over F2)

Nullstellensatz certificates for non-3-colorability

Theorem: (DLMO) Every Nullstellensatz certificate over R for
non-3-colorability of a graph has degree at least four.

A graph with a 4-clique subgraph has a Nullstellensatz
certificate over R of minimal-degree exactly 4.
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Nullstellensatz certificates for non-3-colorability

Theorem: (DLMO) Every Nullstellensatz certificate over R for
non-3-colorability of a graph has degree at least four.

A graph with a 4-clique subgraph has a Nullstellensatz
certificate over R of minimal-degree exactly 4.

What about certificates over finite fields? What about F2?

Peter Malkin, UC Davis Nullstellensatz



Encoding combinatorial problems via systems of polynomials
Combinatorial Infeasibility and the Nullstellensatz

Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Computational Investigations (over F2)

Nullstellensatz certificates for non-3-colorability

Theorem: (DLMO) Every Nullstellensatz certificate over R for
non-3-colorability of a graph has degree at least four.

A graph with a 4-clique subgraph has a Nullstellensatz
certificate over R of minimal-degree exactly 4.

What about certificates over finite fields? What about F2?

Theorem: For a graph G , the following system of polynomial
equations has a solution over F2 iff G is 3-colorable.

x3
i + 1 = 0 ∀i ∈ V , x2

i + xixj + x2
j = 0 ∀(i , j) ∈ E .
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Computational Investigations (over F2)

Nullstellensatz certificates for non-3-colorability

Theorem: (DLMO) Every Nullstellensatz certificate over R for
non-3-colorability of a graph has degree at least four.

A graph with a 4-clique subgraph has a Nullstellensatz
certificate over R of minimal-degree exactly 4.

What about certificates over finite fields? What about F2?

Theorem: For a graph G , the following system of polynomial
equations has a solution over F2 iff G is 3-colorable.

x3
i + 1 = 0 ∀i ∈ V , x2

i + xixj + x2
j = 0 ∀(i , j) ∈ E .

A graph with 4-clique subgraph has a Nullstellensatz
certificate over F2 of minimal-degree exactly 1.

Note: the linear system we need to solve is over F2, so there
are no numerical stability problems!!
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Computational Investigations (over F2)

Experimental results for NulLA 3-colorability

Graph |V | |E | #rows #cols d sec

Mycielski 7 95 755 64,281 71,726 1 1
Mycielski 9 383 7,271 2,477,931 2,784,794 1 269
Mycielski 10 767 22,196 15,270,943 17,024,333 1 14835
(8, 3)-Kneser 56 280 15,737 15,681 1 0
(10, 4)-Kneser 210 1,575 349,651 330,751 1 4
(12, 5)-Kneser 792 8,316 7,030,585 6,586,273 1 467
(13, 5)-Kneser 1,287 36,036 45,980,650 46,378,333 1 216105
1-Insertions 5 202 1,227 268,049 247,855 1 2
2-Insertions 5 597 3,936 2,628,805 2,349,793 1 18
3-Insertions 5 1,406 9,695 15,392,209 13,631,171 1 83
ash331GPIA 662 4,185 3,147,007 2,770,471 1 14
ash608GPIA 1,216 7,844 10,904,642 9,538,305 1 35
ash958GPIA 1,916 12,506 27,450,965 23,961,497 1 90

Table: DIMACS graphs without 4-cliques.
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Computational Investigations (over F2)

Comparison with other graph coloring algorithms

DSATUR a sequential coloring heuristic by Brelaz, 1979.

A Branch-and-Cut algorithm for graph coloring (B&C) by
Isabel Méndez-D́ıaz and Paula Zabala (2006)
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Computational Investigations (over F2)

Comparison with other graph coloring algorithms

DSATUR a sequential coloring heuristic by Brelaz, 1979.

A Branch-and-Cut algorithm for graph coloring (B&C) by
Isabel Méndez-D́ıaz and Paula Zabala (2006)

B&C DSATUR NulLA

Graph |V | |E | lb up lb up lb deg sec

4-Insertions 3.col 79 156 3 4 2 4 4 1 0
3-Insertions 4.col 281 1046 3 5 2 5 4 1 2
4-Insertions 4.col 475 1795 3 5 2 5 4 1 6
2-Insertions 5.col 597 3936 3 6 2 6 4 1 19
3-Insertions 5.col 1,406 9695 3 6 2 6 4 1 169
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Computational Investigations (over F2)

“This shouldn’t work ...

but it does!”

Anonymous.
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Encoding combinatorial problems via systems of polynomials
Combinatorial Infeasibility and the Nullstellensatz

Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Computational Investigations (over F2)

Growth in Nullstellensatz degree

Lemma: (DLMO) If P 6= NP, then there must exist an infinite
family of graphs without k-colorings for whom the degree of a
Nullstellensatz certificate grows with respect to |V | and |E |.
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Computational Investigations (over F2)

Growth in Nullstellensatz degree

Lemma: (DLMO) If P 6= NP, then there must exist an infinite
family of graphs without k-colorings for whom the degree of a
Nullstellensatz certificate grows with respect to |V | and |E |.

4-critical graphs by Mizuno-Nishihara are the ugliest
non-3-colorable graphs for NulLA that we found.

Gi n m #row #col deg sec

G0 10 18 336 319 1 0
G1 20 37 350,040 65,527 3 1
G2 30 55 1,844,857 2,643,432 4 52
G3 39 72 7,316,382 9,008,930 4 246
G4 49 90 – – ≥ 5 –
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What if NulLA cannot determine infeasibility?

Different encodings

Alternative Nullstellensätze
Using symmetry to shrink the linear system

What if NulLA cannot determine infeasibility?
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Alternative Nullstellensätze
Using symmetry to shrink the linear system

What if NulLA cannot determine infeasibility?

Some simple preprocessing can help, but this is often not
enough.
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Alternative Nullstellensätze
Using symmetry to shrink the linear system

What if NulLA cannot determine infeasibility?

Some simple preprocessing can help, but this is often not
enough.

Four key mathematical ideas are as follows:

use finite fields,

append redundant equations,

use Alternative Nullstellensätze, and

use symmetry.
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Alternative Nullstellensätze
Using symmetry to shrink the linear system

Appending redundant valid equations

degree 4 certificate
7, 585, 826 × 9, 887, 481

over 4 hours
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Alternative Nullstellensätze
Using symmetry to shrink the linear system

Appending redundant valid equations

degree 4 certificate
7, 585, 826 × 9, 887, 481

over 4 hours

There are 25 triangles

“Triangle” equation:

0 = x + y + z

Peter Malkin, UC Davis Nullstellensatz



Encoding combinatorial problems via systems of polynomials
Combinatorial Infeasibility and the Nullstellensatz

Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Alternative Nullstellensätze
Using symmetry to shrink the linear system

Appending redundant valid equations

degree 4 certificate
7, 585, 826 × 9, 887, 481

over 4 hours

There are 25 triangles

“Triangle” equation:

0 = x + y + z

Degree two triangle equation:

0 = x2 + y2 + z2
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Encoding combinatorial problems via systems of polynomials
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Alternative Nullstellensätze
Using symmetry to shrink the linear system

Appending redundant valid equations

degree 4 certificate
7, 585, 826 × 9, 887, 481

over 4 hours
⇓

degree 1 certificate
4, 626 × 4, 3464

0.2 seconds

There are 25 triangles

“Triangle” equation:

0 = x + y + z

Degree two triangle equation:

0 = x2 + y2 + z2
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Alternative Nullstellensätze
Using symmetry to shrink the linear system

Alternative Nullstellensätze

Theorem: The system of equations f1 = f2 = · · · = fs = 0 has no
solution if and only if there exist polynomials α1, . . . , αs and g
where f1 = f2 = · · · = fs = 0 and g = 0 has no solution such that

g =

s∑

i=1

αi fi

Note that g = 1 is Hilbert’s Nullstellensatz.
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Alternative Nullstellensätze
Using symmetry to shrink the linear system

Alternative Nullstellensätze

Theorem: The system of equations f1 = f2 = · · · = fs = 0 has no
solution if and only if there exist polynomials α1, . . . , αs and g
where f1 = f2 = · · · = fs = 0 and g = 0 has no solution such that

g =

s∑

i=1

αi fi

Note that g = 1 is Hilbert’s Nullstellensatz.

E.g. This graph has a degree 4 certificate for non-3-colorability.

1 2

34

5 6
7

8

910

11

12

If we use g = x1x8x9, the graph has a degree 1 certificate.
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Alternative Nullstellensätze
Using symmetry to shrink the linear system

Using symmetry to shrink the linear system

Suppose that F = {f1, ..., fs} is invariant under the action of a
permutation group P acting on the variables x1, . . . , xn.

So, for every permutation p ∈ P , we have p(F ) = F .

For graph k-coloring, P is the automorphism group.
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?
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Alternative Nullstellensätze
Using symmetry to shrink the linear system

Using symmetry to shrink the linear system

Suppose that F = {f1, ..., fs} is invariant under the action of a
permutation group P acting on the variables x1, . . . , xn.

So, for every permutation p ∈ P , we have p(F ) = F .

For graph k-coloring, P is the automorphism group.
Note: permuting a certificate gives another certificate!

1 =
s∑

i=1

αi fi ⇒ 1 =
s∑

i=1

p(αi )p(fi ) ⇒ 1 =
s∑

i=1

ᾱi fi .
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Using symmetry to shrink the linear system

Using symmetry to shrink the linear system

Suppose that F = {f1, ..., fs} is invariant under the action of a
permutation group P acting on the variables x1, . . . , xn.

So, for every permutation p ∈ P , we have p(F ) = F .

For graph k-coloring, P is the automorphism group.
Note: permuting a certificate gives another certificate!

1 =
s∑

i=1

αi fi ⇒ 1 =
s∑

i=1

p(αi )p(fi ) ⇒ 1 =
s∑

i=1

ᾱi fi .

E.g. Consider K4 and the cyclic group P = 〈(2, 3, 4)〉.
A degree-one certificate for non-3-colorability of K4 is

1 = c0(x
3
1 + 1)

+ (c
1
12x1 + c

2
12x2 + c

3
12x3 + c

4
12x4)(x

2
1 + x1x2 + x

2
2 ) + (c

1
13x1 + c

2
13x2 + c

3
13x3 + c

4
13x4)(x

2
1 + x1x3 + x

2
3 )

+ (c
1
14x1 + c

2
14x2 + c

3
14x3 + c

4
14x4)(x

2
1 + x1x4 + x

2
4 ) + (c

1
23x1 + c

2
23x2 + c

3
23x3 + c

4
23x4)(x

2
2 + x2x3 + x

2
3 )

+ (c
1
24x1 + c

2
24x2 + c

3
24x3 + c

4
24x4)(x

2
2 + x2x4 + x

2
4 ) + (c

1
34x1 + c

2
34x2 + c

3
34x3 + c

4
34x4)(x

2
3 + x3x4 + x

2
4 )
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Alternative Nullstellensätze
Using symmetry to shrink the linear system

K4 linear system matrix

c0 c1
12 c2

12 c3
12 c4

12 c1
13 c2

13 c3
13 c4

13 c1
14 c2

14 c3
14 c4

14 c1
23 c2

23 c3
23 c4

23 c1
24 c2

24 c3
24 c4

24 c1
34 c2

34 c3
34 c4

34

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x3
1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x2 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x3 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x4 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

x1x2
2 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

x1x2x3 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
x1x2x4 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

x1x2
3 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

x1x3x4 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

x1x2
4 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

x3
2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

x2
2 x3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0

x2
2 x4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

x2x2
3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0

x2x3x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

x2x2
4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0

x3
3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

x2
3 x4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

x3x2
4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1

x3
4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
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What if NulLA cannot determine infeasibility?
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Alternative Nullstellensätze
Using symmetry to shrink the linear system

K4 linear system matrix

c0 c1
12 c1

13 c1
14 c2

12 c3
13 c4

14 c3
12 c4

13 c2
14 c4

12 c2
13 c3

14 c1
23 c1

34 c1
24 c2

23 c3
34 c4

24 c2
24 c3

23 c4
34 c2

34 c3
24 c4

23

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x3
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x2 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x3 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x4 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x1x2
2 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

x1x2
3 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

x1x2
4 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

x1x2x3 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
x1x2x4 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
x1x3x4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

x3
2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

x3
3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

x3
4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

x2
2 x3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0

x2
3 x4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

x2x2
4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

x2
2 x4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1

x2x2
3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0

x3x2
4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0

x2x3x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Alternative Nullstellensätze
Using symmetry to shrink the linear system

K4 linear system orbit matrix

c̄0 c̄1
12 c̄2

12 c̄3
12 c̄4

12 c̄1
23 c̄2

23 c̄2
24 c̄2

34

Orb(1) 1 0 0 0 0 0 0 0 0

Orb(x3
1 ) 1 3 0 0 0 0 0 0 0

Orb(x2
1 x2) 0 1 1 1 1 0 0 0 0

Orb(x1x2
2 ) 0 1 1 0 0 2 0 0 0

Orb(x1x2x3) 0 0 0 1 1 1 0 0 0

Orb(x3
2 ) 0 0 1 0 0 0 1 1 0

Orb(x2
2 x3) 0 0 0 1 0 0 1 1 1

Orb(x2
2 x4) 0 0 0 0 1 0 1 1 1

Orb(x2x3x4) 0 0 0 0 0 0 0 0 3

(mod 2)
≡

c̄0 c̄1
12 c̄2

12 c̄3
12 c̄4

12 c̄1
23 c̄2

23 c̄2
24 c̄2

34

Orb(1) 1 0 0 0 0 0 0 0 0

Orb(x3
1 ) 1 1 0 0 0 0 0 0 0

Orb(x2
1 x2) 0 1 1 1 1 0 0 0 0

Orb(x1x2
2 ) 0 1 1 0 0 0 0 0 0

Orb(x1x2x3) 0 0 0 1 1 1 0 0 0

Orb(x3
2 ) 0 0 1 0 0 0 1 1 0

Orb(x2
2 x3) 0 0 0 1 0 0 1 1 1

Orb(x2
2 x4) 0 0 0 0 1 0 1 1 1

Orb(x2x3x4) 0 0 0 0 0 0 0 0 1

This reduced matrix has a solution if and only if the original
matrix has a solution.
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Different encodings: the good, the bad, and the ugly

The good:

Is a graph 3-colorable?

Is a graph 2-colorable?
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Different encodings: the good, the bad, and the ugly

The good:
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The bad:

Does a graph have an independent set of size k?
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What if NulLA cannot determine infeasibility?

Different encodings

Different encodings: the good, the bad, and the ugly

The good:

Is a graph 3-colorable?

Is a graph 2-colorable?

The bad:

Does a graph have an independent set of size k?

The ugly:

Is a binary knapsack problem feasible? (Weismantel).

Does a bipartite graph have a perfect matching?
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Complexity of the Algorithm
What if NulLA cannot determine infeasibility?

Different encodings

Different encodings: the good, the bad, and the ugly

The good:

Is a graph 3-colorable?

Is a graph 2-colorable?

The bad:

Does a graph have an independent set of size k?

The ugly:

Is a binary knapsack problem feasible? (Weismantel).

Does a bipartite graph have a perfect matching?

The promising:

Does a graph have a cycle of length k (Hamiltonian cycle)?

Does a graph have a k-colorable subgraph with r edges?

Does a graph have a planar subgraph with k edges?
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THANK YOU!

J.A. De Loera, J. Lee, P.N. Malkin, S. Margulies, Hilbert’s

Nullstellensatz and an Algorithm for Proving Combinatorial

Infeasibility, Proc. ISSAC’08, ACM, pages 197–206.

NulLA: Software will be available soon under COIN-OR.
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Different encodings

Comparison with Gröbner basis (dual) method

Gröbner basis (dual) method: A graph is k-colorable if and only
if the Gröbner basis of the ideal generated by the vertex and edge
polynomials is trivial, that is, the Gröbner basis is {1}.

Graphs |V | |E | GB (CoCoA) NulLA

Wheel 501 502 1,002 127 16
Wheel 1001 1,002 2,002 1,707 623
Mycielski 8 191 2,360 9,015 8
(10,4)-Kneser 210 1,575 9,772 4
4-Insertions 4 475 1,795 1,596 3

Note: Lower bounds for the Nullstellensatz translate into lower
bounds for the Gröbner basis method!

Peter Malkin, UC Davis Nullstellensatz
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