Hilbert's Nullstellensatz and an Algorithm for proving Combinatorial Infeasibility

Peter Malkin*, UC Davis

joint work with J. De Loera, J. Lee and S. Margulies

MIP 2008

August 4th, 2008
*Research partly funded by an IBM OCR grant and the NSF.

Modeling combinatorial optimization problems

- Traditional approach: Model combinatorial optimization problems by linear equalities and inequalities, and integrality constraints.
- Solve model using branch-and-cut approach is the basis of modern discrete optimization.
- Very successful, but ... we are looking for alternatives.

Modeling combinatorial optimization problems

- Traditional approach: Model combinatorial optimization problems by linear equalities and inequalities, and integrality constraints.
- Solve model using branch-and-cut approach is the basis of modern discrete optimization.
- Very successful, but ... we are looking for alternatives.
- Another paradigm: Model combinatorial optimization problems by non-linear polynomial equalities and inequalities.
- Solve model using other tools (e.g SDP, algebraic geometry, number theory, etc).

Modeling combinatorial optimization problems...

- From work by Shor (87), Nesterov, Lasserre, Laurent and Parrilo (2000-), we can solve a polynomial optimization problem by a growing sequence of semi-definite relaxations.
- Applied to 0/1-problems, or any finite varieties. We know that this sequence converges in a finite number of steps.

Modeling combinatorial optimization problems...

- From work by Shor (87), Nesterov, Lasserre, Laurent and Parrilo (2000-), we can solve a polynomial optimization problem by a growing sequence of semi-definite relaxations.
- Applied to 0/1-problems, or any finite varieties. We know that this sequence converges in a finite number of steps.

What are we going to talk about today?

Modeling combinatorial optimization problems...

- From work by Shor (87), Nesterov, Lasserre, Laurent and Parrilo (2000-), we can solve a polynomial optimization problem by a growing sequence of semi-definite relaxations.
- Applied to 0/1-problems, or any finite varieties. We know that this sequence converges in a finite number of steps.

What are we going to talk about today?

- We can solve a polynomial feasibility problem with only equality constraints by a growing sequence of linear algebra relaxations.
- We will talk about the complexity and practicality of this approach.

A typical combinatorial feasibility problem

- Independent Set: Given a graph G and an integer k, does there exist a subset of the vertices of size k such that no two vertices in the subset are adjacent?
- Recall, the independence number of a graph is the size of the largest independent set in the graph and is written $\alpha(G)$.

A typical combinatorial feasibility problem

- Independent Set: Given a graph G and an integer k, does there exist a subset of the vertices of size k such that no two vertices in the subset are adjacent?
- Recall, the independence number of a graph is the size of the largest independent set in the graph and is written $\alpha(G)$.
- The Turán Graph $T(5,3)$ has no independent set of size 3 .

Independent set modeled by a polynomial system

Given a graph G and an integer k :

- One variable x_{i} per vertex $i \in\{1, \ldots, n\}$.
- For every vertex $i=1, \ldots, n$, let $x_{i}^{2}-x_{i}=0$
- For every edge $(i, j) \in E$, let $x_{i} x_{j}=0$
- Finally, let

$$
\sum_{i=1}^{n} x_{i}-k=0
$$

Independent set modeled by a polynomial system

Given a graph G and an integer k :

- One variable x_{i} per vertex $i \in\{1, \ldots, n\}$.
- For every vertex $i=1, \ldots, n$, let $x_{i}^{2}-x_{i}=0$
- For every edge $(i, j) \in E$, let $x_{i} x_{j}=0$
- Finally, let

$$
\sum_{i=1}^{n} x_{i}-k=0
$$

- Theorem: (Lovász) Let k be an integer and let G be a graph encoded as the above system of equations. This system has a solution if and only if G has an independent set of size k.

Turán graph $T(5,3): \Longrightarrow$ system of polynomial equations

- The following system of equations has a solution if and only if $T(5,3)$ has an independent set of size 3.

$$
\begin{gathered}
x_{1}^{2}-x_{1}=0, x_{2}^{2}-x_{2}=0, x_{3}^{2}-x_{3}=0, x_{4}^{2}-x_{4}=0, x_{5}^{2}-x_{5}=0, \\
x_{1} x_{3}=0, x_{1} x_{4}=0, x_{1} x_{5}=0, x_{2} x_{3}=0 \\
x_{2} x_{4}=0, x_{2} x_{5}=0, x_{3} x_{5}=0, x_{4} x_{5}=0 \\
x_{1}+x_{3}+x_{5}+x_{2}+x_{4}-3=0
\end{gathered}
$$

Another typical combinatorial feasibility problem

- Graph vertex coloring: Given a graph G and an integer k, can the vertices be colored with k colors in such a way that no two adjacent vertices are the same color?
- E.g. the Petersen Graph is 3-colorable.

Graph coloring modeled by a polynomial system

- One variable x_{i} per vertex $i \in\{1, \ldots, n\}$.
- Vertex polynomials: For every vertex $i=1, \ldots, n$,

$$
x_{i}^{k}-1=0 .
$$

- Edge polynomials: For every edge $(i, j) \in E$,

$$
x_{i}^{k-1}+x_{i}^{k-2} x_{j}+\cdots+x_{i} x_{j}^{k-2}+x_{j}^{k-1}=0 .
$$

Note that

$$
x_{i}^{k}-x_{j}^{k}=\left(x_{i}-x_{j}\right)\left(x_{i}^{k-1}+x_{i}^{k-2} x_{j}+\cdots+x_{i} x_{j}^{k-2}+x_{j}^{k-1}\right)=0 .
$$

Graph coloring modeled by a polynomial system

- One variable x_{i} per vertex $i \in\{1, \ldots, n\}$.
- Vertex polynomials: For every vertex $i=1, \ldots, n$,

$$
x_{i}^{k}-1=0 .
$$

- Edge polynomials: For every edge $(i, j) \in E$,

$$
x_{i}^{k-1}+x_{i}^{k-2} x_{j}+\cdots+x_{i} x_{j}^{k-2}+x_{j}^{k-1}=0 .
$$

Note that

$$
x_{i}^{k}-x_{j}^{k}=\left(x_{i}-x_{j}\right)\left(x_{i}^{k-1}+x_{i}^{k-2} x_{j}+\cdots+x_{i} x_{j}^{k-2}+x_{j}^{k-1}\right)=0 .
$$

- Theorem: (D. Bayer) Let k be an integer and let G be a graph encoded as vertex and edge polynomials as above. This system of polynomial equations has a solution if and only if G is k-colorable.

E.g. Petersen graph polynomial system of equations

This system has a solution iff the Petersen graph is 3-colorable.
$x_{0}^{3}-1=0, x_{1}^{3}-1=0, \quad x_{0}^{2}+x_{0} x_{1}+x_{1}^{2}=0, x_{0}^{2}+x_{0} x_{4}+x_{4}^{2}=0$,
$x_{2}^{3}-1=0, x_{3}^{3}-1=0, \quad x_{0}^{2}+x_{0} x_{5}+x_{5}^{2}=0, x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}=0$,
$x_{4}^{3}-1=0, x_{5}^{3}-1=0, \quad x_{1}^{2}+x_{1} x_{6}+x_{6}^{2}=0, x_{2}^{2}+x_{2} x_{7}+x_{7}^{2}=0$,
$x_{6}^{3}-1=0, x_{7}^{3}-1=0$,
$x_{8}^{3}-1=0, x_{9}^{3}-1=0, \quad x_{6}^{2}+x_{6} x_{8}+x_{8}^{2}=0, x_{7}^{2}+x_{7} x_{9}+x_{9}^{2}=0$.

Hilbert's Nullstellensatz

- Theorem: Let \mathbb{K} be a field and $\overline{\mathbb{K}}$ its algebraic closure field. Let f_{1}, \ldots, f_{s} be polynomials in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. The system of equations $f_{1}=f_{2}=\cdots=f_{s}=0$ has no solution over $\overline{\mathbb{K}}$ if and only if there exist $\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
1=\sum_{i=1}^{s} \alpha_{i} f_{i}
$$

This polynomial identity is a Nullstellensatz certificate.

Hilbert's Nullstellensatz

- Theorem: Let \mathbb{K} be a field and $\overline{\mathbb{K}}$ its algebraic closure field. Let f_{1}, \ldots, f_{s} be polynomials in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. The system of equations $f_{1}=f_{2}=\cdots=f_{s}=0$ has no solution over $\overline{\mathbb{K}}$ if and only if there exist $\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
1=\sum_{i=1}^{s} \alpha_{i} f_{i}
$$

This polynomial identity is a Nullstellensatz certificate.

- If $x \in \overline{\mathbb{K}}^{n}$ was a solution, then $\sum_{i=1}^{s} \alpha_{i}(x) f_{i}(x)=0 \neq 1$.
- Nullstellensatz certificates are certificates of infeasibility.
- Let $d=\max \left\{\operatorname{deg}\left(\alpha_{1}\right), \operatorname{deg}\left(\alpha_{2}\right), \ldots, \operatorname{deg}\left(\alpha_{s}\right)\right\}$. Then, we say that d is the degree of the Nullstellensatz certificate.

How do we find a Nullstellensatz certificate

Key point:
For fixed degree, this is a linear algebra problem!!

How do we find a Nullstellensatz certificate

Key point:

For fixed degree, this is a linear algebra problem!!
E.g. Consider the system of polynomial equations

$$
f_{1}=x_{1}^{2}-1=0, f_{2}=x_{1}+x_{2}=0, f_{3}=x_{1}+x_{3}=0, f_{4}=x_{2}+x_{3}=0
$$

- This system has no solution over \mathbb{C}.

How do we find a Nullstellensatz certificate

Key point:

For fixed degree, this is a linear algebra problem!!
E.g. Consider the system of polynomial equations

$$
f_{1}=x_{1}^{2}-1=0, f_{2}=x_{1}+x_{2}=0, f_{3}=x_{1}+x_{3}=0, f_{4}=x_{2}+x_{3}=0
$$

- This system has no solution over \mathbb{C}.
- Does this system have a Nullstellensatz certificate of degree 1 ?

$$
\begin{aligned}
1 & =\underbrace{\left(c_{0} x_{1}+c_{1} x_{2}+c_{2} x_{3}+c_{3}\right)}_{\alpha_{1}} \underbrace{\left(x_{1}^{2}-1\right)}_{f_{1}}+\underbrace{\left(c_{4} x_{1}+c_{5} x_{2}+c_{6} x_{3}+c_{7}\right)}_{\alpha_{2}} \underbrace{\left(x_{1}+x_{2}\right)}_{f_{2}} \\
& +\underbrace{\left(c_{8} x_{1}+c_{9} x_{2}+c_{10} x_{3}+c_{11}\right)}_{\alpha_{4}} \underbrace{\left(x_{1}+x_{3}\right)}_{f_{3}}+\underbrace{\left(c_{12} x_{1}+c_{13} x_{2}+c_{14} x_{3}+c_{15}\right)}_{f_{4}} \underbrace{\left(x_{2}+x_{3}\right)}_{\alpha_{4}}
\end{aligned}
$$

- Expand the Nullstellensatz certificate grouping by monomials.

$$
\begin{aligned}
& 1=c_{0} x_{1}^{3}+c_{1} x_{1}^{2} x_{2}+c_{2} x_{1}^{2} x_{3}+\left(c_{3}+c_{4}+c_{8}\right) x_{1}^{2}+\left(c_{5}+c_{13}\right) x_{2}^{2}+\left(c_{10}+c_{14}\right) x_{3}^{2} \\
& +\left(c_{4}+c_{5}+c_{9}+c_{12}\right) x_{1} x_{2}+\left(c_{6}+c_{8}+c_{10}+c_{12}\right) x_{1} x_{3}+\left(c_{6}+c_{9}+c_{13}+c_{14}\right) x_{2} x_{3} \\
& +\left(c_{7}+c_{11}-c_{0}\right) x_{1}+\left(c_{7}+c_{15}-c_{1}\right) x_{2}+\left(c_{11}+c_{15}-c_{2}\right) x_{3}-c_{3}
\end{aligned}
$$

- Extract a linear system of equations from expanded certificate.

$$
c_{0}=0, \ldots, c_{3}+c_{4}+c_{8}=0, c_{11}+c_{15}-c_{2}=0,-c_{3}=1
$$

- Expand the Nullstellensatz certificate grouping by monomials.

$$
\begin{aligned}
& 1=c_{0} x_{1}^{3}+c_{1} x_{1}^{2} x_{2}+c_{2} x_{1}^{2} x_{3}+\left(c_{3}+c_{4}+c_{8}\right) x_{1}^{2}+\left(c_{5}+c_{13}\right) x_{2}^{2}+\left(c_{10}+c_{14}\right) x_{3}^{2} \\
& +\left(c_{4}+c_{5}+c_{9}+c_{12}\right) x_{1} x_{2}+\left(c_{6}+c_{8}+c_{10}+c_{12}\right) x_{1} x_{3}+\left(c_{6}+c_{9}+c_{13}+c_{14}\right) x_{2} x_{3} \\
& +\left(c_{7}+c_{11}-c_{0}\right) x_{1}+\left(c_{7}+c_{15}-c_{1}\right) x_{2}+\left(c_{11}+c_{15}-c_{2}\right) x_{3}-c_{3}
\end{aligned}
$$

- Extract a linear system of equations from expanded certificate.

$$
c_{0}=0, \ldots, c_{3}+c_{4}+c_{8}=0, c_{11}+c_{15}-c_{2}=0,-c_{3}=1
$$

- Solve the linear system. This linear system is feasible, so we have found a certificate and proven the polynomial system is infeasible. Note: the linear system is over \mathbb{R} and not \mathbb{C}.
- Expand the Nullstellensatz certificate grouping by monomials.

$$
\begin{aligned}
& 1=c_{0} x_{1}^{3}+c_{1} x_{1}^{2} x_{2}+c_{2} x_{1}^{2} x_{3}+\left(c_{3}+c_{4}+c_{8}\right) x_{1}^{2}+\left(c_{5}+c_{13}\right) x_{2}^{2}+\left(c_{10}+c_{14}\right) x_{3}^{2} \\
& +\left(c_{4}+c_{5}+c_{9}+c_{12}\right) x_{1} x_{2}+\left(c_{6}+c_{8}+c_{10}+c_{12}\right) x_{1} x_{3}+\left(c_{6}+c_{9}+c_{13}+c_{14}\right) x_{2} x_{3} \\
& +\left(c_{7}+c_{11}-c_{0}\right) x_{1}+\left(c_{7}+c_{15}-c_{1}\right) x_{2}+\left(c_{11}+c_{15}-c_{2}\right) x_{3}-c_{3}
\end{aligned}
$$

- Extract a linear system of equations from expanded certificate.

$$
c_{0}=0, \ldots, c_{3}+c_{4}+c_{8}=0, c_{11}+c_{15}-c_{2}=0,-c_{3}=1
$$

- Solve the linear system. This linear system is feasible, so we have found a certificate and proven the polynomial system is infeasible. Note: the linear system is over \mathbb{R} and not \mathbb{C}.
- Reconstruct the Nullstellensatz certificate from a solution of the linear system.

$$
1=-\left(x_{1}^{2}-1\right)+\frac{1}{2} x_{1}\left(x_{1}+x_{2}\right)-\frac{1}{2} x_{1}\left(x_{2}+x_{3}\right)+\frac{1}{2} x_{1}\left(x_{1}+x_{3}\right)
$$

- Expand the Nullstellensatz certificate grouping by monomials.

$$
\begin{aligned}
& 1=c_{0} x_{1}^{3}+c_{1} x_{1}^{2} x_{2}+c_{2} x_{1}^{2} x_{3}+\left(c_{3}+c_{4}+c_{8}\right) x_{1}^{2}+\left(c_{5}+c_{13}\right) x_{2}^{2}+\left(c_{10}+c_{14}\right) x_{3}^{2} \\
& +\left(c_{4}+c_{5}+c_{9}+c_{12}\right) x_{1} x_{2}+\left(c_{6}+c_{8}+c_{10}+c_{12}\right) x_{1} x_{3}+\left(c_{6}+c_{9}+c_{13}+c_{14}\right) x_{2} x_{3} \\
& +\left(c_{7}+c_{11}-c_{0}\right) x_{1}+\left(c_{7}+c_{15}-c_{1}\right) x_{2}+\left(c_{11}+c_{15}-c_{2}\right) x_{3}-c_{3}
\end{aligned}
$$

- Extract a linear system of equations from expanded certificate.

$$
c_{0}=0, \ldots, c_{3}+c_{4}+c_{8}=0, c_{11}+c_{15}-c_{2}=0,-c_{3}=1
$$

- Solve the linear system. This linear system is feasible, so we have found a certificate and proven the polynomial system is infeasible. Note: the linear system is over \mathbb{R} and not \mathbb{C}.
- Reconstruct the Nullstellensatz certificate from a solution of the linear system.

$$
1=-\left(x_{1}^{2}-1\right)+\frac{1}{2} x_{1}\left(x_{1}+x_{2}\right)-\frac{1}{2} x_{1}\left(x_{2}+x_{3}\right)+\frac{1}{2} x_{1}\left(x_{1}+x_{3}\right)
$$

- If the linear system was not feasible, we would have had to try a higher degree.

Bounds for the Nullstellensatz degree

Question:

How big can the degree of a Nullstellensatz certificate be?

Bounds for the Nullstellensatz degree

Question:

How big can the degree of a Nullstellensatz certificate be?

The most general bound...

Theorem: (Kollár)

The degree is bounded by $\max \{3, D\}^{n}$, where n is the number of variables and $D=\max \left\{\operatorname{deg}\left(f_{1}\right), \operatorname{deg}\left(f_{2}\right), \ldots, \operatorname{deg}\left(f_{s}\right)\right\}$.

Bounds for the Nullstellensatz degree

Question:

How big can the degree of a Nullstellensatz certificate be?

The most general bound...
Theorem: (Kollár)
The degree is bounded by $\max \{3, D\}^{n}$, where n is the number of variables and $D=\max \left\{\operatorname{deg}\left(f_{1}\right), \operatorname{deg}\left(f_{2}\right), \ldots, \operatorname{deg}\left(f_{s}\right)\right\}$.

But for k-coloring and independent sets, we have a better bound:
Theorem: (Lazard)
The degree is bounded by $n(D-1)$.

NulLA: Nullstellensatz linear algebra algorithm

- Input: A system of polynomial equations

$$
F=\left\{f_{1}=0, f_{2}=0, \ldots, f_{s}=0\right\} .
$$

- Set $d=0$.
- While $d \leq$ HNBound and no solution found for L_{d} :
- Construct a tentative Nullstellensatz certificate of degree d.
- Extract a linear system of equations L_{d}.
- Solve the linear system L_{d}.
- If there is a solution, then reconstruct the certificate and Output: F is INFEASIBLE.
- Else Set $d=d+1$.
- If $d=$ HNBound and no solution found for L_{d}, then Output: F is FEASIBLE.

What is the performance of the NulLA algorithm for combinatorial problems??

Nullstellensatz certificates for independents sets

Lemma: (De Loera, Lee, Margulies, Onn) If $P \neq N P$, then there must exist an infinite family of graphs without independent sets of size k for whom the degree of a Nullstellensatz certificate grows with respect to $|V|$ and $|E|$.

Nullstellensatz certificates for independents sets

Lemma: (De Loera, Lee, Margulies, Onn) If $P \neq N P$, then there must exist an infinite family of graphs without independent sets of size k for whom the degree of a Nullstellensatz certificate grows with respect to $|V|$ and $|E|$.

Question (L. Lovász): Can we explicitly describe such graphs?

Nullstellensatz certificates for independents sets

Lemma: (De Loera, Lee, Margulies, Onn) If $P \neq N P$, then there must exist an infinite family of graphs without independent sets of size k for whom the degree of a Nullstellensatz certificate grows with respect to $|V|$ and $|E|$.

Question (L. Lovász): Can we explicitly describe such graphs?
Theorem: (DLMO) A graph G with no independent set of size k has a minimum-degree Nullstellensatz certificate of degree $\alpha(G)$ that contains at least one term for every independent set in G.

Nullstellensatz certificates for independents sets

Lemma: (De Loera, Lee, Margulies, Onn) If $P \neq N P$, then there must exist an infinite family of graphs without independent sets of size k for whom the degree of a Nullstellensatz certificate grows with respect to $|V|$ and $|E|$.

Question (L. Lovász): Can we explicitly describe such graphs?
Theorem: (DLMO) A graph G with no independent set of size k has a minimum-degree Nullstellensatz certificate of degree $\alpha(G)$ that contains at least one term for every independent set in G.

- E.g. The disjoint union of triangles has a Nullstellensatz certificate of degree at least $n / 3$ and at least $4^{n / 3}$ terms.

Turán graph $T(5,3)$: reduced certificate example

$$
\begin{aligned}
1= & \left(\frac{x_{1} x_{2}+x_{3} x_{4}}{12}-\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}}{12}-\frac{1}{4}\right)\left(x_{1}+x_{3}+x_{5}+x_{2}+x_{4}-4\right)+ \\
& \left(\frac{x_{4}}{12}+\frac{x_{2}}{12}+\frac{1}{6}\right) x_{1} x_{3}+\left(\frac{x_{2}}{12}+\frac{1}{6}\right) x_{1} x_{4}+\left(\frac{x_{2}}{12}+\frac{1}{6}\right) x_{1} x_{5}+\left(\frac{x_{4}}{12}+\frac{1}{6}\right) x_{2} x_{3}+ \\
& \frac{x_{2} x_{4}}{6}+\frac{x_{2} x_{5}}{6}+\left(\frac{x_{4}}{12}+\frac{1}{6}\right) x_{3} x_{5}+\frac{x_{4} x_{5}}{6}+\left(\frac{x_{2}}{12}+\frac{1}{12}\right)\left(x_{1}^{2}-x_{1}\right)+ \\
& \left(\frac{x_{1}}{12}+\frac{1}{12}\right)\left(x_{2}^{2}-x_{2}\right)+\left(\frac{x_{4}}{12}+\frac{1}{12}\right)\left(x_{3}^{2}-x_{3}\right)+\left(\frac{x_{3}}{12}+\frac{1}{12}\right)\left(x_{4}^{2}-x_{4}\right)+\frac{x_{5}^{2}-x_{5}}{12}
\end{aligned}
$$

Nullstellensatz certificates for non-3-colorability

Theorem: (DLMO) Every Nullstellensatz certificate over \mathbb{R} for non-3-colorability of a graph has degree at least four.

- A graph with a 4-clique subgraph has a Nullstellensatz certificate over \mathbb{R} of minimal-degree exactly 4.

Nullstellensatz certificates for non-3-colorability

Theorem: (DLMO) Every Nullstellensatz certificate over \mathbb{R} for non-3-colorability of a graph has degree at least four.

- A graph with a 4-clique subgraph has a Nullstellensatz certificate over \mathbb{R} of minimal-degree exactly 4.

What about certificates over finite fields? What about \mathbb{F}_{2} ?

Nullstellensatz certificates for non-3-colorability

Theorem: (DLMO) Every Nullstellensatz certificate over \mathbb{R} for non-3-colorability of a graph has degree at least four.

- A graph with a 4-clique subgraph has a Nullstellensatz certificate over \mathbb{R} of minimal-degree exactly 4.

What about certificates over finite fields? What about \mathbb{F}_{2} ?
Theorem: For a graph G, the following system of polynomial equations has a solution over $\overline{\mathbb{F}}_{2}$ iff G is 3 -colorable.

$$
x_{i}^{3}+1=0 \forall i \in V, \quad x_{i}^{2}+x_{i} x_{j}+x_{j}^{2}=0 \forall(i, j) \in E .
$$

Nullstellensatz certificates for non-3-colorability

Theorem: (DLMO) Every Nullstellensatz certificate over \mathbb{R} for non-3-colorability of a graph has degree at least four.

- A graph with a 4-clique subgraph has a Nullstellensatz certificate over \mathbb{R} of minimal-degree exactly 4.

What about certificates over finite fields? What about \mathbb{F}_{2} ?
Theorem: For a graph G, the following system of polynomial equations has a solution over $\overline{\mathbb{F}}_{2}$ iff G is 3 -colorable.

$$
x_{i}^{3}+1=0 \forall i \in V, \quad x_{i}^{2}+x_{i} x_{j}+x_{j}^{2}=0 \forall(i, j) \in E .
$$

- A graph with 4-clique subgraph has a Nullstellensatz certificate over \mathbb{F}_{2} of minimal-degree exactly 1 .
- Note: the linear system we need to solve is over \mathbb{F}_{2}, so there are no numerical stability problems!!

Experimental results for NulLA 3-colorability

Graph	$\|V\|$	$\|E\|$	\#rows	\#cols	d	sec
Mycielski 7	95	755	64,281	71,726	1	1
Mycielski 9	383	7,271	$2,477,931$	$2,784,794$	1	269
Mycielski 10	767	22,196	$15,270,943$	$17,024,333$	1	14835
(8,3)-Kneser	56	280	15,737	15,681	1	0
(10, 4)-Kneser	210	1,575	349,651	330,751	1	4
(12,5)-Kneser	792	8,316	$7,030,585$	$6,586,273$	1	467
(13,5)-Kneser	1,287	36,036	$45,980,650$	$46,378,333$	1	216105
1-Insertions_5	202	1,227	268,049	247,855	1	2
2-Insertions_5	597	3,936	$2,628,805$	$2,349,793$	1	18
3-Insertions_5	1,406	9,695	$15,392,209$	$13,631,171$	1	83
ash331GPIA	662	4,185	$3,147,007$	$2,770,471$	1	14
ash608GPIA	1,216	7,844	$10,904,642$	$9,538,305$	1	35
ash958GPIA	1,916	12,506	$27,450,965$	$23,961,497$	1	90

Table: DIMACS graphs without 4-cliques.

Comparison with other graph coloring algorithms

- DSATUR a sequential coloring heuristic by Brelaz, 1979.
- A Branch-and-Cut algorithm for graph coloring (B\&C) by Isabel Méndez-Díaz and Paula Zabala (2006)

Comparison with other graph coloring algorithms

- DSATUR a sequential coloring heuristic by Brelaz, 1979.
- A Branch-and-Cut algorithm for graph coloring (B\&C) by Isabel Méndez-Díaz and Paula Zabala (2006)

				B\&C		DSATUR		NulLA		
Graph	$\|V\|$	$\|E\|$	Ib	up	Ib	up	Ib	deg		
sec										
4-Insertions_3.col	79	156	3	4	2	4	4	1		
3-Insertions_4.col	281	1046	3	5	2	5	4	1		
4-Insertions_4.col	475	1795	3	5	2	5	4	1		
2-Insertions_5.col	597	3936	3	6	2	6	4	1		
3-Insertions_5.col	1,406	9695	3	6	2	6	4	1		

"This shouldn't work ...
 but it does!"

Anonymous.

Growth in Nullstellensatz degree

Lemma: (DLMO) If $P \neq N P$, then there must exist an infinite family of graphs without k-colorings for whom the degree of a Nullstellensatz certificate grows with respect to $|V|$ and $|E|$.

Growth in Nullstellensatz degree

Lemma: (DLMO) If $\mathrm{P} \neq \mathrm{NP}$, then there must exist an infinite family of graphs without k-colorings for whom the degree of a Nullstellensatz certificate grows with respect to $|V|$ and $|E|$.

- 4-critical graphs by Mizuno-Nishihara are the ugliest non-3-colorable graphs for NulLA that we found.

G_{i}	n	m	\#row	\#col	deg	sec
G_{0}	10	18	336	319	1	0
G_{1}	20	37	350,040	65,527	3	1
G_{2}	30	55	$1,844,857$	$2,643,432$	4	52
G_{3}	39	72	$7,316,382$	$9,008,930$	4	246
G_{4}	49	90	-	-	≥ 5	-

What if NulLA cannot determine infeasibility?

What if NulLA cannot determine infeasibility?

- Some simple preprocessing can help, but this is often not enough.

What if NulLA cannot determine infeasibility?

- Some simple preprocessing can help, but this is often not enough.

Four key mathematical ideas are as follows:

- use finite fields,
- append redundant equations,
- use Alternative Nullstellensätze, and
- use symmetry.

Appending redundant valid equations

degree 4 certificate
$7,585,826 \times 9,887,481$
over 4 hours

Appending redundant valid equations

There are 25 triangles
degree 4 certificate
$7,585,826 \times 9,887,481$
over 4 hours

Appending redundant valid equations

degree 4 certificate
$7,585,826 \times 9,887,481$
over 4 hours

There are 25 triangles

"Triangle" equation:

$$
0=x+y+z
$$

Appending redundant valid equations

There are 25 triangles

"Triangle" equation:
degree 4 certificate
$7,585,826 \times 9,887,481$
over 4 hours

$$
0=x+y+z
$$

Degree two triangle equation:

$$
0=x^{2}+y^{2}+z^{2}
$$

Appending redundant valid equations

degree 4 certificate
$7,585,826 \times 9,887,481$
over 4 hours \Downarrow
degree 1 certificate
$4,626 \times 4,3464$
0.2 seconds

Alternative Nullstellensätze

Theorem: The system of equations $f_{1}=f_{2}=\cdots=f_{s}=0$ has no solution if and only if there exist polynomials $\alpha_{1}, \ldots, \alpha_{s}$ and g where $f_{1}=f_{2}=\cdots=f_{s}=0$ and $g=0$ has no solution such that

$$
g=\sum_{i=1}^{s} \alpha_{i} f_{i}
$$

- Note that $g=1$ is Hilbert's Nullstellensatz.

Alternative Nullstellensätze

Theorem: The system of equations $f_{1}=f_{2}=\cdots=f_{s}=0$ has no solution if and only if there exist polynomials $\alpha_{1}, \ldots, \alpha_{s}$ and g where $f_{1}=f_{2}=\cdots=f_{s}=0$ and $g=0$ has no solution such that

$$
g=\sum_{i=1}^{s} \alpha_{i} f_{i}
$$

- Note that $g=1$ is Hilbert's Nullstellensatz.
E.g. This graph has a degree 4 certificate for non-3-colorability.

- If we use $g=x_{1} x_{8} x_{9}$, the graph has a degree 1 certificate.

Using symmetry to shrink the linear system

Suppose that $F=\left\{f_{1}, \ldots, f_{s}\right\}$ is invariant under the action of a permutation group P acting on the variables x_{1}, \ldots, x_{n}.

- So, for every permutation $p \in P$, we have $p(F)=F$.
- For graph k-coloring, P is the automorphism group.

Using symmetry to shrink the linear system

Suppose that $F=\left\{f_{1}, \ldots, f_{s}\right\}$ is invariant under the action of a permutation group P acting on the variables x_{1}, \ldots, x_{n}.

- So, for every permutation $p \in P$, we have $p(F)=F$.
- For graph k-coloring, P is the automorphism group.
- Note: permuting a certificate gives another certificate!

$$
1=\sum_{i=1}^{s} \alpha_{i} f_{i} \Rightarrow 1=\sum_{i=1}^{s} p\left(\alpha_{i}\right) p\left(f_{i}\right) \Rightarrow 1=\sum_{i=1}^{s} \bar{\alpha}_{i} f_{i}
$$

Using symmetry to shrink the linear system

Suppose that $F=\left\{f_{1}, \ldots, f_{s}\right\}$ is invariant under the action of a permutation group P acting on the variables x_{1}, \ldots, x_{n}.

- So, for every permutation $p \in P$, we have $p(F)=F$.
- For graph k-coloring, P is the automorphism group.
- Note: permuting a certificate gives another certificate!

$$
1=\sum_{i=1}^{s} \alpha_{i} f_{i} \Rightarrow 1=\sum_{i=1}^{s} p\left(\alpha_{i}\right) p\left(f_{i}\right) \Rightarrow 1=\sum_{i=1}^{s} \bar{\alpha}_{i} f_{i} .
$$

E.g. Consider K_{4} and the cyclic group $P=\langle(2,3,4)\rangle$.

- A degree-one certificate for non-3-colorability of K_{4} is

$$
\begin{aligned}
1= & c_{0}\left(x_{1}^{3}+1\right) \\
& +\left(c_{12}^{1} x_{1}+c_{12}^{2} x_{2}+c_{12}^{3} x_{3}+c_{12}^{4} x_{4}\right)\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)+\left(c_{13}^{1} x_{1}+c_{13}^{2} x_{2}+c_{13}^{3} x_{3}+c_{13}^{4} x_{4}\right)\left(x_{1}^{2}+x_{1} x_{3}+x_{3}^{2}\right) \\
& +\left(c_{14}^{1} x_{1}+c_{14}^{2} x_{2}+c_{14}^{3} x_{3}+c_{14}^{4} x_{4}\right)\left(x_{1}^{2}+x_{1} x_{4}+x_{4}^{2}\right)+\left(c_{23}^{1} x_{1}+c_{23}^{2} x_{2}+c_{23}^{3} x_{3}+c_{23}^{4} x_{4}\right)\left(x_{2}^{2}+x_{2} x_{3}+x_{3}^{2}\right) \\
& +\left(c_{24}^{1} x_{1}+c_{24}^{2} x_{2}+c_{24}^{3} x_{3}+c_{24}^{4} x_{4}\right)\left(x_{2}^{2}+x_{2} x_{4}+x_{4}^{2}\right)+\left(c_{34}^{1} x_{1}+c_{34}^{2} x_{2}+c_{34}^{3} x_{3}+c_{34}^{4} x_{4}\right)\left(x_{3}^{2}+x_{3} x_{4}+x_{4}^{2}\right)
\end{aligned}
$$

K_{4} linear system matrix

| | c_{0} | $c_{12}^{1} c_{12}^{2} c_{12}^{3}$ | c_{12}^{4} | $c_{13}^{1} c_{13}^{2} c_{13}^{3} c_{13}^{4}$ | $c_{14}^{1} c_{14}^{2} c_{14}^{3}$ | c_{14}^{4} | $c_{13}^{1} c_{23}^{2} c_{23}^{3} c_{23}^{4}$ | $c_{24}^{1} c_{24}^{2} c_{24}^{3} c_{24}^{4}$ |
| ---: | :---: |

K_{4} linear system matrix

1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
x_{1}^{3}	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$x_{1}^{2} x_{2}$	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
$x_{1}^{2} x_{3}$																									
$x_{1}^{2} x_{4}$	0	0	1	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
$x_{1} x_{2}^{2}$	0	1	0	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
$x_{1} x_{3}^{2}$	0	0	1	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
$x_{1} x_{4}^{2}$	0	0	0	1	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
$x_{1} x_{2} x_{3}$																									
$x_{1} x_{2} x_{4}$	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
$x_{1} x_{3} x_{4}$	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
x_{2}^{3}	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
x_{3}^{3}	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0
0	0	0	1	0	0	1	0	0	0	0															
x_{4}^{3}	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0
$x_{2}^{2} x_{3}$	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0
$x_{3}^{2} x_{4}$	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1
$x_{2} x_{4}^{2}$	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0
$x_{2}^{2} x_{4}$	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	1
$x_{2} x_{3}^{2}$	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	1	0	0
$x_{3} x_{4}^{2}$	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	1	0
$x_{2} x_{3} x_{4}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1

K_{4} linear system orbit matrix

| | \bar{c}_{0} | \bar{c}_{12}^{1} | \bar{c}_{12}^{2} | \bar{c}_{12}^{3} | \bar{c}_{12}^{4} | \bar{c}_{23}^{1} | \bar{c}_{23}^{2} | \bar{c}_{24}^{2} | \bar{c}_{34}^{2} |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Orb}(1)$ | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\operatorname{Orb}\left(x_{1}^{3}\right)$ | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\operatorname{Orb}\left(x_{1}^{2} x_{2}\right)$ | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| $\operatorname{Orb}\left(x_{1} x_{2}^{2}\right)$ | 0 | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 0 |
| $\operatorname{Orb}\left(x_{1} x_{2} x_{3}\right)$ | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| $\operatorname{Orb}\left(x_{2}^{3}\right)$ | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| $\operatorname{Orb}\left(x_{2}^{2} x_{3}\right)$ | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| $\operatorname{Orb}\left(x_{2}^{2} x_{4}\right)$ | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| $\operatorname{Orb}\left(x_{2} x_{3} x_{4}\right)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |

$\operatorname{Orb}(1)$	1	0	0	0	0	0	0	0	0
$\operatorname{Orb}\left(x_{1}^{3}\right)$	1	1	0	0	0	0	0	0	0
$\operatorname{Orb}\left(x_{1}^{2} x_{2}\right)$	0	1	1	1	1	0	0	0	0
$\operatorname{Orb}\left(x_{1} x_{2}^{2}\right)$	0	1	1	0	0	0	0	0	0
$\operatorname{Orb}\left(x_{1} x_{2} x_{3}\right)$	0	0	0	1	1	1	0	0	0
$\operatorname{Orb}\left(x_{2}^{3}\right)$	0	0	1	0	0	0	1	1	0
$\operatorname{Orb}\left(x_{2}^{2} x_{3}\right)$	0	0	0	1	0	0	1	1	1
$\operatorname{Orb}\left(x_{2}^{2} x_{4}\right)$	0	0	0	0	1	0	1	1	1
$\operatorname{Orb}\left(x_{2} x_{3} x_{4}\right)$	0	0	0	0	0	0	0	0	1

- This reduced matrix has a solution if and only if the original matrix has a solution.

Different encodings: the good, the bad, and the ugly

The good:

- Is a graph 3-colorable?
- Is a graph 2-colorable?

Different encodings: the good, the bad, and the ugly

The good:

- Is a graph 3-colorable?
- Is a graph 2-colorable?

The bad:

- Does a graph have an independent set of size k ?

Different encodings: the good, the bad, and the ugly

The good:

- Is a graph 3-colorable?
- Is a graph 2-colorable?

The bad:

- Does a graph have an independent set of size k ?

The ugly:

- Is a binary knapsack problem feasible? (Weismantel).
- Does a bipartite graph have a perfect matching?

Different encodings: the good, the bad, and the ugly

The good:

- Is a graph 3-colorable?
- Is a graph 2-colorable?

The bad:

- Does a graph have an independent set of size k ?

The ugly:

- Is a binary knapsack problem feasible? (Weismantel).
- Does a bipartite graph have a perfect matching?

The promising:

- Does a graph have a cycle of length k (Hamiltonian cycle)?
- Does a graph have a k-colorable subgraph with r edges?
- Does a graph have a planar subgraph with k edges?

THANK YOU!

- J.A. De Loera, J. Lee, P.N. Malkin, S. Margulies, Hilbert's Nullstellensatz and an Algorithm for Proving Combinatorial Infeasibility, Proc. ISSAC'08, ACM, pages 197-206.
- NulLA: Software will be available soon under COIN-OR.

Comparison with Gröbner basis (dual) method

Gröbner basis (dual) method: A graph is k-colorable if and only if the Gröbner basis of the ideal generated by the vertex and edge polynomials is trivial, that is, the Gröbner basis is $\{1\}$.

Graphs	$\|V\|$	$\|E\|$	GB (CoCoA)	NulLA
Wheel 501	502	1,002	127	16
Wheel 1001	1,002	2,002	1,707	623
Mycielski 8	191	2,360	9,015	8
(10,4)-Kneser	210	1,575	9,772	4
4-Insertions 4	475	1,795	1,596	3

Note: Lower bounds for the Nullstellensatz translate into lower bounds for the Gröbner basis method!

