Hilbert's Nullstellensatz and an Algorithm for proving Combinatorial Infeasibility

Peter Malkin*, UC Davis

joint work with J. De Loera, J. Lee and S. Margulies

MIP 2008

August 4th, 2008

*Research partly funded by an IBM OCR grant and the NSF.

Peter Malkin, UC Davis

Nullstellensatz

Modeling combinatorial optimization problems

- Traditional approach: Model combinatorial optimization problems by linear equalities and inequalities, and integrality constraints.
- Solve model using branch-and-cut approach is the basis of modern discrete optimization.
- Very successful, but ... we are looking for alternatives.

Modeling combinatorial optimization problems

- Traditional approach: Model combinatorial optimization problems by linear equalities and inequalities, and integrality constraints.
- Solve model using branch-and-cut approach is the basis of modern discrete optimization.
- Very successful, but ... we are looking for alternatives.
- Another paradigm: Model combinatorial optimization problems by non-linear polynomial equalities and inequalities.
- Solve model using other tools (e.g SDP, algebraic geometry, number theory, etc).

Modeling combinatorial optimization problems...

- From work by Shor (87), Nesterov, Lasserre, Laurent and Parrilo (2000-), we can solve a polynomial optimization problem by a growing sequence of semi-definite relaxations.
- Applied to 0/1-problems, or any **finite varieties**. We know that this sequence converges in a finite number of steps.

Modeling combinatorial optimization problems...

- From work by Shor (87), Nesterov, Lasserre, Laurent and Parrilo (2000-), we can solve a polynomial optimization problem by a growing sequence of semi-definite relaxations.
- Applied to 0/1-problems, or any **finite varieties**. We know that this sequence converges in a finite number of steps.

What are we going to talk about today?

Modeling combinatorial optimization problems...

- From work by Shor (87), Nesterov, Lasserre, Laurent and Parrilo (2000-), we can solve a polynomial optimization problem by a growing sequence of semi-definite relaxations.
- Applied to 0/1-problems, or any **finite varieties**. We know that this sequence converges in a finite number of steps.

What are we going to talk about today?

- We can solve a polynomial feasibility problem with only equality constraints by a growing sequence of linear algebra relaxations.
- We will talk about the complexity and practicality of this approach.

A typical combinatorial feasibility problem

- **Independent Set:** Given a graph *G* and an integer *k*, does there exist a subset of the vertices of size *k* such that no two vertices in the subset are adjacent?
- Recall, the *independence* number of a graph is the size of the largest independent set in the graph and is written $\alpha(G)$.

A typical combinatorial feasibility problem

- **Independent Set:** Given a graph *G* and an integer *k*, does there exist a subset of the vertices of size *k* such that no two vertices in the subset are adjacent?
- Recall, the *independence* number of a graph is the size of the largest independent set in the graph and is written $\alpha(G)$.
- The **Turán Graph** T(5,3) has no independent set of size 3.

Independent set modeled by a polynomial system

Given a graph G and an integer k:

- One variable x_i per vertex $i \in \{1, ..., n\}$.
- For every vertex i = 1, ..., n, let $x_i^2 x_i = 0$
- For every edge $(i,j) \in E$, let $x_i x_j = 0$
- Finally, let

$$\sum_{i=1}^n x_i - k = 0.$$

Independent set modeled by a polynomial system

Given a graph G and an integer k:

- One variable x_i per vertex $i \in \{1, ..., n\}$.
- For every vertex i = 1, ..., n, let $x_i^2 x_i = 0$
- For every edge $(i,j) \in E$, let $x_i x_j = 0$
- Finally, let

$$\sum_{i=1}^n x_i - k = 0.$$

• **Theorem:** (Lovász) Let k be an integer and let G be a graph encoded as the above system of equations. This system has a solution if and only if G has an independent set of size k.

Turán graph T(5,3): \Longrightarrow system of polynomial equations

• The following system of equations has a solution if and only if T(5,3) has an independent set of size 3.

$$x_1^2 - x_1 = 0, x_2^2 - x_2 = 0, x_3^2 - x_3 = 0, x_4^2 - x_4 = 0, x_5^2 - x_5 = 0,$$

$$x_1 x_3 = 0, x_1 x_4 = 0, x_1 x_5 = 0, x_2 x_3 = 0,$$

$$x_2 x_4 = 0, x_2 x_5 = 0, x_3 x_5 = 0, x_4 x_5 = 0,$$

$$x_1 + x_3 + x_5 + x_2 + x_4 - 3 = 0.$$

Another typical combinatorial feasibility problem

- **Graph vertex coloring:** Given a graph G and an integer k, can the vertices be colored with k colors in such a way that no two adjacent vertices are the same color?
- E.g. the **Petersen Graph** is 3-colorable.

Graph coloring modeled by a polynomial system

- One variable x_i per vertex $i \in \{1, ..., n\}$.
- **Vertex polynomials:** For every vertex i = 1, ..., n,

$$x_i^k - 1 = 0.$$

• **Edge polynomials:** For every edge $(i,j) \in E$,

$$x_i^{k-1} + x_i^{k-2}x_j + \dots + x_ix_j^{k-2} + x_j^{k-1} = 0.$$

Note that

$$x_i^k - x_j^k = (x_i - x_j)(x_i^{k-1} + x_i^{k-2}x_j + \dots + x_ix_j^{k-2} + x_j^{k-1}) = 0.$$

Graph coloring modeled by a polynomial system

- One variable x_i per vertex $i \in \{1, ..., n\}$.
- **Vertex polynomials:** For every vertex i = 1, ..., n,

$$x_i^k-1=0.$$

• Edge polynomials: For every edge $(i,j) \in E$,

$$x_i^{k-1} + x_i^{k-2}x_j + \dots + x_ix_j^{k-2} + x_j^{k-1} = 0.$$

Note that

$$x_i^k - x_j^k = (x_i - x_j)(x_i^{k-1} + x_i^{k-2}x_j + \dots + x_ix_j^{k-2} + x_j^{k-1}) = 0.$$

• **Theorem:** (D. Bayer) Let k be an integer and let G be a graph encoded as vertex and edge polynomials as above. This system of polynomial equations has a solution if and only if G is k-colorable.

E.g. Petersen graph polynomial system of equations

This system has a solution iff the Petersen graph is 3-colorable.

$$\begin{aligned} x_0^3 - 1 &= 0, \ x_1^3 - 1 &= 0, \\ x_2^3 - 1 &= 0, \ x_3^3 - 1 &= 0, \\ x_4^3 - 1 &= 0, \ x_5^3 - 1 &= 0, \\ x_6^3 - 1 &= 0, \ x_7^3 - 1 &= 0, \\ x_6^3 - 1 &= 0, \ x_7^3 - 1 &= 0, \\ x_8^3 - 1 &= 0, \ x_9^3 - 1 &= 0, \\ x_6^3 - 1 &= 0, \ x_9^3 - 1 &= 0, \\ x_6^3 - 1 &= 0, \ x_9^3 - 1 &= 0, \\ \end{aligned} \qquad \begin{aligned} x_0^2 + x_0 x_1 + x_1^2 &= 0, \ x_1^2 + x_1 x_2 + x_2^2 &= 0, \\ x_1^2 + x_1 x_6 + x_6^2 &= 0, \ x_2^2 + x_2 x_7 + x_7^2 &= 0, \\ & \cdots & \cdots & \cdots \\ x_8^3 - 1 &= 0, \ x_9^3 - 1 &= 0, \end{aligned}$$

Hilbert's Nullstellensatz

• **Theorem:** Let \mathbb{K} be a field and $\overline{\mathbb{K}}$ its algebraic closure field. Let f_1, \ldots, f_s be polynomials in $\mathbb{K}[x_1, \ldots, x_n]$. The system of equations $f_1 = f_2 = \cdots = f_s = 0$ has **no** solution over $\overline{\mathbb{K}}$ if and only if there exist $\alpha_1, \ldots, \alpha_s \in \mathbb{K}[x_1, \ldots, x_n]$ such that

$$1=\sum_{i=1}^s \alpha_i f_i.$$

This polynomial identity is a *Nullstellensatz certificate*.

Hilbert's Nullstellensatz

• **Theorem:** Let \mathbb{K} be a field and $\overline{\mathbb{K}}$ its algebraic closure field. Let f_1,\ldots,f_s be polynomials in $\mathbb{K}[x_1,\ldots,x_n]$. The system of equations $f_1=f_2=\cdots=f_s=0$ has **no** solution over $\overline{\mathbb{K}}$ if and only if there exist $\alpha_1,\ldots,\alpha_s\in\mathbb{K}[x_1,\ldots,x_n]$ such that

$$1=\sum_{i=1}^s\alpha_if_i.$$

This polynomial identity is a Nullstellensatz certificate.

- If $x \in \overline{\mathbb{K}}^n$ was a solution, then $\sum_{i=1}^s \alpha_i(x) f_i(x) = 0 \neq 1$.
- Nullstellensatz certificates are certificates of infeasibility.
- Let $d = \max\{\deg(\alpha_1), \deg(\alpha_2), \ldots, \deg(\alpha_s)\}$. Then, we say that d is the degree of the Nullstellensatz certificate.

How do we find a Nullstellensatz certificate

Key point:

For fixed degree, this is a linear algebra problem!!

How do we find a Nullstellensatz certificate

Key point:

For fixed degree, this is a linear algebra problem!!

E.g. Consider the system of polynomial equations

$$f_1 = x_1^2 - 1 = 0$$
, $f_2 = x_1 + x_2 = 0$, $f_3 = x_1 + x_3 = 0$, $f_4 = x_2 + x_3 = 0$

• This system has no solution over C.

How do we find a Nullstellensatz certificate

Key point:

For fixed degree, this is a linear algebra problem!!

E.g. Consider the system of polynomial equations

$$f_1 = x_1^2 - 1 = 0$$
, $f_2 = x_1 + x_2 = 0$, $f_3 = x_1 + x_3 = 0$, $f_4 = x_2 + x_3 = 0$

- This system has no solution over C.
- Does this system have a Nullstellensatz certificate of degree 1?

$$1 = \underbrace{\left(c_{0}x_{1} + c_{1}x_{2} + c_{2}x_{3} + c_{3}\right)}_{\alpha_{1}}\underbrace{\left(x_{1}^{2} - 1\right)}_{f_{1}} + \underbrace{\left(c_{4}x_{1} + c_{5}x_{2} + c_{6}x_{3} + c_{7}\right)}_{\alpha_{2}}\underbrace{\left(x_{1} + x_{2}\right)}_{f_{2}} + \underbrace{\left(c_{8}x_{1} + c_{9}x_{2} + c_{10}x_{3} + c_{11}\right)}_{\alpha_{3}}\underbrace{\left(x_{1} + x_{3}\right)}_{f_{3}} + \underbrace{\left(c_{12}x_{1} + c_{13}x_{2} + c_{14}x_{3} + c_{15}\right)}_{\alpha_{4}}\underbrace{\left(x_{2} + x_{3}\right)}_{f_{4}}$$

• Expand the Nullstellensatz certificate grouping by monomials.

$$1 = c_0 x_1^3 + c_1 x_1^2 x_2 + c_2 x_1^2 x_3 + (c_3 + c_4 + c_8) x_1^2 + (c_5 + c_{13}) x_2^2 + (c_{10} + c_{14}) x_3^2$$

$$+ (c_4 + c_5 + c_9 + c_{12}) x_1 x_2 + (c_6 + c_8 + c_{10} + c_{12}) x_1 x_3 + (c_6 + c_9 + c_{13} + c_{14}) x_2 x_3$$

$$+ (c_7 + c_{11} - c_0) x_1 + (c_7 + c_{15} - c_1) x_2 + (c_{11} + c_{15} - c_2) x_3 - c_3$$

• Extract a *linear* system of equations from expanded certificate.

$$c_0 = 0, \ldots, c_3 + c_4 + c_8 = 0, c_{11} + c_{15} - c_2 = 0, -c_3 = 1$$

• Expand the Nullstellensatz certificate grouping by monomials.

$$1 = c_0 x_1^3 + c_1 x_1^2 x_2 + c_2 x_1^2 x_3 + (c_3 + c_4 + c_8) x_1^2 + (c_5 + c_{13}) x_2^2 + (c_{10} + c_{14}) x_3^2$$

$$+ (c_4 + c_5 + c_9 + c_{12}) x_1 x_2 + (c_6 + c_8 + c_{10} + c_{12}) x_1 x_3 + (c_6 + c_9 + c_{13} + c_{14}) x_2 x_3$$

$$+ (c_7 + c_{11} - c_0) x_1 + (c_7 + c_{15} - c_1) x_2 + (c_{11} + c_{15} - c_2) x_3 - c_3$$

Extract a linear system of equations from expanded certificate.

$$c_0 = 0, \ldots, c_3 + c_4 + c_8 = 0, c_{11} + c_{15} - c_2 = 0, -c_3 = 1$$

• Solve the linear system. This linear system is feasible, so we have found a certificate and proven the polynomial system is infeasible. **Note:** the linear system is over \mathbb{R} and not \mathbb{C} .

Expand the Nullstellensatz certificate grouping by monomials.

$$1 = c_0 x_1^3 + c_1 x_1^2 x_2 + c_2 x_1^2 x_3 + (c_3 + c_4 + c_8) x_1^2 + (c_5 + c_{13}) x_2^2 + (c_{10} + c_{14}) x_3^2$$

$$+ (c_4 + c_5 + c_9 + c_{12}) x_1 x_2 + (c_6 + c_8 + c_{10} + c_{12}) x_1 x_3 + (c_6 + c_9 + c_{13} + c_{14}) x_2 x_3$$

$$+ (c_7 + c_{11} - c_0) x_1 + (c_7 + c_{15} - c_1) x_2 + (c_{11} + c_{15} - c_2) x_3 - c_3$$

Extract a linear system of equations from expanded certificate.

$$c_0 = 0, \ldots, c_3 + c_4 + c_8 = 0, c_{11} + c_{15} - c_2 = 0, -c_3 = 1$$

- Solve the linear system. This linear system is feasible, so we have found a certificate and proven the polynomial system is infeasible. **Note:** the linear system is over $\mathbb R$ and not $\mathbb C$.
- Reconstruct the Nullstellensatz certificate from a solution of the linear system.

$$1 = -(x_1^2 - 1) + \frac{1}{2}x_1(x_1 + x_2) - \frac{1}{2}x_1(x_2 + x_3) + \frac{1}{2}x_1(x_1 + x_3)$$

Expand the Nullstellensatz certificate grouping by monomials.

$$\begin{split} 1 &= c_0 x_1^3 + c_1 x_1^2 x_2 + c_2 x_1^2 x_3 + (c_3 + c_4 + c_8) x_1^2 + (c_5 + c_{13}) x_2^2 + (c_{10} + c_{14}) x_3^2 \\ &+ (c_4 + c_5 + c_9 + c_{12}) x_1 x_2 + (c_6 + c_8 + c_{10} + c_{12}) x_1 x_3 + (c_6 + c_9 + c_{13} + c_{14}) x_2 x_3 \\ &+ (c_7 + c_{11} - c_0) x_1 + (c_7 + c_{15} - c_1) x_2 + (c_{11} + c_{15} - c_2) x_3 - c_3 \end{split}$$

Extract a linear system of equations from expanded certificate.

$$c_0 = 0, \ldots, c_3 + c_4 + c_8 = 0, c_{11} + c_{15} - c_2 = 0, -c_3 = 1$$

- Solve the linear system. This linear system is feasible, so we have found a certificate and proven the polynomial system is infeasible. **Note:** the linear system is over \mathbb{R} and not \mathbb{C} .
- Reconstruct the Nullstellensatz certificate from a solution of the linear system.

$$1 = -(x_1^2 - 1) + \frac{1}{2}x_1(x_1 + x_2) - \frac{1}{2}x_1(x_2 + x_3) + \frac{1}{2}x_1(x_1 + x_3)$$

• If the linear system was not feasible, we would have had to try a higher degree.

Bounds for the Nullstellensatz degree

Question:

How big can the degree of a Nullstellensatz certificate be?

Bounds for the Nullstellensatz degree

Question:

How big can the degree of a Nullstellensatz certificate be?

The most general bound...

Theorem: (Kollár)

The degree is bounded by $\max\{3, D\}^n$, where n is the number of variables and $D = \max\{\deg(f_1), \deg(f_2), \ldots, \deg(f_s)\}$.

Bounds for the Nullstellensatz degree

Question:

How big can the degree of a Nullstellensatz certificate be?

The most general bound...

Theorem: (Kollár)

The degree is bounded by $\max\{3, D\}^n$, where n is the number of variables and $D = \max\{\deg(f_1), \deg(f_2), \ldots, \deg(f_s)\}$.

But for k-coloring and independent sets, we have a better bound:

Theorem: (Lazard)

The degree is bounded by n(D-1).

NulLA: Nullstellensatz linear algebra algorithm

- **Input:** A system of polynomial equations $F = \{f_1 = 0, f_2 = 0, \dots, f_s = 0\}.$
- Set d = 0.
- While $d \leq HNBound$ and no solution found for L_d :
 - Construct a tentative Nullstellensatz certificate of degree d.
 - Extract a linear system of equations L_d .
 - Solve the linear system L_d .
 - If there is a solution, then reconstruct the certificate and Output: F is INFEASIBLE.
 - Else Set d = d + 1.
- If d = HNBound and no solution found for L_d, then
 Output: F is FEASIBLE.

What is the performance of the NulLA algorithm for combinatorial problems??

Lemma: (De Loera, Lee, Margulies, Onn) If $P \neq NP$, then there must exist an infinite family of graphs without independent sets of size k for whom the degree of a Nullstellensatz certificate grows with respect to |V| and |E|.

Lemma: (De Loera, Lee, Margulies, Onn) If $P \neq NP$, then there must exist an infinite family of graphs without independent sets of size k for whom the degree of a Nullstellensatz certificate grows with respect to |V| and |E|.

Question (L. Lovász): Can we explicitly describe such graphs?

Lemma: (De Loera, Lee, Margulies, Onn) If $P \neq NP$, then there must exist an infinite family of graphs without independent sets of size k for whom the degree of a Nullstellensatz certificate grows with respect to |V| and |E|.

Question (L. Lovász): Can we explicitly describe such graphs?

Theorem: (DLMO) A graph G with no independent set of size k has a minimum-degree Nullstellensatz certificate of degree $\alpha(G)$ that contains at least one term for every independent set in G.

Lemma: (De Loera, Lee, Margulies, Onn) If $P \neq NP$, then there must exist an infinite family of graphs without independent sets of size k for whom the degree of a Nullstellensatz certificate grows with respect to |V| and |E|.

Question (L. Lovász): Can we explicitly describe such graphs?

Theorem: (DLMO) A graph G with no independent set of size k has a minimum-degree Nullstellensatz certificate of degree $\alpha(G)$ that contains at least one term for every independent set in G.

• E.g. The disjoint union of triangles has a Nullstellensatz certificate of degree at least n/3 and at least $4^{n/3}$ terms.

Turán graph T(5,3): reduced certificate example

$$1 = \left(\frac{x_1x_2 + x_3x_4}{12} - \frac{x_1 + x_2 + x_3 + x_4 + x_5}{12} - \frac{1}{4}\right) \left(x_1 + x_3 + x_5 + x_2 + x_4 - 4\right) +$$

$$\left(\frac{x_4}{12} + \frac{x_2}{12} + \frac{1}{6}\right) x_1x_3 + \left(\frac{x_2}{12} + \frac{1}{6}\right) x_1x_4 + \left(\frac{x_2}{12} + \frac{1}{6}\right) x_1x_5 + \left(\frac{x_4}{12} + \frac{1}{6}\right) x_2x_3 +$$

$$\frac{x_2x_4}{6} + \frac{x_2x_5}{6} + \left(\frac{x_4}{12} + \frac{1}{6}\right) x_3x_5 + \frac{x_4x_5}{6} + \left(\frac{x_2}{12} + \frac{1}{12}\right) \left(x_1^2 - x_1\right) +$$

$$\left(\frac{x_1}{12} + \frac{1}{12}\right) \left(x_2^2 - x_2\right) + \left(\frac{x_4}{12} + \frac{1}{12}\right) \left(x_3^2 - x_3\right) + \left(\frac{x_3}{12} + \frac{1}{12}\right) \left(x_4^2 - x_4\right) + \frac{x_5^2 - x_5}{12}$$

Nullstellensatz certificates for non-3-colorability

Theorem: (DLMO) Every Nullstellensatz certificate over \mathbb{R} for non-3-colorability of a graph has degree at least four.

 A graph with a 4-clique subgraph has a Nullstellensatz certificate over ℝ of minimal-degree exactly 4.

Nullstellensatz certificates for non-3-colorability

Theorem: (DLMO) Every Nullstellensatz certificate over \mathbb{R} for non-3-colorability of a graph has degree at least four.

• A graph with a 4-clique subgraph has a Nullstellensatz certificate over $\mathbb R$ of minimal-degree exactly 4.

What about certificates over finite fields? What about \mathbb{F}_2 ?

Nullstellensatz certificates for non-3-colorability

Theorem: (DLMO) Every Nullstellensatz certificate over \mathbb{R} for non-3-colorability of a graph has degree at least four.

 A graph with a 4-clique subgraph has a Nullstellensatz certificate over ℝ of minimal-degree exactly 4.

What about certificates over finite fields? What about \mathbb{F}_2 ?

Theorem: For a graph G, the following system of polynomial equations has a solution over $\overline{\mathbb{F}}_2$ iff G is 3-colorable.

$$x_i^3 + 1 = 0 \ \forall i \in V, \quad x_i^2 + x_i x_j + x_j^2 = 0 \ \forall (i,j) \in E.$$

Nullstellensatz certificates for non-3-colorability

Theorem: (DLMO) Every Nullstellensatz certificate over \mathbb{R} for non-3-colorability of a graph has degree at least four.

• A graph with a 4-clique subgraph has a Nullstellensatz certificate over $\mathbb R$ of minimal-degree exactly 4.

What about certificates over finite fields? What about \mathbb{F}_2 ?

Theorem: For a graph G, the following system of polynomial equations has a solution over $\overline{\mathbb{F}}_2$ iff G is 3-colorable.

$$x_i^3 + 1 = 0 \ \forall i \in V, \quad x_i^2 + x_i x_j + x_j^2 = 0 \ \forall (i,j) \in E.$$

- A graph with 4-clique subgraph has a Nullstellensatz certificate over \mathbb{F}_2 of minimal-degree exactly 1.
- **Note:** the linear system we need to solve is over \mathbb{F}_2 , so there are no numerical stability problems!!

Experimental results for NuILA 3-colorability

Graph	V	<i>E</i>	#rows	#cols	d	sec
Mycielski 7	95	755	64,281	71,726	1	1
Mycielski 9	383	7,271	2,477,931	2,784,794	1	269
Mycielski 10	767	22,196	15,270,943	17,024,333	1	14835
(8,3)-Kneser	56	280	15,737	15,681	1	0
(10, 4)-Kneser	210	1,575	349,651	330,751	1	4
(12, 5)-Kneser	792	8,316	7,030,585	6,586,273	1	467
(13, 5)-Kneser	1,287	36,036	45,980,650	46,378,333	1	216105
1-Insertions_5	202	1,227	268,049	247,855	1	2
2-Insertions_5	597	3,936	2,628,805	2,349,793	1	18
3-Insertions_5	1,406	9,695	15,392,209	13,631,171	1	83
ash331GPIA	662	4,185	3,147,007	2,770,471	1	14
ash608GPIA	1,216	7,844	10,904,642	9,538,305	1	35
ash958GPIA	1,916	12,506	27,450,965	23,961,497	1	90

Table: DIMACS graphs without 4-cliques.

Comparison with other graph coloring algorithms

- DSATUR a sequential coloring heuristic by Brelaz, 1979.
- A Branch-and-Cut algorithm for graph coloring (B&C) by Isabel Méndez-Díaz and Paula Zabala (2006)

Comparison with other graph coloring algorithms

- DSATUR a sequential coloring heuristic by Brelaz, 1979.
- A Branch-and-Cut algorithm for graph coloring (B&C) by Isabel Méndez-Díaz and Paula Zabala (2006)

			В	&C	DS	ATUR		NulL	Д
Graph	V	<i>E</i>	lb	up	lb	up	lb	deg	sec
4-Insertions_3.col	79	156	3	4	2	4	4	1	0
3-Insertions_4.col	281	1046	3	5	2	5	4	1	2
4-Insertions_4.col	475	1795	3	5	2	5	4	1	6
2-Insertions_5.col	597	3936	3	6	2	6	4	1	19
3-Insertions_5.col	1,406	9695	3	6	2	6	4	1	169

"This shouldn't work ...

but it does!"

Anonymous.

Growth in Nullstellensatz degree

Lemma: (DLMO) If $P \neq NP$, then there must exist an infinite family of graphs without k-colorings for whom the degree of a Nullstellensatz certificate grows with respect to |V| and |E|.

Growth in Nullstellensatz degree

Lemma: (DLMO) If $P \neq NP$, then there must exist an infinite family of graphs without k-colorings for whom the degree of a Nullstellensatz certificate grows with respect to |V| and |E|.

 4-critical graphs by Mizuno-Nishihara are the ugliest non-3-colorable graphs for NulLA that we found.

G_i	n	m	#row	#col	deg	sec
G_0	10	18	336	319	1	0
G_1	20	37	350,040	65,527	3	1
G_2	30	55	1,844,857	2,643,432	4	52
G_3	39	72	7,316,382	9,008,930	4	246
G_4	49	90	_	_	≥ 5	_

Alternative Nullstellensätze Using symmetry to shrink the linear syster

What if NulLA cannot determine infeasibility?

What if NulLA cannot determine infeasibility?

 Some simple preprocessing can help, but this is often not enough.

What if NulLA cannot determine infeasibility?

 Some simple preprocessing can help, but this is often not enough.

Four key mathematical ideas are as follows:

- use finite fields,
- append redundant equations,
- use Alternative Nullstellensätze, and
- use symmetry.

degree 4 certificate $7,585,826 \times 9,887,481$ over 4 hours

degree 4 certificate $7,585,826 \times 9,887,481$ over 4 hours

There are 25 triangles

degree 4 certificate $7,585,826 \times 9,887,481$ over 4 hours

There are 25 triangles

"Triangle" equation:

$$0 = x + y + z$$

degree 4 certificate $7,585,826 \times 9,887,481$ over 4 hours

There are 25 triangles

"Triangle" equation:

$$0 = x + y + z$$

Degree two triangle equation:

$$0 = x^2 + y^2 + z^2$$

degree 4 certificate $7,585,826 \times 9,887,481$ over 4 hours $\downarrow\downarrow$ degree 1 certificate $4,626 \times 4,3464$ 0.2 seconds

There are 25 triangles

"Triangle" equation:

$$0 = x + y + z$$

Degree two triangle equation:

$$0 = x^2 + y^2 + z^2$$

Alternative Nullstellensätze

Theorem: The system of equations $f_1 = f_2 = \cdots = f_s = 0$ has **no** solution if and only if there exist polynomials $\alpha_1, \ldots, \alpha_s$ and g where $f_1 = f_2 = \cdots = f_s = 0$ and g = 0 has **no** solution such that

$$g = \sum_{i=1}^{s} \alpha_i f_i$$

• Note that g = 1 is Hilbert's Nullstellensatz.

Alternative Nullstellensätze

Theorem: The system of equations $f_1 = f_2 = \cdots = f_s = 0$ has **no** solution if and only if there exist polynomials $\alpha_1, \ldots, \alpha_s$ and g where $f_1 = f_2 = \cdots = f_s = 0$ and g = 0 has **no** solution such that

$$g = \sum_{i=1}^{s} \alpha_i f_i$$

• Note that g = 1 is Hilbert's Nullstellensatz.

E.g. This graph has a degree 4 certificate for non-3-colorability.

• If we use $g = x_1x_8x_9$, the graph has a degree 1 certificate.

Using symmetry to shrink the linear system

Suppose that $F = \{f_1, ..., f_s\}$ is invariant under the action of a permutation group P acting on the variables $x_1, ..., x_n$.

- So, for every permutation $p \in P$, we have p(F) = F.
- For graph k-coloring, P is the automorphism group.

Using symmetry to shrink the linear system

Suppose that $F = \{f_1, ..., f_s\}$ is invariant under the action of a permutation group P acting on the variables $x_1, ..., x_n$.

- So, for every permutation $p \in P$, we have p(F) = F.
- For graph k-coloring, P is the automorphism group.
- Note: permuting a certificate gives another certificate!

$$1 = \sum_{i=1}^{s} \alpha_{i} f_{i} \Rightarrow 1 = \sum_{i=1}^{s} p(\alpha_{i}) p(f_{i}) \Rightarrow 1 = \sum_{i=1}^{s} \bar{\alpha}_{i} f_{i}.$$

Using symmetry to shrink the linear system

Suppose that $F = \{f_1, ..., f_s\}$ is invariant under the action of a permutation group P acting on the variables $x_1, ..., x_n$.

- So, for every permutation $p \in P$, we have p(F) = F.
- For graph k-coloring, P is the automorphism group.
- Note: permuting a certificate gives another certificate!

$$1 = \sum_{i=1}^{s} \alpha_i f_i \Rightarrow 1 = \sum_{i=1}^{s} p(\alpha_i) p(f_i) \Rightarrow 1 = \sum_{i=1}^{s} \bar{\alpha}_i f_i.$$

E.g. Consider K_4 and the cyclic group $P = \langle (2,3,4) \rangle$.

 \bullet A degree-one certificate for non-3-colorability of \mathcal{K}_4 is

$$\begin{split} 1 &= c_0(x_1^3 + 1) \\ &\quad + (c_{12}^1x_1 + c_{12}^2x_2 + c_{12}^3x_3 + c_{12}^4x_4)(x_1^2 + x_1x_2 + x_2^2) + (c_{13}^1x_1 + c_{13}^2x_2 + c_{13}^3x_3 + c_{13}^4x_4)(x_1^2 + x_1x_3 + x_3^2) \\ &\quad + (c_{14}^1x_1 + c_{14}^2x_2 + c_{14}^3x_3 + c_{14}^4x_4)(x_1^2 + x_1x_4 + x_4^2) + (c_{23}^1x_1 + c_{23}^2x_2 + c_{23}^3x_3 + c_{23}^4x_4)(x_2^2 + x_2x_3 + x_3^2) \\ &\quad + (c_{24}^1x_1 + c_{24}^2x_2 + c_{23}^3x_3 + c_{24}^4x_4)(x_2^2 + x_2x_4 + x_4^2) + (c_{34}^1x_1 + c_{34}^2x_2 + c_{34}^3x_3 + c_{34}^4x_4)(x_3^2 + x_3x_4 + x_4^2) \end{split}$$

K₄ linear system matrix

	<i>c</i> ₀	c_{12}^{1}	c_{12}^{2}	c_{12}^{3}	c_{12}^{4}	c_{13}^{1}	c_{13}^{2}	c_{13}^{3}	c_{13}^{4}	c_{14}^{1}	c_{14}^{2}	c_{14}^{3}	c_{14}^{4}	c_{23}^{1}	c_{23}^2	c_{23}^{3}	c_{23}^{4}	c_{24}^{1}	c_{24}^2	c_{24}^{3}	c_{24}^{4}	c_{34}^{1}	c_{34}^{2}	c_{34}^{3}	c_{34}^{4}
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
x_1^3	1	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$x_1^2 x_2$ $x_1^2 x_3$	0	1	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$x_1^2 x_3$	0	0	0	1	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
$x_1^2 x_4$	0	0	0	0	1	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
$x_1 x_2^2$	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
$x_1 x_2 x_3$	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
$x_1 x_2 x_4$	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0
$x_1 x_3^2$	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
X1 X3 X4	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0
$x_1 x_4^2$	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0
X	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0
$x_2^2 x_3$ $x_2^2 x_4$	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0
	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0
$x_2 x_3^2$	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0
X2X3X4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0
$x_2 x_4^2$	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	1	0	0
X	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
$x_3^2 x_4$	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1
x3 x4	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	1
x_4^{3}	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1

K₄ linear system matrix

	c_0	c_{12}^{1}	c_{13}^{1}	c_{14}^{1}	c_{12}^{2}	c_{13}^{3}	c ₁₄	c_{12}^{3}	c_{13}^{4}	c_{14}^{2}	c_{12}^{4}	c_{13}^{2}	c_{14}^{3}	c_{23}^{1}	c_{34}^{1}	c_{24}^{1}	c_{23}^{2}	c_{34}^{3}	c_{24}^{4}	c_{24}^{2}	c_{23}^{3}	c_{34}^{4}	c_{34}^{2}	c_{24}^{3}	c_{23}^{4}
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
x_1^3	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$x_1^2 x_2$	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
$x_1^2 x_3$	0	0	1	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
$x_1^2 x_3 \\ x_1^2 x_4$	0	0	0	1	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$x_1 x_2^2$	0	1	0	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
$x_1 x_3^2$	0	0	1	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
$x_1 x_4^2$	0	0	0	1	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
$x_1 x_2 x_3$	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
x ₁ x ₂ x ₄	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
$x_1 x_3 x_4 = x_2^3$	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0
,3 3	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
χω χων χ ₄	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0
	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0
$x_2^2 x_3$ $x_3^2 x_4$	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1
$x_2x_4^{\frac{7}{2}}$	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0
$x_2^2 x_4$	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	1
$x_2 x_3^2$	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	1	0	0
$x_3x_4^2$	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	1	0
$x_2x_3x_4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1

K₄ linear system orbit matrix

	ō₀	\bar{c}_{12}^1	\bar{c}_{12}^{2}	\bar{c}_{12}^{3}	\bar{c}_{12}^{4}	\bar{c}^{1}_{23}	\bar{c}_{23}^{2}	\bar{c}_{24}^{2}	\bar{c}_{34}^{2}
Orb(1)	1	0	0	0	0	0	0	0	0
$Orb(x_1^3)$	1	3	0	0	0	0	0	0	0
$Orb(x_1^2x_2)$	0	1	1	1	1	0	0	0	0
$Orb(x_1x_2^2)$	0	1	1	0	0	2	0	0	0
$Orb(x_1x_2x_3)$	0	0	0	1	1	1	0	0	0
$Orb(x_2^3)$	0	0	1	0	0	0	1	1	0
$Orb(x_2^2x_3)$	0	0	0	1	0	0	1	1	1
$Orb(x_2^2x_4)$	0	0	0	0	1	0	1	1	1
$Orb(x_2x_3x_4)$	0	0	0	0	0	0	0	0	З

		\bar{c}_0	\bar{c}_{12}^{1}	\bar{c}_{12}^{2}	\bar{c}_{12}^{3}	\bar{c}_{12}^{4}	\bar{c}^{1}_{23}	\bar{c}_{23}^2	\bar{c}_{24}^2	\bar{c}_{34}^{2}
	Orb(1)	1	0	0	0	0	0	0	0	0
	$Orb(x_1^3)$	1	1	0	0	0	0	0	0	0
	$Orb(x_1^2x_2)$	0	1	1	1	1	0	0	0	0
2)	$Orb(x_1x_2^2)$	0	1	1	0	0	0	0	0	0
	$Orb(x_1x_2x_3)$	0	0	0	1	1	1	0	0	0
	$Orb(x_2^3)$	0	0	1	0	0	0	1	1	0
	$Orb(x_2^2x_3)$	0	0	0	1	0	0	1	1	1
	$Orb(x_2^2x_4)$	0	0	0	0	1	0	1	1	1
	$Orb(x_2x_3x_4)$	0	0	0	0	0	0	0	0	1

 This reduced matrix has a solution if and only if the original matrix has a solution.

(mod

The good:

- Is a graph 3-colorable?
- Is a graph 2-colorable?

The good:

- Is a graph 3-colorable?
- Is a graph 2-colorable?

The bad:

Does a graph have an independent set of size k?

The good:

- Is a graph 3-colorable?
- Is a graph 2-colorable?

The bad:

• Does a graph have an independent set of size k?

The ugly:

- Is a binary knapsack problem feasible? (Weismantel).
- Does a bipartite graph have a perfect matching?

The good:

- Is a graph 3-colorable?
- Is a graph 2-colorable?

The bad:

Does a graph have an independent set of size k?

The ugly:

- Is a binary knapsack problem feasible? (Weismantel).
- Does a bipartite graph have a perfect matching?

The promising:

- Does a graph have a cycle of length k (Hamiltonian cycle)?
- Does a graph have a k-colorable subgraph with r edges?
- Does a graph have a planar subgraph with k edges?

THANK YOU!

- J.A. De Loera, J. Lee, P.N. Malkin, S. Margulies, Hilbert's Nullstellensatz and an Algorithm for Proving Combinatorial Infeasibility, Proc. ISSAC'08, ACM, pages 197–206.
- NulLA: Software will be available soon under COIN-OR.

Comparison with Gröbner basis (dual) method

Gröbner basis (dual) method: A graph is k-colorable if and only if the Gröbner basis of the ideal generated by the vertex and edge polynomials is trivial, that is, the Gröbner basis is $\{1\}$.

Graphs	V	<i>E</i>	GB (CoCoA)	NulLA
Wheel 501	502	1,002	127	16
Wheel 1001	1,002	2,002	1,707	623
Mycielski 8	191	2,360	9,015	8
(10,4)-Kneser	210	1,575	9,772	4
4-Insertions 4	475	1,795	1,596	3

Note: Lower bounds for the Nullstellensatz translate into lower bounds for the Gröbner basis method!