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Introduction

A Mixed-Integer Quadratic Program with Box Constraints
(MIQPB) is a problem of the form:

min
{
cTx+ xTQx : l ≤ x ≤ u, xi ∈ R (i ∈ C), xi ∈ Z (i ∈ I)

}
,

where c ∈ Zn, Q ∈ Zn×n, l ∈ Zn and u ∈ Zn.

We consider the (very difficult) case in which the objective is
permitted to be non-convex.
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Introduction (cont.)

MIQPB has two well-known (and NP-hard) special cases:

When all variables are constrained to be binary, we have
Unconstrained Boolean Quadratic Programming (UBQP).

When all variables are continuous, we have Non-Convex
Quadratic Programming with Box Constraints (QPB).

UBQP is a classical problem in combinatorial optimization, but
QPB is a classical problem in global optimization.
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Introduction (cont.)

Why look at (non-convex) MIQPB?

Most papers on MINLP focus on the convex case.

Existing software for non-convex MINLP (e.g., BARON) can
cope only with tiny instances.

To tackle non-convex MINLP properly, we will need to
combine MIP techniques with global optimization techniques.

Non-convex MIQPB is a good place to start.
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Introduction (cont.)

What am I actually doing?

I started by taking known polyhedral results for UBQP and
adapting them to QPB (joint work with Sam Burer).

The convex sets associated with QPB turned out to be much
more complicated than the polytopes associated with UBQP.

Now I’m looking at the general mixed-integer case, and things
are even more complicated!
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The all-binary case: UBQP

There is a huge literature on UBQP. Some selected facts:

Equivalent to max-cut problem (folklore).

Thus, strongly NP-hard (Garey et al., 1976).

A few polynomial cases known.

People have looked at LP, CQP, SOCP and SDP relaxations.

SDP approach is current winner (Rendl et al., 2007).
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The all-binary case (cont.)

The associated family of polytopes was introduced by Padberg:

Definition (Padberg, 1989)

The boolean quadric polytope BQPn is:

conv
{

(x, y) ∈ {0, 1}n+(n
2) : yij = xixj (1 ≤ i < j ≤ n)

}
.

Here, yij is a new binary variable representing the product xixj .
(No need to define yii, since x2

i = 0 when xi binary.)
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The all-binary case (cont.)
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The all-binary case (cont.)

Padberg (1989) introduced facet-inducing inequalities, called
triangle, clique and cut inequalities.

Other inequalities were found by Sherali et al. (1995), Boros
& Hammer (1991,1993)...

Even more can be derived from known results on the cut
polytope (Deza & Laurent, 1997).

But a complete description is known only for n ≤ 7.
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The all-continuous case: QPB

There is also a huge literature on QPB. Some facts:

UBQP can be reduced to concave QPB (folklore).

So QPB (continuous) is ‘harder’ than UBQP (discrete)!

People have looked at LP and SDP relaxations.

Traditional method is ‘branch-and-reduce’ (Tawarmalani &
Sahinidis).

But there are SDP approaches (Burer & Vandenbussche,
2007).
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The all-continuous case (cont.)

We can assume li = 0 and ui = 1 for all i. So the associated
convex set is:

QPBn = conv
{

(x, y) ∈ [0, 1]n+(n+1
2 ) : yij = xixj (1 ≤ i ≤ j ≤ n)

}
.

As before, yij represents xixj . (We now need to define yii as well.)
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The all-continuous case (cont.)

b

b

0 1

0

1

y11

x1
�

�
�

�
�

�
�

�
�

�
�

pppppppppppppppppppppppppp
pppppppppppppppppppppppppp

pppppppppppppppppppppppppp
pppppppppppppppppppppppppp

pppppppppppppppppppppppppp
pppp

ppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppp

pppppppppppppppppp
ppppppppppppppp

ppppppppppppp
ppp



Intro UBQP QPB IQPB MIQPB Conclusion

The all-continuous case (cont.)

Some simple inequalities can be derived from the
Reformulation-Linearization Technique of Sherali & Adams.

More inequalities can be derived from fact that
(
1
x

)(
1
x

)T
is psd

(Shor).

Yajima & Fujie (1998) showed that Padberg’s clique and cut
inequalities are valid for QPBn.

Anstreicher & Burer (2007) showed that the RLT and psd
inequalities give a complete description for n = 2 (not trivial!).
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The all-continuous case (cont.)

Burer & L. (2008) give several new results:

RLT, clique and cut inequalities induce facets.

Psd inequalities induce maximal faces.

All valid inequalities for BQPn are valid for QPBn.

But not every BQP facet yields a QPB facet.

Yet we still couldn’t get a complete description for n = 3!
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The all-integer case: IQPB

Now let’s move on to the all-integer case (C = ∅).

There is no literature.

Strongly NP-hard even in convex, unconstrained case. (Easy
reduction from UBQP or CVP)

Complexity status unknown even when n = 2. (But trivial to
solve in pseudo-polynomial time.)

Can assume li = 0 for all i.
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The all-integer case (cont.)

Proposition

If
n∑

i=1

αixi +
∑

1≤i≤j≤n

βijyij ≤ γ

is valid for QPBn, then the ‘stretched’ inequality

n∑
i=1

αi

ui
xi +

∑
1≤i≤j≤n

βij

uiuj
yij ≤ γ

is valid for IQPB(n, u).
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The all-integer case (cont.)

Conjecture

If an inequality induces a facet of QPBn, then the stretched
inequality induces a facet of IQPB(n, u).

(Easy to prove if the inequality induces a facet of BQPn as well.)

In any case, stretched inequalities are not enough even when
n = 1...
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The all-integer case (cont.)
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The all-integer case (cont.)

To make progress, we use split disjunctions of the form:

(vTx ≤ s) ∨ (vTx ≥ s+ 1)

where v ∈ Zn and s ∈ Z. These imply:

(vTx− s)(vTx− s− 1) ≥ 0.

From this we obtain ‘split’ inequalities of the form:

n∑
i=1

v2
i yii +

∑
1≤i<j≤n

vivjyij − (2s)vTx+ s(s+ 1) ≥ 0.

Gives complete description for n = 1. But not for n = 2!
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The all-integer case: standard ‘split’
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The all-integer case: non-standard ‘split’
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The all-integer case (cont.)

These non-standard splits yield expressions of the form:

(aTx− b)(cTx− d) ≥ 0.

Linearising, we obtain new facets of IQPB(n, u).

According to PORTA, there are even more facets when n = 2!
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The general case: MIQPB

Finally, we have the MIQPB itself.

We get all of the ‘stretched’ inequalities.

The ‘split’ inequalities are still valid provided vi = 0 for all
i ∈ C.

The ‘non-standard split’ inequalities are still valid provided
ai = 0 for all i ∈ C.
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The general case: standard ‘split’
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The general case: non-standard ‘split’
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Summary

We understand BQPn quite well, and QPBn reasonably well.

But IQPB(n, u) and MIQPB(n, u) are extremely complex,
even for n = 2.

An important open question: can IQPB or MIQPB be solved
in polynomial time when n = 2?

If so, can we get a complete description for n = 2?
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One Last Remark

Results on MIQPB can be applied to general MIQPs! Here’s how:

Suppose our constraints are Ax ≤ b, l ≤ x ≤ u.

Add slack variables to yield Ax+ Is = b.

Compute upper bounds s ≤ u′ (e.g., by solving LPs or IPs).

Decide whether slacks are continuous or integer.

Derive valid inequalities for l ≤ x ≤ u, 0 ≤ s ≤ u′.
Project back to original space.

Does this give a new (stronger) version of the Sherali-Adams and
Lovász-Schrijver operators?
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