# On Mixed-Integer Quadratic Programming with Box Constraints 

Adam N. Letchford, Lancaster University ${ }^{1}$

July 2008

[^0]
## Outline

(1) Introduction
(2) The all-binary case (UBQP)
(3) The all-continuous case (QPB)
(9) The all-integer case (IQPB)
(6) The general case (MIQPB)
(6) Conclusion

## Introduction

A Mixed-Integer Quadratic Program with Box Constraints (MIQPB) is a problem of the form:
$\min \left\{c^{T} x+x^{T} Q x: l \leq x \leq u, x_{i} \in \mathbb{R}(i \in C), x_{i} \in \mathbb{Z}(i \in I)\right\}$, where $c \in \mathbb{Z}^{n}, Q \in \mathbb{Z}^{n \times n}, l \in \mathbb{Z}^{n}$ and $u \in \mathbb{Z}^{n}$.

We consider the (very difficult) case in which the objective is permitted to be non-convex.

## Introduction (cont.)

MIQPB has two well-known (and $\mathcal{N} \mathcal{P}$-hard) special cases:

- When all variables are constrained to be binary, we have Unconstrained Boolean Quadratic Programming (UBQP).
- When all variables are continuous, we have Non-Convex Quadratic Programming with Box Constraints (QPB).

UBQP is a classical problem in combinatorial optimization, but QPB is a classical problem in global optimization.

## Introduction (cont.)

Why look at (non-convex) MIQPB?

- Most papers on MINLP focus on the convex case.
- Existing software for non-convex MINLP (e.g., BARON) can cope only with tiny instances.
- To tackle non-convex MINLP properly, we will need to combine MIP techniques with global optimization techniques.
- Non-convex MIQPB is a good place to start.


## Introduction (cont.)

What am I actually doing?

- I started by taking known polyhedral results for UBQP and adapting them to QPB (joint work with Sam Burer).
- The convex sets associated with QPB turned out to be much more complicated than the polytopes associated with UBQP.
- Now I'm looking at the general mixed-integer case, and things are even more complicated!


## The all-binary case: UBQP

There is a huge literature on UBQP. Some selected facts:

- Equivalent to max-cut problem (folklore).
- Thus, strongly $\mathcal{N} \mathcal{P}$-hard (Garey et al., 1976).
- A few polynomial cases known.
- People have looked at LP, CQP, SOCP and SDP relaxations.
- SDP approach is current winner (Rendl et al., 2007).


## The all-binary case (cont.)

The associated family of polytopes was introduced by Padberg:

## Definition (Padberg, 1989)

The boolean quadric polytope $B Q P_{n}$ is:

$$
\operatorname{conv}\left\{(x, y) \in\{0,1\}^{n+\binom{n}{2}}: y_{i j}=x_{i} x_{j}(1 \leq i<j \leq n)\right\}
$$

Here, $y_{i j}$ is a new binary variable representing the product $x_{i} x_{j}$. (No need to define $y_{i i}$, since $x_{i}^{2}=0$ when $x_{i}$ binary.)

The all-binary case (cont.)


## The all-binary case (cont.)

- Padberg (1989) introduced facet-inducing inequalities, called triangle, clique and cut inequalities.
- Other inequalities were found by Sherali et al. (1995), Boros \& Hammer $(1991,1993)$...
- Even more can be derived from known results on the cut polytope (Deza \& Laurent, 1997).
- But a complete description is known only for $n \leq 7$.


## The all-continuous case: QPB

There is also a huge literature on QPB. Some facts:

- UBQP can be reduced to concave QPB (folklore).
- So QPB (continuous) is 'harder' than UBQP (discrete)!
- People have looked at LP and SDP relaxations.
- Traditional method is 'branch-and-reduce' (Tawarmalani \& Sahinidis).
- But there are SDP approaches (Burer \& Vandenbussche, 2007).


## The all-continuous case (cont.)

We can assume $l_{i}=0$ and $u_{i}=1$ for all $i$. So the associated convex set is:
$Q P B_{n}=\operatorname{conv}\left\{(x, y) \in[0,1]^{n+\binom{n+1}{2}}: y_{i j}=x_{i} x_{j}(1 \leq i \leq j \leq n)\right\}$.

As before, $y_{i j}$ represents $x_{i} x_{j}$. (We now need to define $y_{i i}$ as well.)

The all-continuous case (cont.)


## The all-continuous case (cont.)

- Some simple inequalities can be derived from the Reformulation-Linearization Technique of Sherali \& Adams.
- More inequalities can be derived from fact that $\binom{1}{x}\binom{1}{x}^{T}$ is psd (Shor).
- Yajima \& Fujie (1998) showed that Padberg's clique and cut inequalities are valid for $Q P B_{n}$.
- Anstreicher \& Burer (2007) showed that the RLT and psd inequalities give a complete description for $n=2$ (not trivial!).


## The all-continuous case (cont.)

Burer \& L. (2008) give several new results:

- RLT, clique and cut inequalities induce facets.
- Psd inequalities induce maximal faces.
- All valid inequalities for $B Q P_{n}$ are valid for $Q P B_{n}$.
- But not every $B Q P$ facet yields a $Q P B$ facet.

Yet we still couldn't get a complete description for $n=3$ !

## The all-integer case: IQPB

Now let's move on to the all-integer case $(C=\emptyset)$.

- There is no literature.
- Strongly $\mathcal{N} \mathcal{P}$-hard even in convex, unconstrained case. (Easy reduction from UBQP or CVP)
- Complexity status unknown even when $n=2$. (But trivial to solve in pseudo-polynomial time.)
- Can assume $l_{i}=0$ for all $i$.


## The all-integer case (cont.)

## Proposition

$$
\text { If } \sum_{i=1}^{n} \alpha_{i} x_{i}+\sum_{1 \leq i \leq j \leq n} \beta_{i j} y_{i j} \leq \gamma
$$

is valid for $Q P B_{n}$, then the 'stretched' inequality

$$
\sum_{i=1}^{n} \frac{\alpha_{i}}{u_{i}} x_{i}+\sum_{1 \leq i \leq j \leq n} \frac{\beta_{i j}}{u_{i} u_{j}} y_{i j} \leq \gamma
$$

is valid for $\operatorname{IQPB}(n, u)$.

## The all-integer case (cont.)

## Conjecture

If an inequality induces a facet of $Q P B_{n}$, then the stretched inequality induces a facet of $\operatorname{IQPB}(n, u)$.
(Easy to prove if the inequality induces a facet of $B Q P_{n}$ as well.)

In any case, stretched inequalities are not enough even when $n=1$...

The all-integer case (cont.)


## The all-integer case (cont.)

To make progress, we use split disjunctions of the form:

$$
\left(v^{T} x \leq s\right) \vee\left(v^{T} x \geq s+1\right)
$$

where $v \in \mathbb{Z}^{n}$ and $s \in \mathbb{Z}$. These imply:

$$
\left(v^{T} x-s\right)\left(v^{T} x-s-1\right) \geq 0 .
$$

From this we obtain 'split' inequalities of the form:

$$
\sum_{i=1}^{n} v_{i}^{2} y_{i i}+\sum_{1 \leq i<j \leq n} v_{i} v_{j} y_{i j}-(2 s) v^{T} x+s(s+1) \geq 0
$$

Gives complete description for $n=1$. But not for $n=2$ !

The all-integer case: standard 'split'


The all-integer case: non-standard 'split'


## The all-integer case (cont.)

These non-standard splits yield expressions of the form:

$$
\left(a^{T} x-b\right)\left(c^{T} x-d\right) \geq 0
$$

Linearising, we obtain new facets of $\operatorname{IQPB}(n, u)$.
According to PORTA, there are even more facets when $n=2$ !

## The general case: MIQPB

Finally, we have the MIQPB itself.

- We get all of the 'stretched' inequalities.
- The 'split' inequalities are still valid provided $v_{i}=0$ for all $i \in C$.
- The 'non-standard split' inequalities are still valid provided $a_{i}=0$ for all $i \in C$.

The general case: standard 'split'


The general case: non-standard 'split'


## Summary

- We understand $B Q P_{n}$ quite well, and $Q P B_{n}$ reasonably well.
- But $\operatorname{IQPB}(n, u)$ and $\operatorname{MIQPB}(n, u)$ are extremely complex, even for $n=2$.
- An important open question: can IQPB or MIQPB be solved in polynomial time when $n=2$ ?
- If so, can we get a complete description for $n=2$ ?


## One Last Remark

Results on MIQPB can be applied to general MIQPs! Here's how:

- Suppose our constraints are $A x \leq b, l \leq x \leq u$.
- Add slack variables to yield $A x+I s=b$.
- Compute upper bounds $s \leq u^{\prime}$ (e.g., by solving LPs or IPs).
- Decide whether slacks are continuous or integer.
- Derive valid inequalities for $l \leq x \leq u, 0 \leq s \leq u^{\prime}$.
- Project back to original space.

Does this give a new (stronger) version of the Sherali-Adams and Lovász-Schrijver operators?


[^0]:    ${ }^{1}$ some joint work with Sam Burer, University of Iowa

