
Cascade Knapsack Problems

Bala Krishnamoorthy
Washington State University

joint work with

Gábor Pataki, UNC Chapel Hill

MIP 2008

August 04, 2008

Department of Mathematics

Hard IP Instances

Krishnamoorthy: Cascade Knapsacks 1

Department of Mathematics

Hard IP Instances

• worst case behavior of IP algorithms

Krishnamoorthy: Cascade Knapsacks 1

Department of Mathematics

Hard IP Instances

• worst case behavior of IP algorithms

• feasibility problems;

Krishnamoorthy: Cascade Knapsacks 1

Department of Mathematics

Hard IP Instances

• worst case behavior of IP algorithms

• feasibility problems; integer infeasible

Krishnamoorthy: Cascade Knapsacks 1

Department of Mathematics

Hard IP Instances

• worst case behavior of IP algorithms

• feasibility problems; integer infeasible

• hard for branch-and-bound (B&B), cutting planes

Krishnamoorthy: Cascade Knapsacks 1

Department of Mathematics

Hard IP Instances

• worst case behavior of IP algorithms

• feasibility problems; integer infeasible

• hard for branch-and-bound (B&B), cutting planes

• prove bounds on running time, # B&B nodes

Krishnamoorthy: Cascade Knapsacks 1

Department of Mathematics

Hard IP Instances

• worst case behavior of IP algorithms

• feasibility problems; integer infeasible

• hard for branch-and-bound (B&B), cutting planes

• prove bounds on running time, # B&B nodes

• gain computational insights

Krishnamoorthy: Cascade Knapsacks 1

Department of Mathematics

Hard IP Instances

Krishnamoorthy: Cascade Knapsacks 2

Department of Mathematics

Hard IP Instances

• hard knapsack problems: {β1 ≤ ax ≤ β2 |0 ≤ x ≤ u, x ∈ Zn}

Krishnamoorthy: Cascade Knapsacks 2

Department of Mathematics

Hard IP Instances

• hard knapsack problems: {β1 ≤ ax ≤ β2 |0 ≤ x ≤ u, x ∈ Zn}

– “simple” – one constraint

Krishnamoorthy: Cascade Knapsacks 2

Department of Mathematics

Hard IP Instances

• hard knapsack problems: {β1 ≤ ax ≤ β2 |0 ≤ x ≤ u, x ∈ Zn}

– “simple” – one constraint

– provably hard for branch-and-bound,

Krishnamoorthy: Cascade Knapsacks 2

Department of Mathematics

Hard IP Instances

• hard knapsack problems: {β1 ≤ ax ≤ β2 |0 ≤ x ≤ u, x ∈ Zn}

– “simple” – one constraint

– provably hard for branch-and-bound, cutting planes

Krishnamoorthy: Cascade Knapsacks 2

Department of Mathematics

Hard IP Instances

• hard knapsack problems: {β1 ≤ ax ≤ β2 |0 ≤ x ≤ u, x ∈ Zn}

– “simple” – one constraint

– provably hard for branch-and-bound, cutting planes

– can analyze mathematically

Krishnamoorthy: Cascade Knapsacks 2

Department of Mathematics

Hard IP Instances

• hard knapsack problems: {β1 ≤ ax ≤ β2 |0 ≤ x ≤ u, x ∈ Zn}

– “simple” – one constraint

– provably hard for branch-and-bound, cutting planes

– can analyze mathematically

• marketshare problems

Krishnamoorthy: Cascade Knapsacks 2

Department of Mathematics

Hard IP Instances

• hard knapsack problems: {β1 ≤ ax ≤ β2 |0 ≤ x ≤ u, x ∈ Zn}

– “simple” – one constraint

– provably hard for branch-and-bound, cutting planes

– can analyze mathematically

• marketshare problems

– binary IPs with a few dense constraints

Krishnamoorthy: Cascade Knapsacks 2

Department of Mathematics

Hard IP Instances

• hard knapsack problems: {β1 ≤ ax ≤ β2 |0 ≤ x ≤ u, x ∈ Zn}

– “simple” – one constraint

– provably hard for branch-and-bound, cutting planes

– can analyze mathematically

• marketshare problems

– binary IPs with a few dense constraints

– computationally hard

Krishnamoorthy: Cascade Knapsacks 2

Department of Mathematics

Hard Knapsack Problems

Krishnamoorthy: Cascade Knapsacks 3

Department of Mathematics

Hard Knapsack Problems

• with β1 = β2 = β =
⌊∑

j aj /2
⌋
, u = e, i.e., xj ∈ {0, 1}

Krishnamoorthy: Cascade Knapsacks 3

Department of Mathematics

Hard Knapsack Problems

• with β1 = β2 = β =
⌊∑

j aj /2
⌋
, u = e, i.e., xj ∈ {0, 1}

– Jeroslow (74): aj = 2, n is odd (2x1 + · · ·+ 2xn = n)

Krishnamoorthy: Cascade Knapsacks 3

Department of Mathematics

Hard Knapsack Problems

• with β1 = β2 = β =
⌊∑

j aj /2
⌋
, u = e, i.e., xj ∈ {0, 1}

– Jeroslow (74): aj = 2, n is odd (2x1 + · · ·+ 2xn = n)

– Avis (Chvátal, 80): aj = n(n + 1) + j

Krishnamoorthy: Cascade Knapsacks 3

Department of Mathematics

Hard Knapsack Problems

• with β1 = β2 = β =
⌊∑

j aj /2
⌋
, u = e, i.e., xj ∈ {0, 1}

– Jeroslow (74): aj = 2, n is odd (2x1 + · · ·+ 2xn = n)

– Avis (Chvátal, 80): aj = n(n + 1) + j

– Todd (Chvátal, 80): aj = 2n+`+1 + 2`+j + 1 for ` = blog 2nc

Krishnamoorthy: Cascade Knapsacks 3

Department of Mathematics

Hard Knapsack Problems

• with β1 = β2 = β =
⌊∑

j aj /2
⌋
, u = e, i.e., xj ∈ {0, 1}

– Jeroslow (74): aj = 2, n is odd (2x1 + · · ·+ 2xn = n)

– Avis (Chvátal, 80): aj = n(n + 1) + j

– Todd (Chvátal, 80): aj = 2n+`+1 + 2`+j + 1 for ` = blog 2nc

I (ordinary) B&B takes at least 2(n−1)/2 nodes

Krishnamoorthy: Cascade Knapsacks 3

Department of Mathematics

Hard Knapsack Problems

• with β1 = β2 = β =
⌊∑

j aj /2
⌋
, u = e, i.e., xj ∈ {0, 1}

– Jeroslow (74): aj = 2, n is odd (2x1 + · · ·+ 2xn = n)

– Avis (Chvátal, 80): aj = n(n + 1) + j

– Todd (Chvátal, 80): aj = 2n+`+1 + 2`+j + 1 for ` = blog 2nc

I (ordinary) B&B takes at least 2(n−1)/2 nodes

I preprocessing, or single knapsack cover inequalities kill them

Krishnamoorthy: Cascade Knapsacks 3

Department of Mathematics

Hard Knapsack Problems

• with β1 = β2 = β =
⌊∑

j aj /2
⌋
, u = e, i.e., xj ∈ {0, 1}

– Jeroslow (74): aj = 2, n is odd (2x1 + · · ·+ 2xn = n)

– Avis (Chvátal, 80): aj = n(n + 1) + j

– Todd (Chvátal, 80): aj = 2n+`+1 + 2`+j + 1 for ` = blog 2nc

I (ordinary) B&B takes at least 2(n−1)/2 nodes

I preprocessing, or single knapsack cover inequalities kill them

• u = e, i.e., xj ∈ {0, 1}

Krishnamoorthy: Cascade Knapsacks 3

Department of Mathematics

Hard Knapsack Problems

• with β1 = β2 = β =
⌊∑

j aj /2
⌋
, u = e, i.e., xj ∈ {0, 1}

– Jeroslow (74): aj = 2, n is odd (2x1 + · · ·+ 2xn = n)

– Avis (Chvátal, 80): aj = n(n + 1) + j

– Todd (Chvátal, 80): aj = 2n+`+1 + 2`+j + 1 for ` = blog 2nc

I (ordinary) B&B takes at least 2(n−1)/2 nodes

I preprocessing, or single knapsack cover inequalities kill them

• u = e, i.e., xj ∈ {0, 1}

– Chvátal (80): aj = U [1, 10n/2]; Hunsaker and Tovey (04)

Krishnamoorthy: Cascade Knapsacks 3

Department of Mathematics

Hard Knapsack Problems

• with β1 = β2 = β =
⌊∑

j aj /2
⌋
, u = e, i.e., xj ∈ {0, 1}

– Jeroslow (74): aj = 2, n is odd (2x1 + · · ·+ 2xn = n)

– Avis (Chvátal, 80): aj = n(n + 1) + j

– Todd (Chvátal, 80): aj = 2n+`+1 + 2`+j + 1 for ` = blog 2nc

I (ordinary) B&B takes at least 2(n−1)/2 nodes

I preprocessing, or single knapsack cover inequalities kill them

• u = e, i.e., xj ∈ {0, 1}

– Chvátal (80): aj = U [1, 10n/2]; Hunsaker and Tovey (04)

– Gu, Nemhauser, Savelsberg (98,99): aj ≈ 2n/20

Krishnamoorthy: Cascade Knapsacks 3

Department of Mathematics

Hard Knapsack Problems

• with β1 = β2 = β =
⌊∑

j aj /2
⌋
, u = e, i.e., xj ∈ {0, 1}

– Jeroslow (74): aj = 2, n is odd (2x1 + · · ·+ 2xn = n)

– Avis (Chvátal, 80): aj = n(n + 1) + j

– Todd (Chvátal, 80): aj = 2n+`+1 + 2`+j + 1 for ` = blog 2nc

I (ordinary) B&B takes at least 2(n−1)/2 nodes

I preprocessing, or single knapsack cover inequalities kill them

• u = e, i.e., xj ∈ {0, 1}

– Chvátal (80): aj = U [1, 10n/2]; Hunsaker and Tovey (04)

– Gu, Nemhauser, Savelsberg (98,99): aj ≈ 2n/20

I B&C using lifted cover inequalities takes at least 2n/30 nodes

Krishnamoorthy: Cascade Knapsacks 3

Department of Mathematics

More Hard Knapsacks

Krishnamoorthy: Cascade Knapsacks 4

Department of Mathematics

More Hard Knapsacks

• β2 ≈ Frob(a), uj = +∞, i.e., xj are unbounded

Krishnamoorthy: Cascade Knapsacks 4

Department of Mathematics

More Hard Knapsacks

• β2 ≈ Frob(a), uj = +∞, i.e., xj are unbounded

– Cornuejols et al. (97)

Krishnamoorthy: Cascade Knapsacks 4

Department of Mathematics

More Hard Knapsacks

• β2 ≈ Frob(a), uj = +∞, i.e., xj are unbounded

– Cornuejols et al. (97) I generating sets

Krishnamoorthy: Cascade Knapsacks 4

Department of Mathematics

More Hard Knapsacks

• β2 ≈ Frob(a), uj = +∞, i.e., xj are unbounded

– Cornuejols et al. (97) I generating sets

– Aardal and Lenstra (04)

Krishnamoorthy: Cascade Knapsacks 4

Department of Mathematics

More Hard Knapsacks

• β2 ≈ Frob(a), uj = +∞, i.e., xj are unbounded

– Cornuejols et al. (97) I generating sets

– Aardal and Lenstra (04) I Aardal et al. (00) reformulation

Krishnamoorthy: Cascade Knapsacks 4

Department of Mathematics

More Hard Knapsacks

• β2 ≈ Frob(a), uj = +∞, i.e., xj are unbounded

– Cornuejols et al. (97) I generating sets

– Aardal and Lenstra (04) I Aardal et al. (00) reformulation

I equality version of Cornujols et al. knapsack

Krishnamoorthy: Cascade Knapsacks 4

Department of Mathematics

More Hard Knapsacks

• β2 ≈ Frob(a), uj = +∞, i.e., xj are unbounded

– Cornuejols et al. (97) I generating sets

– Aardal and Lenstra (04) I Aardal et al. (00) reformulation

I equality version of Cornujols et al. knapsack

I Frob(a) is the largest rhs, hence gives “hardest” instance

Krishnamoorthy: Cascade Knapsacks 4

Department of Mathematics

More Hard Knapsacks

• β2 ≈ Frob(a), uj = +∞, i.e., xj are unbounded

– Cornuejols et al. (97) I generating sets

– Aardal and Lenstra (04) I Aardal et al. (00) reformulation

I equality version of Cornujols et al. knapsack

I Frob(a) is the largest rhs, hence gives “hardest” instance

I for a = pM + r, lower bound for Frob(a) quadratic in M

Krishnamoorthy: Cascade Knapsacks 4

Department of Mathematics

More Hard Knapsacks

• β2 ≈ Frob(a), uj = +∞, i.e., xj are unbounded

– Cornuejols et al. (97) I generating sets

– Aardal and Lenstra (04) I Aardal et al. (00) reformulation

I equality version of Cornujols et al. knapsack

I Frob(a) is the largest rhs, hence gives “hardest” instance

I for a = pM + r, lower bound for Frob(a) quadratic in M

I large rhs implies hard for B&B

Krishnamoorthy: Cascade Knapsacks 4

Department of Mathematics

More Hard Knapsacks

• β2 ≈ Frob(a), uj = +∞, i.e., xj are unbounded

– Cornuejols et al. (97) I generating sets

– Aardal and Lenstra (04) I Aardal et al. (00) reformulation

I equality version of Cornujols et al. knapsack

I Frob(a) is the largest rhs, hence gives “hardest” instance

I for a = pM + r, lower bound for Frob(a) quadratic in M

I large rhs implies hard for B&B

• We study a very general class of knapsacks

Krishnamoorthy: Cascade Knapsacks 4

Department of Mathematics

t + 1-level Decomposable Knapsack Problem

Krishnamoorthy: Cascade Knapsacks 5

Department of Mathematics

t + 1-level Decomposable Knapsack Problem

• {β1 ≤ ax ≤ β2 |0 ≤ x ≤ u, x ∈ Zn} with

Krishnamoorthy: Cascade Knapsacks 5

Department of Mathematics

t + 1-level Decomposable Knapsack Problem

• {β1 ≤ ax ≤ β2 |0 ≤ x ≤ u, x ∈ Zn} with

a = p1M1 + · · ·+ ptMt + r; pi ∈ Zn
>0,Mi ∈ Z>0; Mi > Mi+1

Krishnamoorthy: Cascade Knapsacks 5

Department of Mathematics

t + 1-level Decomposable Knapsack Problem

• {β1 ≤ ax ≤ β2 |0 ≤ x ≤ u, x ∈ Zn} with

a = p1M1 + · · ·+ ptMt + r; pi ∈ Zn
>0,Mi ∈ Z>0; Mi > Mi+1

• denoted as t + 1-DKP

Krishnamoorthy: Cascade Knapsacks 5

Department of Mathematics

t + 1-level Decomposable Knapsack Problem

• {β1 ≤ ax ≤ β2 |0 ≤ x ≤ u, x ∈ Zn} with

a = p1M1 + · · ·+ ptMt + r; pi ∈ Zn
>0,Mi ∈ Z>0; Mi > Mi+1

• denoted as t + 1-DKP

• for t = 1, we write p1 = p, M1 = M , and call it simply DKP

Krishnamoorthy: Cascade Knapsacks 5

Department of Mathematics

t + 1-level Decomposable Knapsack Problem

• {β1 ≤ ax ≤ β2 |0 ≤ x ≤ u, x ∈ Zn} with

a = p1M1 + · · ·+ ptMt + r; pi ∈ Zn
>0,Mi ∈ Z>0; Mi > Mi+1

• denoted as t + 1-DKP

• for t = 1, we write p1 = p, M1 = M , and call it simply DKP

• Krishnamoorthy and Pataki (06) - Column basis reduction

and decomposable knapsack problems

(preprint available in Optimization Online)

Krishnamoorthy: Cascade Knapsacks 5

Department of Mathematics

Special Cases of t + 1-DKPs for t = 1

Krishnamoorthy: Cascade Knapsacks 6

Department of Mathematics

Special Cases of t + 1-DKPs for t = 1

• p = e, M = 2, r = 0,u = e gives Jeroslow knapsack

2x1 + · · ·+ 2xn = n

Krishnamoorthy: Cascade Knapsacks 6

Department of Mathematics

Special Cases of t + 1-DKPs for t = 1

• p = e, M = 2, r = 0,u = e gives Jeroslow knapsack

2x1 + · · ·+ 2xn = n

• other special cases: with u = e

– p = e, M = n(n + 1), r = (1, . . . , n): Avis knapsack

Krishnamoorthy: Cascade Knapsacks 6

Department of Mathematics

Special Cases of t + 1-DKPs for t = 1

• p = e, M = 2, r = 0,u = e gives Jeroslow knapsack

2x1 + · · ·+ 2xn = n

• other special cases: with u = e

– p = e, M = n(n + 1), r = (1, . . . , n): Avis knapsack

– p = e, M = 2n+`+1, rj = 2`+j + 1: Todd knapsack

Krishnamoorthy: Cascade Knapsacks 6

Department of Mathematics

Special Cases of t + 1-DKPs for t = 1

• p = e, M = 2, r = 0,u = e gives Jeroslow knapsack

2x1 + · · ·+ 2xn = n

• other special cases: with u = e

– p = e, M = n(n + 1), r = (1, . . . , n): Avis knapsack

– p = e, M = 2n+`+1, rj = 2`+j + 1: Todd knapsack

– modification of above (Todd) settings: Gu et al. knapsacks

Krishnamoorthy: Cascade Knapsacks 6

Department of Mathematics

Special Cases of t + 1-DKPs for t = 1

• p = e, M = 2, r = 0,u = e gives Jeroslow knapsack

2x1 + · · ·+ 2xn = n

• other special cases: with u = e

– p = e, M = n(n + 1), r = (1, . . . , n): Avis knapsack

– p = e, M = 2n+`+1, rj = 2`+j + 1: Todd knapsack

– modification of above (Todd) settings: Gu et al. knapsacks

• with u = +∞

Krishnamoorthy: Cascade Knapsacks 6

Department of Mathematics

Special Cases of t + 1-DKPs for t = 1

• p = e, M = 2, r = 0,u = e gives Jeroslow knapsack

2x1 + · · ·+ 2xn = n

• other special cases: with u = e

– p = e, M = n(n + 1), r = (1, . . . , n): Avis knapsack

– p = e, M = 2n+`+1, rj = 2`+j + 1: Todd knapsack

– modification of above (Todd) settings: Gu et al. knapsacks

• with u = +∞

– p > 0: Cornuejols et al. knapsacks

Krishnamoorthy: Cascade Knapsacks 6

Department of Mathematics

Special Cases of t + 1-DKPs for t = 1

• p = e, M = 2, r = 0,u = e gives Jeroslow knapsack

2x1 + · · ·+ 2xn = n

• other special cases: with u = e

– p = e, M = n(n + 1), r = (1, . . . , n): Avis knapsack

– p = e, M = 2n+`+1, rj = 2`+j + 1: Todd knapsack

– modification of above (Todd) settings: Gu et al. knapsacks

• with u = +∞

– p > 0: Cornuejols et al. knapsacks

– same as above, but equality: Aardal & Lenstra knapsack

Krishnamoorthy: Cascade Knapsacks 6

Department of Mathematics

DKPs: Properties

Krishnamoorthy: Cascade Knapsacks 7

Department of Mathematics

DKPs: Properties
• infeasibility proven by split disjunction px ≤ k ∨ px ≥ k + 1, for

some integer k

Krishnamoorthy: Cascade Knapsacks 7

Department of Mathematics

DKPs: Properties
• infeasibility proven by split disjunction px ≤ k ∨ px ≥ k + 1, for

some integer k

• easy if branching on hyperplane px

Krishnamoorthy: Cascade Knapsacks 7

Department of Mathematics

DKPs: Properties
• infeasibility proven by split disjunction px ≤ k ∨ px ≥ k + 1, for

some integer k

• easy if branching on hyperplane px but hard for B&B

Krishnamoorthy: Cascade Knapsacks 7

Department of Mathematics

DKPs: Properties
• infeasibility proven by split disjunction px ≤ k ∨ px ≥ k + 1, for

some integer k

• easy if branching on hyperplane px but hard for B&B

Theorem: If uj = +∞, then B&B takes at least(
bk/ ‖p‖∞c+ n− 1

n− 1

)
nodes

Krishnamoorthy: Cascade Knapsacks 7

Department of Mathematics

DKPs: Properties
• infeasibility proven by split disjunction px ≤ k ∨ px ≥ k + 1, for

some integer k

• easy if branching on hyperplane px but hard for B&B

Theorem: If uj = +∞, then B&B takes at least(
bk/ ‖p‖∞c+ n− 1

n− 1

)
nodes

I easiness for hyperplane branching ⇒ hardness for ordinary B&B

Krishnamoorthy: Cascade Knapsacks 7

Department of Mathematics

DKPs: Properties
• infeasibility proven by split disjunction px ≤ k ∨ px ≥ k + 1, for

some integer k

• easy if branching on hyperplane px but hard for B&B

Theorem: If uj = +∞, then B&B takes at least(
bk/ ‖p‖∞c+ n− 1

n− 1

)
nodes

I easiness for hyperplane branching ⇒ hardness for ordinary B&B

• Krishnamoorthy (07): generic lower bound for the # B&B nodes

for infeasible integer knapsacks;

Krishnamoorthy: Cascade Knapsacks 7

Department of Mathematics

DKPs: Properties
• infeasibility proven by split disjunction px ≤ k ∨ px ≥ k + 1, for

some integer k

• easy if branching on hyperplane px but hard for B&B

Theorem: If uj = +∞, then B&B takes at least(
bk/ ‖p‖∞c+ n− 1

n− 1

)
nodes

I easiness for hyperplane branching ⇒ hardness for ordinary B&B

• Krishnamoorthy (07): generic lower bound for the # B&B nodes

for infeasible integer knapsacks; Mn−1 for DKPs

Krishnamoorthy: Cascade Knapsacks 7

Department of Mathematics

DKPs: Properties
• infeasibility proven by split disjunction px ≤ k ∨ px ≥ k + 1, for

some integer k

• easy if branching on hyperplane px but hard for B&B

Theorem: If uj = +∞, then B&B takes at least(
bk/ ‖p‖∞c+ n− 1

n− 1

)
nodes

I easiness for hyperplane branching ⇒ hardness for ordinary B&B

• Krishnamoorthy (07): generic lower bound for the # B&B nodes

for infeasible integer knapsacks; Mn−1 for DKPs

• Recipe for generating DKPs (for t = 1):

Krishnamoorthy: Cascade Knapsacks 7

Department of Mathematics

DKPs: Properties
• infeasibility proven by split disjunction px ≤ k ∨ px ≥ k + 1, for

some integer k

• easy if branching on hyperplane px but hard for B&B

Theorem: If uj = +∞, then B&B takes at least(
bk/ ‖p‖∞c+ n− 1

n− 1

)
nodes

I easiness for hyperplane branching ⇒ hardness for ordinary B&B

• Krishnamoorthy (07): generic lower bound for the # B&B nodes

for infeasible integer knapsacks; Mn−1 for DKPs

• Recipe for generating DKPs (for t = 1): Input: p, r,u;

Krishnamoorthy: Cascade Knapsacks 7

Department of Mathematics

DKPs: Properties
• infeasibility proven by split disjunction px ≤ k ∨ px ≥ k + 1, for

some integer k

• easy if branching on hyperplane px but hard for B&B

Theorem: If uj = +∞, then B&B takes at least(
bk/ ‖p‖∞c+ n− 1

n− 1

)
nodes

I easiness for hyperplane branching ⇒ hardness for ordinary B&B

• Krishnamoorthy (07): generic lower bound for the # B&B nodes

for infeasible integer knapsacks; Mn−1 for DKPs

• Recipe for generating DKPs (for t = 1): Input: p, r,u; Output:

M,β1, β2 s.t. infeasibility of DKP is proven by branching on px

Krishnamoorthy: Cascade Knapsacks 7

Department of Mathematics

Rangespace Reformulation (RSRef)

Krishnamoorthy: Cascade Knapsacks 8

Department of Mathematics

Rangespace Reformulation (RSRef)

• reformulation of general IPs

{b′ ≤ Ax ≤ b, x ∈ Zn}

Krishnamoorthy: Cascade Knapsacks 8

Department of Mathematics

Rangespace Reformulation (RSRef)

• reformulation of general IPs

{b′ ≤ Ax ≤ b, x ∈ Zn} → {b′ ≤ (AU)y ≤ b, y ∈ Zn}

Krishnamoorthy: Cascade Knapsacks 8

Department of Mathematics

Rangespace Reformulation (RSRef)

• reformulation of general IPs

{b′ ≤ Ax ≤ b, x ∈ Zn} → {b′ ≤ (AU)y ≤ b, y ∈ Zn}
U is unimodular, found by basis reduction

Krishnamoorthy: Cascade Knapsacks 8

Department of Mathematics

Rangespace Reformulation (RSRef)

• reformulation of general IPs

{b′ ≤ Ax ≤ b, x ∈ Zn} → {b′ ≤ (AU)y ≤ b, y ∈ Zn}
U is unimodular, found by basis reduction

– simplifies and generalizes the Aardal et al. reformulation

Krishnamoorthy: Cascade Knapsacks 8

Department of Mathematics

Rangespace Reformulation (RSRef)

• reformulation of general IPs

{b′ ≤ Ax ≤ b, x ∈ Zn} → {b′ ≤ (AU)y ≤ b, y ∈ Zn}
U is unimodular, found by basis reduction

– simplifies and generalizes the Aardal et al. reformulation

– dimension remains the same

Krishnamoorthy: Cascade Knapsacks 8

Department of Mathematics

Rangespace Reformulation (RSRef)

• reformulation of general IPs

{b′ ≤ Ax ≤ b, x ∈ Zn} → {b′ ≤ (AU)y ≤ b, y ∈ Zn}
U is unimodular, found by basis reduction

– simplifies and generalizes the Aardal et al. reformulation

– dimension remains the same

• DKPs become easy after RSRef is applied

Krishnamoorthy: Cascade Knapsacks 8

Department of Mathematics

Rangespace Reformulation (RSRef)

• reformulation of general IPs

{b′ ≤ Ax ≤ b, x ∈ Zn} → {b′ ≤ (AU)y ≤ b, y ∈ Zn}
U is unimodular, found by basis reduction

– simplifies and generalizes the Aardal et al. reformulation

– dimension remains the same

• DKPs become easy after RSRef is applied

• branching on px ⇐⇒ branching on “last few” yj’s

– e.g., n = 50, xj ∈ {0, 1}, pj ∈ [1, 10], rj ∈ [−10, 10], M = 104:

CPLEX 9.0 takes ≥ 6.7 million B&B nodes

Krishnamoorthy: Cascade Knapsacks 8

Department of Mathematics

Rangespace Reformulation (RSRef)

• reformulation of general IPs

{b′ ≤ Ax ≤ b, x ∈ Zn} → {b′ ≤ (AU)y ≤ b, y ∈ Zn}
U is unimodular, found by basis reduction

– simplifies and generalizes the Aardal et al. reformulation

– dimension remains the same

• DKPs become easy after RSRef is applied

• branching on px ⇐⇒ branching on “last few” yj’s

– e.g., n = 50, xj ∈ {0, 1}, pj ∈ [1, 10], rj ∈ [−10, 10], M = 104:

CPLEX 9.0 takes ≥ 6.7 million B&B nodes

– RSRef solves in root node

Krishnamoorthy: Cascade Knapsacks 8

Department of Mathematics

DKP example in 2D

Let p = (1, 1), M = 20, r = (1, −1), u = (6, 6)

Krishnamoorthy: Cascade Knapsacks 9

Department of Mathematics

DKP example in 2D

Let p = (1, 1), M = 20, r = (1, −1), u = (6, 6)

106 ≤ 21x1 + 19x2 ≤ 113
0 ≤ x1, x2 ≤ 6

x1, x2 ∈ Z

Krishnamoorthy: Cascade Knapsacks 9

Department of Mathematics

DKP example in 2D

Let p = (1, 1), M = 20, r = (1, −1), u = (6, 6)

106 ≤ 21x1 + 19x2 ≤ 113
0 ≤ x1, x2 ≤ 6

x1, x2 ∈ Z

5

6

5

6

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

P

x1

x2

Krishnamoorthy: Cascade Knapsacks 9

Department of Mathematics

DKP example in 2D

Let p = (1, 1), M = 20, r = (1, −1), u = (6, 6)

106 ≤ 21x1 + 19x2 ≤ 113
0 ≤ x1, x2 ≤ 6

x1, x2 ∈ Z
→

106 ≤ −2y1 + 7y2 ≤ 113
0 ≤ −y1 − 6y2 ≤ 6
0 ≤ y1 + 7y2 ≤ 6

y1, y2 ∈ Z

5

6

5

6

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

P

x1

x2

Krishnamoorthy: Cascade Knapsacks 9

Department of Mathematics

DKP example in 2D

Let p = (1, 1), M = 20, r = (1, −1), u = (6, 6)

106 ≤ 21x1 + 19x2 ≤ 113
0 ≤ x1, x2 ≤ 6

x1, x2 ∈ Z
→

106 ≤ −2y1 + 7y2 ≤ 113
0 ≤ −y1 − 6y2 ≤ 6
0 ≤ y1 + 7y2 ≤ 6

y1, y2 ∈ Z

5

6

5

6

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

P

x1

x2

6

5

−33−38

������������
������������
������������
������������

P̃

y1

y2

Krishnamoorthy: Cascade Knapsacks 9

Department of Mathematics

DKPs get harder as t grows

Krishnamoorthy: Cascade Knapsacks 10

Department of Mathematics

DKPs get harder as t grows
Two infeasible knapsack problems: Can you tell which one is harder?

1473x1 + 1524x2 + 1569x3 + 1570x4 + 1575x5 + 1624x6 + 1625x7

+2160x8 + 2206x9 + 2207x10 + 2211x11 + 2211x12 + 2257x13

+2260x14 + 2305x15 + 2843x16 + 2943x17 + 2947x18 + 2991x19

+2993x20 + 2997x21 + 3528x22 + 3577x23 + 3631x24 + 3677x25

= 28980, xi ∈ {0, 1}

1314x1 + 1315x2 + 1317x3 + 1318x4 + 1971x5 + 1972x6 + 1973x7

+1976x8 + 1977x9 + 1977x10 + 2629x11 + 2630x12 + 2631x13

+2631x14 + 2633x15 + 2634x16 + 2635x17 + 2635x18 + 3287x19

+3287x20 + 3287x21 + 3289x22 + 3292x23 + 3293x24 + 3293x25

= 28981, xi ∈ {0, 1}

Krishnamoorthy: Cascade Knapsacks 10

Department of Mathematics

Two hard knapsacks

Krishnamoorthy: Cascade Knapsacks 11

Department of Mathematics

Two hard knapsacks

using CPLEX 9.0 to prove infeasibility

Krishnamoorthy: Cascade Knapsacks 11

Department of Mathematics

Two hard knapsacks

using CPLEX 9.0 to prove infeasibility

• second knapsack has t = 1, and takes ≈ 22, 000 nodes

Krishnamoorthy: Cascade Knapsacks 11

Department of Mathematics

Two hard knapsacks

using CPLEX 9.0 to prove infeasibility

• second knapsack has t = 1, and takes ≈ 22, 000 nodes

• first knapsack has t = 2, and takes ≈ 3.6 million nodes

Krishnamoorthy: Cascade Knapsacks 11

Department of Mathematics

Questions

Krishnamoorthy: Cascade Knapsacks 12

Department of Mathematics

Questions

• Can we create and analyze classes of t + 1-DKPs for t ≥ 2?

Krishnamoorthy: Cascade Knapsacks 12

Department of Mathematics

Questions

• Can we create and analyze classes of t + 1-DKPs for t ≥ 2?

• Do they have more interesting structure than when t = 1?

Krishnamoorthy: Cascade Knapsacks 12

Department of Mathematics

Questions

• Can we create and analyze classes of t + 1-DKPs for t ≥ 2?

• Do they have more interesting structure than when t = 1?

• “thin” directions and integer width?

Krishnamoorthy: Cascade Knapsacks 12

Department of Mathematics

Questions

• Can we create and analyze classes of t + 1-DKPs for t ≥ 2?

• Do they have more interesting structure than when t = 1?

• “thin” directions and integer width?

• width and integer width:

Krishnamoorthy: Cascade Knapsacks 12

Department of Mathematics

Questions

• Can we create and analyze classes of t + 1-DKPs for t ≥ 2?

• Do they have more interesting structure than when t = 1?

• “thin” directions and integer width?

• width and integer width: given polyhedron K, direction p

Krishnamoorthy: Cascade Knapsacks 12

Department of Mathematics

Questions

• Can we create and analyze classes of t + 1-DKPs for t ≥ 2?

• Do they have more interesting structure than when t = 1?

• “thin” directions and integer width?

• width and integer width: given polyhedron K, direction p

width(p,K) = max{px |x ∈ K} − min{px |x ∈ K}

Krishnamoorthy: Cascade Knapsacks 12

Department of Mathematics

Questions

• Can we create and analyze classes of t + 1-DKPs for t ≥ 2?

• Do they have more interesting structure than when t = 1?

• “thin” directions and integer width?

• width and integer width: given polyhedron K, direction p

width(p,K) = max{px |x ∈ K} − min{px |x ∈ K}
iwidth(p,K) = bmax{px |x ∈ K} c − dmin{px |x ∈ K} e + 1

Krishnamoorthy: Cascade Knapsacks 12

Department of Mathematics

Questions

• Can we create and analyze classes of t + 1-DKPs for t ≥ 2?

• Do they have more interesting structure than when t = 1?

• “thin” directions and integer width?

• width and integer width: given polyhedron K, direction p

width(p,K) = max{px |x ∈ K} − min{px |x ∈ K}
iwidth(p,K) = bmax{px |x ∈ K} c − dmin{px |x ∈ K} e + 1

iwidth(p): # branches created by branching on the hyperplane px

Krishnamoorthy: Cascade Knapsacks 12

Department of Mathematics

Cascade Knapsack Problem (CKP)

Krishnamoorthy: Cascade Knapsacks 13

Department of Mathematics

Cascade Knapsack Problem (CKP)

• instance of 3-DKP (t = 2, a = p1M1 + p2M2 + r)

Krishnamoorthy: Cascade Knapsacks 13

Department of Mathematics

Cascade Knapsack Problem (CKP)

• instance of 3-DKP (t = 2, a = p1M1 + p2M2 + r) with u = e

(xj ∈ {0, 1}) such that

– it is integer infeasible by choice of β1, β2;

Krishnamoorthy: Cascade Knapsacks 13

Department of Mathematics

Cascade Knapsack Problem (CKP)

• instance of 3-DKP (t = 2, a = p1M1 + p2M2 + r) with u = e

(xj ∈ {0, 1}) such that

– it is integer infeasible by choice of β1, β2;

– width(ej,CKP) = 1− 0, iwidth(ej,CKP) = 2 for all j;

Krishnamoorthy: Cascade Knapsacks 13

Department of Mathematics

Cascade Knapsack Problem (CKP)

• instance of 3-DKP (t = 2, a = p1M1 + p2M2 + r) with u = e

(xj ∈ {0, 1}) such that

– it is integer infeasible by choice of β1, β2;

– width(ej,CKP) = 1− 0, iwidth(ej,CKP) = 2 for all j;

– 1 < width(p1,CKP) < 2 and iwidth(p1,CKP) = 1,

Krishnamoorthy: Cascade Knapsacks 13

Department of Mathematics

Cascade Knapsack Problem (CKP)

• instance of 3-DKP (t = 2, a = p1M1 + p2M2 + r) with u = e

(xj ∈ {0, 1}) such that

– it is integer infeasible by choice of β1, β2;

– width(ej,CKP) = 1− 0, iwidth(ej,CKP) = 2 for all j;

– 1 < width(p1,CKP) < 2 and iwidth(p1,CKP) = 1, so branching

on p1x amounts to just adding p1x = k1 for some integer k1;

Krishnamoorthy: Cascade Knapsacks 13

Department of Mathematics

Cascade Knapsack Problem (CKP)

• instance of 3-DKP (t = 2, a = p1M1 + p2M2 + r) with u = e

(xj ∈ {0, 1}) such that

– it is integer infeasible by choice of β1, β2;

– width(ej,CKP) = 1− 0, iwidth(ej,CKP) = 2 for all j;

– 1 < width(p1,CKP) < 2 and iwidth(p1,CKP) = 1, so branching

on p1x amounts to just adding p1x = k1 for some integer k1;

– width(p2,CKP ∧ p1x = k1) < 1 and iwidth(p2,CKP ∧ p1x =
k1) = 0.

Krishnamoorthy: Cascade Knapsacks 13

Department of Mathematics

Cascade Knapsack Problem (CKP)

• instance of 3-DKP (t = 2, a = p1M1 + p2M2 + r) with u = e

(xj ∈ {0, 1}) such that

– it is integer infeasible by choice of β1, β2;

– width(ej,CKP) = 1− 0, iwidth(ej,CKP) = 2 for all j;

– 1 < width(p1,CKP) < 2 and iwidth(p1,CKP) = 1, so branching

on p1x amounts to just adding p1x = k1 for some integer k1;

– width(p2,CKP ∧ p1x = k1) < 1 and iwidth(p2,CKP ∧ p1x =
k1) = 0.

• branching on p1x and then on p2x kills the problem

Krishnamoorthy: Cascade Knapsacks 13

Department of Mathematics

Cascade Knapsack Problem (CKP)

• instance of 3-DKP (t = 2, a = p1M1 + p2M2 + r) with u = e

(xj ∈ {0, 1}) such that

– it is integer infeasible by choice of β1, β2;

– width(ej,CKP) = 1− 0, iwidth(ej,CKP) = 2 for all j;

– 1 < width(p1,CKP) < 2 and iwidth(p1,CKP) = 1, so branching

on p1x amounts to just adding p1x = k1 for some integer k1;

– width(p2,CKP ∧ p1x = k1) < 1 and iwidth(p2,CKP ∧ p1x =
k1) = 0.

• branching on p1x and then on p2x kills the problem

• effect of branching on p1x cascades to the next level p2x

Krishnamoorthy: Cascade Knapsacks 13

Department of Mathematics

Example 1: CKP1

Krishnamoorthy: Cascade Knapsacks 14

Department of Mathematics

Example 1: CKP1

4196 ≤ 340 x1 + 452 x2 + 695 x3 + 926 x4 + 1050 x5

+ 1089 x6 + 1190 x7 + 1296 x8 + 1342 x9 ≤ 4197
xj ∈ {0, 1}

Krishnamoorthy: Cascade Knapsacks 14

Department of Mathematics

Example 1: CKP1

4196 ≤ 340 x1 + 452 x2 + 695 x3 + 926 x4 + 1050 x5

+ 1089 x6 + 1190 x7 + 1296 x8 + 1342 x9 ≤ 4197
xj ∈ {0, 1}

• CPLEX 11.0 takes 64 B&B nodes

Krishnamoorthy: Cascade Knapsacks 14

Department of Mathematics

Example 1: CKP1

4196 ≤ 340 x1 + 452 x2 + 695 x3 + 926 x4 + 1050 x5

+ 1089 x6 + 1190 x7 + 1296 x8 + 1342 x9 ≤ 4197
xj ∈ {0, 1}

• CPLEX 11.0 takes 64 B&B nodes

• width(ej,CKP1) = 1, iwidth(ej,CKP1) = 2 for all j

Krishnamoorthy: Cascade Knapsacks 14

Department of Mathematics

Example 1: CKP1

4196 ≤ 340 x1 + 452 x2 + 695 x3 + 926 x4 + 1050 x5

+ 1089 x6 + 1190 x7 + 1296 x8 + 1342 x9 ≤ 4197
xj ∈ {0, 1}

• CPLEX 11.0 takes 64 B&B nodes

• width(ej,CKP1) = 1, iwidth(ej,CKP1) = 2 for all j

• a = p1M1 + p2M2 + r, with M1 = 127, M2 = 12,

Krishnamoorthy: Cascade Knapsacks 14

Department of Mathematics

Example 1: CKP1

4196 ≤ 340 x1 + 452 x2 + 695 x3 + 926 x4 + 1050 x5

+ 1089 x6 + 1190 x7 + 1296 x8 + 1342 x9 ≤ 4197
xj ∈ {0, 1}

• CPLEX 11.0 takes 64 B&B nodes

• width(ej,CKP1) = 1, iwidth(ej,CKP1) = 2 for all j

• a = p1M1 + p2M2 + r, with M1 = 127, M2 = 12,

p1 = (2, 3, 5, 7, 8, 8, 9, 10, 10),
p2 = (7, 6, 5, 3, 3, 6, 4, 2, 6), and

r = (2,−1, 0, 1,−2, 1, −1, 2, 0)

Krishnamoorthy: Cascade Knapsacks 14

Department of Mathematics

Example 1: CKP1 – Properties

Krishnamoorthy: Cascade Knapsacks 15

Department of Mathematics

Example 1: CKP1 – Properties

• max{p1x |CKP1} = 31.967, min{p1x |CKP1} = 30.102;

Krishnamoorthy: Cascade Knapsacks 15

Department of Mathematics

Example 1: CKP1 – Properties

• max{p1x |CKP1} = 31.967, min{p1x |CKP1} = 30.102;
width(p1,CKP1) = 1.865,

Krishnamoorthy: Cascade Knapsacks 15

Department of Mathematics

Example 1: CKP1 – Properties

• max{p1x |CKP1} = 31.967, min{p1x |CKP1} = 30.102;
width(p1,CKP1) = 1.865, iwidth(p1,CKP1) = 1;

Krishnamoorthy: Cascade Knapsacks 15

Department of Mathematics

Example 1: CKP1 – Properties

• max{p1x |CKP1} = 31.967, min{p1x |CKP1} = 30.102;
width(p1,CKP1) = 1.865, iwidth(p1,CKP1) = 1;

• p1x = 31 is the only branch;

Krishnamoorthy: Cascade Knapsacks 15

Department of Mathematics

Example 1: CKP1 – Properties

• max{p1x |CKP1} = 31.967, min{p1x |CKP1} = 30.102;
width(p1,CKP1) = 1.865, iwidth(p1,CKP1) = 1;

• p1x = 31 is the only branch;

– CPLEX 11.0 takes 37 B&B nodes for CKP1 ∧ p1x = 31

Krishnamoorthy: Cascade Knapsacks 15

Department of Mathematics

Example 1: CKP1 – Properties

• max{p1x |CKP1} = 31.967, min{p1x |CKP1} = 30.102;
width(p1,CKP1) = 1.865, iwidth(p1,CKP1) = 1;

• p1x = 31 is the only branch;

– CPLEX 11.0 takes 37 B&B nodes for CKP1 ∧ p1x = 31
– max{p2x |CKP1 ∧ p1x = 31} = 21.989,

min{p2x |CKP1 ∧ p1x = 31} = 21.083;

Krishnamoorthy: Cascade Knapsacks 15

Department of Mathematics

Example 1: CKP1 – Properties

• max{p1x |CKP1} = 31.967, min{p1x |CKP1} = 30.102;
width(p1,CKP1) = 1.865, iwidth(p1,CKP1) = 1;

• p1x = 31 is the only branch;

– CPLEX 11.0 takes 37 B&B nodes for CKP1 ∧ p1x = 31
– max{p2x |CKP1 ∧ p1x = 31} = 21.989,

min{p2x |CKP1 ∧ p1x = 31} = 21.083;
width(p2,CKP1 ∧ p1x = 31) = 0.906, iwidth = 0

Krishnamoorthy: Cascade Knapsacks 15

Department of Mathematics

Example 1: CKP1 – Properties

• max{p1x |CKP1} = 31.967, min{p1x |CKP1} = 30.102;
width(p1,CKP1) = 1.865, iwidth(p1,CKP1) = 1;

• p1x = 31 is the only branch;

– CPLEX 11.0 takes 37 B&B nodes for CKP1 ∧ p1x = 31
– max{p2x |CKP1 ∧ p1x = 31} = 21.989,

min{p2x |CKP1 ∧ p1x = 31} = 21.083;
width(p2,CKP1 ∧ p1x = 31) = 0.906, iwidth = 0

• comparable DKP: a = p1M + r, with M = 136; for xj ∈ {0, 1}

Krishnamoorthy: Cascade Knapsacks 15

Department of Mathematics

Example 1: CKP1 – Properties

• max{p1x |CKP1} = 31.967, min{p1x |CKP1} = 30.102;
width(p1,CKP1) = 1.865, iwidth(p1,CKP1) = 1;

• p1x = 31 is the only branch;

– CPLEX 11.0 takes 37 B&B nodes for CKP1 ∧ p1x = 31
– max{p2x |CKP1 ∧ p1x = 31} = 21.989,

min{p2x |CKP1 ∧ p1x = 31} = 21.083;
width(p2,CKP1 ∧ p1x = 31) = 0.906, iwidth = 0

• comparable DKP: a = p1M + r, with M = 136; for xj ∈ {0, 1}
4223 ≤ 274 x1 + 407 x2 + 680 x3 + 953 x4 + 1086 x5+

1089 x6 + 1223 x7 + 1362 x8 + 1360 x9 ≤ 4224

Krishnamoorthy: Cascade Knapsacks 15

Department of Mathematics

Example 1: CKP1 – Properties

• max{p1x |CKP1} = 31.967, min{p1x |CKP1} = 30.102;
width(p1,CKP1) = 1.865, iwidth(p1,CKP1) = 1;

• p1x = 31 is the only branch;

– CPLEX 11.0 takes 37 B&B nodes for CKP1 ∧ p1x = 31
– max{p2x |CKP1 ∧ p1x = 31} = 21.989,

min{p2x |CKP1 ∧ p1x = 31} = 21.083;
width(p2,CKP1 ∧ p1x = 31) = 0.906, iwidth = 0

• comparable DKP: a = p1M + r, with M = 136; for xj ∈ {0, 1}
4223 ≤ 274 x1 + 407 x2 + 680 x3 + 953 x4 + 1086 x5+

1089 x6 + 1223 x7 + 1362 x8 + 1360 x9 ≤ 4224
CPLEX 11.0 takes 44 B&B nodes

Krishnamoorthy: Cascade Knapsacks 15

Department of Mathematics

width v/s integer width

Krishnamoorthy: Cascade Knapsacks 16

Department of Mathematics

width v/s integer width

• for CKP1, width(p1) = 1.865, bigger than width(ej) = 1

Krishnamoorthy: Cascade Knapsacks 16

Department of Mathematics

width v/s integer width

• for CKP1, width(p1) = 1.865, bigger than width(ej) = 1

• but iwidth(p1) = 1, which is smaller than iwidth(ej) = 2

Krishnamoorthy: Cascade Knapsacks 16

Department of Mathematics

width v/s integer width

• for CKP1, width(p1) = 1.865, bigger than width(ej) = 1

• but iwidth(p1) = 1, which is smaller than iwidth(ej) = 2

– width is not a good predictor of iwidth

Krishnamoorthy: Cascade Knapsacks 16

Department of Mathematics

width v/s integer width

• for CKP1, width(p1) = 1.865, bigger than width(ej) = 1

• but iwidth(p1) = 1, which is smaller than iwidth(ej) = 2

– width is not a good predictor of iwidth
– preferable to branch on p1 according to iwidth

Krishnamoorthy: Cascade Knapsacks 16

Department of Mathematics

width v/s integer width

• for CKP1, width(p1) = 1.865, bigger than width(ej) = 1

• but iwidth(p1) = 1, which is smaller than iwidth(ej) = 2

– width is not a good predictor of iwidth
– preferable to branch on p1 according to iwidth
– non-trivial to identify p1

Krishnamoorthy: Cascade Knapsacks 16

Department of Mathematics

width v/s integer width

• for CKP1, width(p1) = 1.865, bigger than width(ej) = 1

• but iwidth(p1) = 1, which is smaller than iwidth(ej) = 2

– width is not a good predictor of iwidth
– preferable to branch on p1 according to iwidth
– non-trivial to identify p1 (RSRef)

Krishnamoorthy: Cascade Knapsacks 16

Department of Mathematics

width v/s integer width

• for CKP1, width(p1) = 1.865, bigger than width(ej) = 1

• but iwidth(p1) = 1, which is smaller than iwidth(ej) = 2

– width is not a good predictor of iwidth
– preferable to branch on p1 according to iwidth
– non-trivial to identify p1 (RSRef)

• Cook and Kannan (personal communication)

Krishnamoorthy: Cascade Knapsacks 16

Department of Mathematics

width v/s integer width

• for CKP1, width(p1) = 1.865, bigger than width(ej) = 1

• but iwidth(p1) = 1, which is smaller than iwidth(ej) = 2

– width is not a good predictor of iwidth
– preferable to branch on p1 according to iwidth
– non-trivial to identify p1 (RSRef)

• Cook and Kannan (personal communication) studied

cases when width = 1.9 (say) and iwidth = 1

Krishnamoorthy: Cascade Knapsacks 16

Department of Mathematics

width v/s integer width

• for CKP1, width(p1) = 1.865, bigger than width(ej) = 1

• but iwidth(p1) = 1, which is smaller than iwidth(ej) = 2

– width is not a good predictor of iwidth
– preferable to branch on p1 according to iwidth
– non-trivial to identify p1 (RSRef)

• Cook and Kannan (personal communication) studied

cases when width = 1.9 (say) and iwidth = 1

• We create variation of CKP with width(p1) > 1 and iwidth(p1) =
2;

Krishnamoorthy: Cascade Knapsacks 16

Department of Mathematics

width v/s integer width

• for CKP1, width(p1) = 1.865, bigger than width(ej) = 1

• but iwidth(p1) = 1, which is smaller than iwidth(ej) = 2

– width is not a good predictor of iwidth
– preferable to branch on p1 according to iwidth
– non-trivial to identify p1 (RSRef)

• Cook and Kannan (personal communication) studied

cases when width = 1.9 (say) and iwidth = 1

• We create variation of CKP with width(p1) > 1 and iwidth(p1) =
2; for both branches of p1x, branching on p2x proves infeasibility

Krishnamoorthy: Cascade Knapsacks 16

Department of Mathematics

Example 2: CKP2

Krishnamoorthy: Cascade Knapsacks 17

Department of Mathematics

Example 2: CKP2

4399 ≤ 344 x1 + 458 x2 + 705 x3 + 940 x4 + 1066 x5

+ 1105 x6 + 1208 x7 + 1316 x8 + 1362 x9 ≤ 4400
xj ∈ {0, 1}

Krishnamoorthy: Cascade Knapsacks 17

Department of Mathematics

Example 2: CKP2

4399 ≤ 344 x1 + 458 x2 + 705 x3 + 940 x4 + 1066 x5

+ 1105 x6 + 1208 x7 + 1316 x8 + 1362 x9 ≤ 4400
xj ∈ {0, 1}

• same p1,p2, r as in CKP1, but M1 = 129, M2 = 12

Krishnamoorthy: Cascade Knapsacks 17

Department of Mathematics

Example 2: CKP2

4399 ≤ 344 x1 + 458 x2 + 705 x3 + 940 x4 + 1066 x5

+ 1105 x6 + 1208 x7 + 1316 x8 + 1362 x9 ≤ 4400
xj ∈ {0, 1}

• same p1,p2, r as in CKP1, but M1 = 129, M2 = 12

– CPLEX 11.0 takes 95 B&B nodes

Krishnamoorthy: Cascade Knapsacks 17

Department of Mathematics

Example 2: CKP2

4399 ≤ 344 x1 + 458 x2 + 705 x3 + 940 x4 + 1066 x5

+ 1105 x6 + 1208 x7 + 1316 x8 + 1362 x9 ≤ 4400
xj ∈ {0, 1}

• same p1,p2, r as in CKP1, but M1 = 129, M2 = 12

– CPLEX 11.0 takes 95 B&B nodes

– max{p1x |CKP2} = 33.032, min{p1x |CKP2} = 31.165;

Krishnamoorthy: Cascade Knapsacks 17

Department of Mathematics

Example 2: CKP2

4399 ≤ 344 x1 + 458 x2 + 705 x3 + 940 x4 + 1066 x5

+ 1105 x6 + 1208 x7 + 1316 x8 + 1362 x9 ≤ 4400
xj ∈ {0, 1}

• same p1,p2, r as in CKP1, but M1 = 129, M2 = 12

– CPLEX 11.0 takes 95 B&B nodes

– max{p1x |CKP2} = 33.032, min{p1x |CKP2} = 31.165;
width(p1,CKP2) = 1.867,

Krishnamoorthy: Cascade Knapsacks 17

Department of Mathematics

Example 2: CKP2

4399 ≤ 344 x1 + 458 x2 + 705 x3 + 940 x4 + 1066 x5

+ 1105 x6 + 1208 x7 + 1316 x8 + 1362 x9 ≤ 4400
xj ∈ {0, 1}

• same p1,p2, r as in CKP1, but M1 = 129, M2 = 12

– CPLEX 11.0 takes 95 B&B nodes

– max{p1x |CKP2} = 33.032, min{p1x |CKP2} = 31.165;
width(p1,CKP2) = 1.867, iwidth(p1,CKP1) = 2;

Krishnamoorthy: Cascade Knapsacks 17

Department of Mathematics

Example 2: CKP2

4399 ≤ 344 x1 + 458 x2 + 705 x3 + 940 x4 + 1066 x5

+ 1105 x6 + 1208 x7 + 1316 x8 + 1362 x9 ≤ 4400
xj ∈ {0, 1}

• same p1,p2, r as in CKP1, but M1 = 129, M2 = 12

– CPLEX 11.0 takes 95 B&B nodes

– max{p1x |CKP2} = 33.032, min{p1x |CKP2} = 31.165;
width(p1,CKP2) = 1.867, iwidth(p1,CKP1) = 2;

– width(p2,CKP2 ∧ p1x = 32) = 0.895, iwidth = 0

Krishnamoorthy: Cascade Knapsacks 17

Department of Mathematics

Example 2: CKP2

4399 ≤ 344 x1 + 458 x2 + 705 x3 + 940 x4 + 1066 x5

+ 1105 x6 + 1208 x7 + 1316 x8 + 1362 x9 ≤ 4400
xj ∈ {0, 1}

• same p1,p2, r as in CKP1, but M1 = 129, M2 = 12

– CPLEX 11.0 takes 95 B&B nodes

– max{p1x |CKP2} = 33.032, min{p1x |CKP2} = 31.165;
width(p1,CKP2) = 1.867, iwidth(p1,CKP1) = 2;

– width(p2,CKP2 ∧ p1x = 32) = 0.895, iwidth = 0
CPLEX 11.0 takes 35 B&B nodes for CKP2 ∧ p1x = 32

Krishnamoorthy: Cascade Knapsacks 17

Department of Mathematics

Example 2: CKP2

4399 ≤ 344 x1 + 458 x2 + 705 x3 + 940 x4 + 1066 x5

+ 1105 x6 + 1208 x7 + 1316 x8 + 1362 x9 ≤ 4400
xj ∈ {0, 1}

• same p1,p2, r as in CKP1, but M1 = 129, M2 = 12

– CPLEX 11.0 takes 95 B&B nodes

– max{p1x |CKP2} = 33.032, min{p1x |CKP2} = 31.165;
width(p1,CKP2) = 1.867, iwidth(p1,CKP1) = 2;

– width(p2,CKP2 ∧ p1x = 32) = 0.895, iwidth = 0
CPLEX 11.0 takes 35 B&B nodes for CKP2 ∧ p1x = 32

– width(p2,CKP2 ∧ p1x = 33) = 0.158, iwidth = 0

Krishnamoorthy: Cascade Knapsacks 17

Department of Mathematics

Example 2: CKP2

4399 ≤ 344 x1 + 458 x2 + 705 x3 + 940 x4 + 1066 x5

+ 1105 x6 + 1208 x7 + 1316 x8 + 1362 x9 ≤ 4400
xj ∈ {0, 1}

• same p1,p2, r as in CKP1, but M1 = 129, M2 = 12

– CPLEX 11.0 takes 95 B&B nodes

– max{p1x |CKP2} = 33.032, min{p1x |CKP2} = 31.165;
width(p1,CKP2) = 1.867, iwidth(p1,CKP1) = 2;

– width(p2,CKP2 ∧ p1x = 32) = 0.895, iwidth = 0
CPLEX 11.0 takes 35 B&B nodes for CKP2 ∧ p1x = 32

– width(p2,CKP2 ∧ p1x = 33) = 0.158, iwidth = 0
CPLEX 11.0 solves CKP2 ∧ p1x = 32 at the root node

Krishnamoorthy: Cascade Knapsacks 17

Department of Mathematics

Example 2: CKP2

4399 ≤ 344 x1 + 458 x2 + 705 x3 + 940 x4 + 1066 x5

+ 1105 x6 + 1208 x7 + 1316 x8 + 1362 x9 ≤ 4400
xj ∈ {0, 1}

• same p1,p2, r as in CKP1, but M1 = 129, M2 = 12

– CPLEX 11.0 takes 95 B&B nodes

– max{p1x |CKP2} = 33.032, min{p1x |CKP2} = 31.165;
width(p1,CKP2) = 1.867, iwidth(p1,CKP1) = 2;

– width(p2,CKP2 ∧ p1x = 32) = 0.895, iwidth = 0
CPLEX 11.0 takes 35 B&B nodes for CKP2 ∧ p1x = 32

– width(p2,CKP2 ∧ p1x = 33) = 0.158, iwidth = 0
CPLEX 11.0 solves CKP2 ∧ p1x = 32 at the root node

• p1 is not preferable to ej for branching, based on iwidth alone

Krishnamoorthy: Cascade Knapsacks 17

Department of Mathematics

CKP Generalizations

Krishnamoorthy: Cascade Knapsacks 18

Department of Mathematics

CKP Generalizations
• we can generalize CKPs:

Krishnamoorthy: Cascade Knapsacks 18

Department of Mathematics

CKP Generalizations
• we can generalize CKPs:

– to higher t’s (t ≥ 3;a = p1M1 + · · ·+ ptMt + r)

Krishnamoorthy: Cascade Knapsacks 18

Department of Mathematics

CKP Generalizations
• we can generalize CKPs:

– to higher t’s (t ≥ 3;a = p1M1 + · · ·+ ptMt + r)

1 < width(pi |CKP ∧ pjx = kj, j = 1, . . . , i− 1) < 2
iwidth(pi |CKP ∧ pjx = kj, j = 1, . . . , i− 1) = 1 or 2
for i = 1, . . . , t− 1, and then iwidth(pt) = 0

Krishnamoorthy: Cascade Knapsacks 18

Department of Mathematics

CKP Generalizations
• we can generalize CKPs:

– to higher t’s (t ≥ 3;a = p1M1 + · · ·+ ptMt + r)

1 < width(pi |CKP ∧ pjx = kj, j = 1, . . . , i− 1) < 2
iwidth(pi |CKP ∧ pjx = kj, j = 1, . . . , i− 1) = 1 or 2
for i = 1, . . . , t− 1, and then iwidth(pt) = 0

– u can be more general than e

Krishnamoorthy: Cascade Knapsacks 18

Department of Mathematics

CKP Generalizations
• we can generalize CKPs:

– to higher t’s (t ≥ 3;a = p1M1 + · · ·+ ptMt + r)

1 < width(pi |CKP ∧ pjx = kj, j = 1, . . . , i− 1) < 2
iwidth(pi |CKP ∧ pjx = kj, j = 1, . . . , i− 1) = 1 or 2
for i = 1, . . . , t− 1, and then iwidth(pt) = 0

– u can be more general than e

• denoted as t + 1-CKPs;

Krishnamoorthy: Cascade Knapsacks 18

Department of Mathematics

CKP Generalizations
• we can generalize CKPs:

– to higher t’s (t ≥ 3;a = p1M1 + · · ·+ ptMt + r)

1 < width(pi |CKP ∧ pjx = kj, j = 1, . . . , i− 1) < 2
iwidth(pi |CKP ∧ pjx = kj, j = 1, . . . , i− 1) = 1 or 2
for i = 1, . . . , t− 1, and then iwidth(pt) = 0

– u can be more general than e

• denoted as t + 1-CKPs; Recipes to generate t + 1-CKPs

Krishnamoorthy: Cascade Knapsacks 18

Department of Mathematics

CKP Generalizations
• we can generalize CKPs:

– to higher t’s (t ≥ 3;a = p1M1 + · · ·+ ptMt + r)

1 < width(pi |CKP ∧ pjx = kj, j = 1, . . . , i− 1) < 2
iwidth(pi |CKP ∧ pjx = kj, j = 1, . . . , i− 1) = 1 or 2
for i = 1, . . . , t− 1, and then iwidth(pt) = 0

– u can be more general than e

• denoted as t + 1-CKPs; Recipes to generate t + 1-CKPs

• computationally hard

Krishnamoorthy: Cascade Knapsacks 18

Department of Mathematics

CKP Generalizations
• we can generalize CKPs:

– to higher t’s (t ≥ 3;a = p1M1 + · · ·+ ptMt + r)

1 < width(pi |CKP ∧ pjx = kj, j = 1, . . . , i− 1) < 2
iwidth(pi |CKP ∧ pjx = kj, j = 1, . . . , i− 1) = 1 or 2
for i = 1, . . . , t− 1, and then iwidth(pt) = 0

– u can be more general than e

• denoted as t + 1-CKPs; Recipes to generate t + 1-CKPs

• computationally hard

– with xj ∈ {0, 1}, we get small aj’s, but CPLEX still struggles

Krishnamoorthy: Cascade Knapsacks 18

Department of Mathematics

CKP Generalizations
• we can generalize CKPs:

– to higher t’s (t ≥ 3;a = p1M1 + · · ·+ ptMt + r)

1 < width(pi |CKP ∧ pjx = kj, j = 1, . . . , i− 1) < 2
iwidth(pi |CKP ∧ pjx = kj, j = 1, . . . , i− 1) = 1 or 2
for i = 1, . . . , t− 1, and then iwidth(pt) = 0

– u can be more general than e

• denoted as t + 1-CKPs; Recipes to generate t + 1-CKPs

• computationally hard

– with xj ∈ {0, 1}, we get small aj’s, but CPLEX still struggles

– e.g., 4-CKP with n = 30, amax ≤ 9000, CPLEX 9.0 takes

≈ 57 million B&B nodes

Krishnamoorthy: Cascade Knapsacks 18

Department of Mathematics

CKP Generalizations
• we can generalize CKPs:

– to higher t’s (t ≥ 3;a = p1M1 + · · ·+ ptMt + r)

1 < width(pi |CKP ∧ pjx = kj, j = 1, . . . , i− 1) < 2
iwidth(pi |CKP ∧ pjx = kj, j = 1, . . . , i− 1) = 1 or 2
for i = 1, . . . , t− 1, and then iwidth(pt) = 0

– u can be more general than e

• denoted as t + 1-CKPs; Recipes to generate t + 1-CKPs

• computationally hard

– with xj ∈ {0, 1}, we get small aj’s, but CPLEX still struggles

– e.g., 4-CKP with n = 30, amax ≤ 9000, CPLEX 9.0 takes

≈ 57 million B&B nodes

– dynamic programming could be effective (time = O(nβ1))?

Krishnamoorthy: Cascade Knapsacks 18

Department of Mathematics

Computation: 4-CKPs, n = 30, u = e

Krishnamoorthy: Cascade Knapsacks 19

Department of Mathematics

Computation: 4-CKPs, n = 30, u = e

CKP widths CKP CKP p1 CKP p1p2 DKP RS

w1 w21 w312 BB TM BB TM BB TM BB TM BB

1 1.55 1.42 0.92 58,057,939 u 2,448,625 126.0 205,814 13.3 11756 0.4 3

2 1.47 1.44 0.90 56,937,604 3484 740,556 41.0 66189 4.6 8708 0.3 1

3 1.57 1.50 0.94 46,187,956 3027 2,005,687 99.4 249,232 14.1 9537 0.3 5

4 1.50 1.53 0.89 55,782,856 u 477,707 25.2 252,505 13.7 6496 0.3 4

5 1.49 1.48 0.94 56,313,840 u 1,421,719 69.0 334,046 19.0 5527 0.2 3

6 1.50 1.55 0.90 55,597,050 u 1,319,626 73.0 257,922 15.0 10520 0.4 15

7 1.50 1.59 0.91 60,453,028 u 1,595,424 78.6 151,812 9.1 7336 0.3 6

8 1.57 1.52 0.95 64,409,733 u 5,324,924 278.3 310,768 19.2 10360 0.4 6

9 1.50 1.48 0.96 55,491,175 u 3,366,436 167.2 312,653 18.0 10061 0.4 5

10 1.49 1.53 0.92 60,307,524 u 3,107,323 158.2 443,789 25.6 8227 0.3 68

BB: # B&B nodes, TM: CPU time (sec), u: unsolved in 1 hour time limit,
typical instance: amin ≈ 4000, amax ≈ 9000, β1, β2 ≈ 65000; RS: RSRef

Used CPLEX 9.0; instances available at www.wsu.edu/∼kbala

Krishnamoorthy: Cascade Knapsacks 19

Department of Mathematics

Computation: 4-CKPs, n = 30, u = e

CKP widths CKP CKP p1 CKP p1p2 DKP RS

w1 w21 w312 BB TM BB TM BB TM BB TM BB

1 1.55 1.42 0.92 58,057,939 u 2,448,625 126.0 205,814 13.3 11756 0.4 3

2 1.47 1.44 0.90 56,937,604 3484 740,556 41.0 66189 4.6 8708 0.3 1

3 1.57 1.50 0.94 46,187,956 3027 2,005,687 99.4 249,232 14.1 9537 0.3 5

4 1.50 1.53 0.89 55,782,856 u 477,707 25.2 252,505 13.7 6496 0.3 4

5 1.49 1.48 0.94 56,313,840 u 1,421,719 69.0 334,046 19.0 5527 0.2 3

6 1.50 1.55 0.90 55,597,050 u 1,319,626 73.0 257,922 15.0 10520 0.4 15

7 1.50 1.59 0.91 60,453,028 u 1,595,424 78.6 151,812 9.1 7336 0.3 6

8 1.57 1.52 0.95 64,409,733 u 5,324,924 278.3 310,768 19.2 10360 0.4 6

9 1.50 1.48 0.96 55,491,175 u 3,366,436 167.2 312,653 18.0 10061 0.4 5

10 1.49 1.53 0.92 60,307,524 u 3,107,323 158.2 443,789 25.6 8227 0.3 68

BB: # B&B nodes, TM: CPU time (sec), u: unsolved in 1 hour time limit,
typical instance: amin ≈ 4000, amax ≈ 9000, β1, β2 ≈ 65000; RS: RSRef

Used CPLEX 9.0; instances available at www.wsu.edu/∼kbala

Krishnamoorthy: Cascade Knapsacks 19

Department of Mathematics

Summary

Krishnamoorthy: Cascade Knapsacks 20

Department of Mathematics

Summary

• CKPs are classes of t + 1-level decomposable knapsacks

Krishnamoorthy: Cascade Knapsacks 20

Department of Mathematics

Summary

• CKPs are classes of t + 1-level decomposable knapsacks

– which are hard for ordinary B&B

Krishnamoorthy: Cascade Knapsacks 20

Department of Mathematics

Summary

• CKPs are classes of t + 1-level decomposable knapsacks

– which are hard for ordinary B&B

– have a sequence of “good” branching directions p1, . . . ,pt

Krishnamoorthy: Cascade Knapsacks 20

Department of Mathematics

Summary

• CKPs are classes of t + 1-level decomposable knapsacks

– which are hard for ordinary B&B

– have a sequence of “good” branching directions p1, . . . ,pt

– iwidth(pi) = 1 or 2 in the branching sequence for i < t

Krishnamoorthy: Cascade Knapsacks 20

Department of Mathematics

Summary

• CKPs are classes of t + 1-level decomposable knapsacks

– which are hard for ordinary B&B

– have a sequence of “good” branching directions p1, . . . ,pt

– iwidth(pi) = 1 or 2 in the branching sequence for i < t

• when Mi’s are big enough, RSRef solves in at most t or 2t nodes,

respectively

Krishnamoorthy: Cascade Knapsacks 20

Department of Mathematics

Summary

• CKPs are classes of t + 1-level decomposable knapsacks

– which are hard for ordinary B&B

– have a sequence of “good” branching directions p1, . . . ,pt

– iwidth(pi) = 1 or 2 in the branching sequence for i < t

• when Mi’s are big enough, RSRef solves in at most t or 2t nodes,

respectively

• both width and iwidth can be poor indicators of “good” branching

directions

Krishnamoorthy: Cascade Knapsacks 20

Department of Mathematics

Slides

Slide 1 Slide 2 Slide 3 Slide 4

Slide 5 Slide 6 Slide 7 Slide 8

Slide 9 Slide 10 Slide 11 Slide 12

Slide 13 Slide 14 Slide 15 Slide 16

Slide 17 Slide 18 Slide 19 Slide 20

Krishnamoorthy: Cascade Knapsacks 21

