

Cascade Knapsack Problems

Bala Krishnamoorthy
Washington State University

joint work with Gábor Pataki, UNC Chapel Hill

MIP 2008

August 04, 2008

worst case behavior of IP algorithms

- worst case behavior of IP algorithms
- feasibility problems;

- worst case behavior of IP algorithms
- feasibility problems; integer infeasible

- worst case behavior of IP algorithms
- feasibility problems; integer infeasible
- hard for branch-and-bound (B&B), cutting planes

- worst case behavior of IP algorithms
- feasibility problems; integer infeasible
- hard for branch-and-bound (B&B), cutting planes
- prove bounds on running time, # B&B nodes

- worst case behavior of IP algorithms
- feasibility problems; integer infeasible
- hard for branch-and-bound (B&B), cutting planes
- prove bounds on running time, # B&B nodes
- gain computational insights

• hard knapsack problems: $\{\beta_1 \leq ax \leq \beta_2 \mid 0 \leq x \leq u, x \in \mathbb{Z}^n\}$

- hard knapsack problems: $\{\beta_1 \leq ax \leq \beta_2 \mid \mathbf{0} \leq x \leq u, x \in \mathbb{Z}^n\}$
 - "simple" one constraint

- hard knapsack problems: $\{\beta_1 \leq ax \leq \beta_2 \mid \mathbf{0} \leq x \leq u, x \in \mathbb{Z}^n\}$
 - "simple" one constraint
 - provably hard for branch-and-bound,

- hard knapsack problems: $\{\beta_1 \leq ax \leq \beta_2 \mid 0 \leq x \leq u, x \in \mathbb{Z}^n\}$
 - "simple" one constraint
 - provably hard for branch-and-bound, cutting planes

- hard knapsack problems: $\{\beta_1 \leq ax \leq \beta_2 \mid 0 \leq x \leq u, x \in \mathbb{Z}^n\}$
 - "simple" one constraint
 - provably hard for branch-and-bound, cutting planes
 - can analyze mathematically

- hard knapsack problems: $\{\beta_1 \leq ax \leq \beta_2 \mid 0 \leq x \leq u, x \in \mathbb{Z}^n\}$
 - "simple" one constraint
 - provably hard for branch-and-bound, cutting planes
 - can analyze mathematically
- marketshare problems

- hard knapsack problems: $\{\beta_1 \leq ax \leq \beta_2 \mid 0 \leq x \leq u, x \in \mathbb{Z}^n\}$
 - "simple" one constraint
 - provably hard for branch-and-bound, cutting planes
 - can analyze mathematically
- marketshare problems
 - binary IPs with a few dense constraints

- hard knapsack problems: $\{\beta_1 \leq ax \leq \beta_2 \mid 0 \leq x \leq u, x \in \mathbb{Z}^n\}$
 - "simple" one constraint
 - provably hard for branch-and-bound, cutting planes
 - can analyze mathematically
- marketshare problems
 - binary IPs with a few dense constraints
 - computationally hard

• with
$$\beta_1=\beta_2=\beta=\left|\sum_j a_j/2\right|$$
, $m{u}=m{e}$, i.e., $x_j\in\{0,1\}$

- with $\beta_1=\beta_2=\beta=\left|\sum_j a_j/2\right|$, ${\boldsymbol u}={\boldsymbol e}$, i.e., $x_j\in\{0,1\}$
 - Jeroslow (74): $a_j = 2$, n is odd $(2x_1 + \cdots + 2x_n = n)$

- with $\beta_1=\beta_2=\beta=\left\lfloor\sum_j a_j/2\right\rfloor$, $oldsymbol{u}=oldsymbol{e}$, i.e., $x_j\in\{0,1\}$
 - Jeroslow (74): $a_j = 2$, n is odd $(2x_1 + \cdots + 2x_n = n)$
 - Avis (Chvátal, 80): $a_j = n(n+1) + j$

- with $\beta_1=\beta_2=\beta=\left\lfloor\sum_j a_j/2\right\rfloor$, $oldsymbol{u}=oldsymbol{e}$, i.e., $x_j\in\{0,1\}$
 - Jeroslow (74): $a_j = 2$, n is odd $(2x_1 + \cdots + 2x_n = n)$
 - Avis (Chvátal, 80): $a_j = n(n+1) + j$
 - Todd (Chvátal, 80): $a_j = 2^{n+\ell+1} + 2^{\ell+j} + 1$ for $\ell = \lfloor \log 2n \rfloor$

- ullet with $eta_1=eta_2=eta=\left\lfloor\sum_j a_j/2\right\rfloor$, $oldsymbol{u}=oldsymbol{e}$, i.e., $x_j\in\{0,1\}$
 - Jeroslow (74): $a_j = 2$, n is odd $(2x_1 + \cdots + 2x_n = n)$
 - Avis (Chvátal, 80): $a_j = n(n+1) + j$
 - Todd (Chvátal, 80): $a_j = 2^{n+\ell+1} + 2^{\ell+j} + 1$ for $\ell = \lfloor \log 2n \rfloor$
 - \blacktriangleright (ordinary) B&B takes at least $2^{(n-1)/2}$ nodes

- with $\beta_1=\beta_2=\beta=\left\lfloor\sum_j a_j/2\right\rfloor$, $oldsymbol{u}=oldsymbol{e}$, i.e., $x_j\in\{0,1\}$
 - Jeroslow (74): $a_j = 2$, n is odd $(2x_1 + \cdots + 2x_n = n)$
 - Avis (Chvátal, 80): $a_j = n(n+1) + j$
 - Todd (Chvátal, 80): $a_j = 2^{n+\ell+1} + 2^{\ell+j} + 1$ for $\ell = \lfloor \log 2n \rfloor$
 - \blacktriangleright (ordinary) B&B takes at least $2^{(n-1)/2}$ nodes
 - preprocessing, or single knapsack cover inequalities kill them

- ullet with $eta_1=eta_2=eta=\left\lfloor\sum_j a_j/2\right\rfloor$, $oldsymbol{u}=oldsymbol{e}$, i.e., $x_j\in\{0,1\}$
 - Jeroslow (74): $a_j = 2$, n is odd $(2x_1 + \cdots + 2x_n = n)$
 - Avis (Chvátal, 80): $a_j = n(n+1) + j$
 - Todd (Chvátal, 80): $a_j = 2^{n+\ell+1} + 2^{\ell+j} + 1$ for $\ell = \lfloor \log 2n \rfloor$
 - \blacktriangleright (ordinary) B&B takes at least $2^{(n-1)/2}$ nodes
 - preprocessing, or single knapsack cover inequalities kill them
- u = e, i.e., $x_j \in \{0, 1\}$

- with $\beta_1=\beta_2=\beta=\left\lfloor\sum_j a_j/2\right\rfloor$, $oldsymbol{u}=oldsymbol{e}$, i.e., $x_j\in\{0,1\}$
 - Jeroslow (74): $a_j = 2$, n is odd $(2x_1 + \cdots + 2x_n = n)$
 - Avis (Chvátal, 80): $a_j = n(n+1) + j$
 - Todd (Chvátal, 80): $a_j = 2^{n+\ell+1} + 2^{\ell+j} + 1$ for $\ell = \lfloor \log 2n \rfloor$
 - \blacktriangleright (ordinary) B&B takes at least $2^{(n-1)/2}$ nodes
 - preprocessing, or single knapsack cover inequalities kill them
- u = e, i.e., $x_i \in \{0, 1\}$
 - Chvátal (80): $a_j = U[1, 10^{n/2}]$; Hunsaker and Tovey (04)

- with $\beta_1=\beta_2=\beta=\left\lfloor\sum_j a_j/2\right\rfloor$, $oldsymbol{u}=oldsymbol{e}$, i.e., $x_j\in\{0,1\}$
 - Jeroslow (74): $a_j = 2$, n is odd $(2x_1 + \cdots + 2x_n = n)$
 - Avis (Chvátal, 80): $a_j = n(n+1) + j$
 - Todd (Chvátal, 80): $a_j = 2^{n+\ell+1} + 2^{\ell+j} + 1$ for $\ell = \lfloor \log 2n \rfloor$
 - \blacktriangleright (ordinary) B&B takes at least $2^{(n-1)/2}$ nodes
 - preprocessing, or single knapsack cover inequalities kill them
- u = e, i.e., $x_i \in \{0, 1\}$
 - Chvátal (80): $a_j = U[1, 10^{n/2}]$; Hunsaker and Tovey (04)
 - Gu, Nemhauser, Savelsberg (98,99): $a_i \approx 2^{n/20}$

- with $\beta_1=\beta_2=\beta=\left\lfloor\sum_j a_j/2\right\rfloor$, $oldsymbol{u}=oldsymbol{e}$, i.e., $x_j\in\{0,1\}$
 - Jeroslow (74): $a_j = 2$, n is odd $(2x_1 + \cdots + 2x_n = n)$
 - Avis (Chvátal, 80): $a_j = n(n+1) + j$
 - Todd (Chvátal, 80): $a_j = 2^{n+\ell+1} + 2^{\ell+j} + 1$ for $\ell = \lfloor \log 2n \rfloor$
 - \blacktriangleright (ordinary) B&B takes at least $2^{(n-1)/2}$ nodes
 - preprocessing, or single knapsack cover inequalities kill them
- u = e, i.e., $x_j \in \{0, 1\}$
 - Chvátal (80): $a_j = U[1, 10^{n/2}]$; Hunsaker and Tovey (04)
 - Gu, Nemhauser, Savelsberg (98,99): $a_i \approx 2^{n/20}$
 - ▶ B&C using lifted cover inequalities takes at least $2^{n/30}$ nodes

• $\beta_2 \approx \operatorname{Frob}(\boldsymbol{a}), \ u_j = +\infty$, i.e., x_j are unbounded

- $\beta_2 \approx \operatorname{Frob}(\boldsymbol{a}), \ u_j = +\infty$, i.e., x_j are unbounded
 - Cornuejols et al. (97)

- $\beta_2 \approx \operatorname{Frob}(\boldsymbol{a}), \ u_j = +\infty$, i.e., x_j are unbounded
 - Cornuejols et al. (97) ▶ generating sets

- $\beta_2 \approx \operatorname{Frob}(\boldsymbol{a}), \ u_j = +\infty$, i.e., x_j are unbounded
 - Cornuejols et al. (97) ► generating sets
 - Aardal and Lenstra (04)

- $\beta_2 \approx \operatorname{Frob}(\boldsymbol{a}), \ u_j = +\infty$, i.e., x_j are unbounded
 - Cornuejols et al. (97) ▶ generating sets
 - Aardal and Lenstra (04) ► Aardal et al. (00) reformulation

- $\beta_2 \approx \operatorname{Frob}(\boldsymbol{a}), \ u_j = +\infty$, i.e., x_j are unbounded
 - Cornuejols et al. (97) ▶ generating sets
 - Aardal and Lenstra (04) ► Aardal et al. (00) reformulation
 - equality version of Cornujols et al. knapsack

- $\beta_2 \approx \operatorname{Frob}(\boldsymbol{a}), \ u_j = +\infty$, i.e., x_j are unbounded
 - Cornuejols et al. (97) ► generating sets
 - Aardal and Lenstra (04) ► Aardal et al. (00) reformulation
 - equality version of Cornujols et al. knapsack
 - $ightharpoonup \operatorname{Frob}(\boldsymbol{a})$ is the *largest* rhs, hence gives "hardest" instance

More Hard Knapsacks

- $\beta_2 \approx \operatorname{Frob}(\boldsymbol{a}), \ u_j = +\infty$, i.e., x_j are unbounded
 - Cornuejols et al. (97) ▶ generating sets
 - Aardal and Lenstra (04) ► Aardal et al. (00) reformulation
 - equality version of Cornujols et al. knapsack
 - $ightharpoonup \operatorname{Frob}(\boldsymbol{a})$ is the *largest* rhs, hence gives "hardest" instance
 - ▶ for a = pM + r, lower bound for Frob(a) quadratic in M

More Hard Knapsacks

- $\beta_2 \approx \operatorname{Frob}(\boldsymbol{a}), \ u_j = +\infty$, i.e., x_j are unbounded
 - Cornuejols et al. (97) ▶ generating sets
 - Aardal and Lenstra (04) ► Aardal et al. (00) reformulation
 - equality version of Cornujols et al. knapsack
 - $ightharpoonup \operatorname{Frob}(\boldsymbol{a})$ is the *largest* rhs, hence gives "hardest" instance
 - ▶ for a = pM + r, lower bound for Frob(a) quadratic in M
 - ► large rhs implies hard for B&B

More Hard Knapsacks

- $\beta_2 \approx \operatorname{Frob}(\boldsymbol{a}), \ u_j = +\infty$, i.e., x_j are unbounded
 - Cornuejols et al. (97) ▶ generating sets
 - Aardal and Lenstra (04) ► Aardal et al. (00) reformulation
 - equality version of Cornujols et al. knapsack
 - $ightharpoonup \operatorname{Frob}(\boldsymbol{a})$ is the *largest* rhs, hence gives "hardest" instance
 - ▶ for a = pM + r, lower bound for Frob(a) quadratic in M
 - ► *large* rhs implies hard for B&B
- We study a very general class of knapsacks

• $\{\beta_1 \leq \boldsymbol{a}\boldsymbol{x} \leq \beta_2 \mid \boldsymbol{0} \leq \boldsymbol{x} \leq \boldsymbol{u}, \, \boldsymbol{x} \in \mathbb{Z}^n \}$ with

• $\{\beta_1 \leq \boldsymbol{a}\boldsymbol{x} \leq \beta_2 \,|\, \boldsymbol{0} \leq \boldsymbol{x} \leq \boldsymbol{u},\, \boldsymbol{x} \in \mathbb{Z}^n \}$ with

$$a = p_1 M_1 + \dots + p_t M_t + r; \ p_i \in \mathbb{Z}_{>0}^n, M_i \in \mathbb{Z}_{>0}; \ M_i > M_{i+1}$$

• $\{\beta_1 \leq \boldsymbol{a}\boldsymbol{x} \leq \beta_2 \,|\, \boldsymbol{0} \leq \boldsymbol{x} \leq \boldsymbol{u},\, \boldsymbol{x} \in \mathbb{Z}^n \}$ with

$$a = p_1 M_1 + \dots + p_t M_t + r; \ p_i \in \mathbb{Z}_{>0}^n, M_i \in \mathbb{Z}_{>0}; \ M_i > M_{i+1}$$

• denoted as t + 1-DKP

• $\{\beta_1 \leq \boldsymbol{a}\boldsymbol{x} \leq \beta_2 \,|\, \boldsymbol{0} \leq \boldsymbol{x} \leq \boldsymbol{u},\, \boldsymbol{x} \in \mathbb{Z}^n \}$ with

$$a = p_1 M_1 + \dots + p_t M_t + r; \ p_i \in \mathbb{Z}_{>0}^n, M_i \in \mathbb{Z}_{>0}; \ M_i > M_{i+1}$$

- denoted as t + 1-DKP
- for t=1, we write $p_1=p$, $M_1=M$, and call it simply DKP

• $\{\beta_1 \leq \boldsymbol{a}\boldsymbol{x} \leq \beta_2 \,|\, \boldsymbol{0} \leq \boldsymbol{x} \leq \boldsymbol{u},\, \boldsymbol{x} \in \mathbb{Z}^n\}$ with

$$a = p_1 M_1 + \dots + p_t M_t + r; \ p_i \in \mathbb{Z}_{>0}^n, M_i \in \mathbb{Z}_{>0}; \ M_i > M_{i+1}$$

- denoted as t + 1-DKP
- for t=1, we write $p_1=p,\ M_1=M$, and call it simply DKP
- Krishnamoorthy and Pataki (06) Column basis reduction and decomposable knapsack problems (preprint available in Optimization Online)

• p = e, M = 2, r = 0, u = e gives Jeroslow knapsack $2x_1 + \cdots + 2x_n = n$

- p = e, M = 2, r = 0, u = e gives Jeroslow knapsack $2x_1 + \cdots + 2x_n = n$
- ullet other special cases: with u=e

$$- p = e, M = n(n+1), r = (1, ..., n)$$
: Avis knapsack

- p = e, M = 2, r = 0, u = e gives Jeroslow knapsack $2x_1 + \cdots + 2x_n = n$
- ullet other special cases: with u=e
 - p = e, M = n(n+1), r = (1, ..., n): Avis knapsack
 - $p = e, M = 2^{n+\ell+1}, r_j = 2^{\ell+j} + 1$: Todd knapsack

- p = e, M = 2, r = 0, u = e gives Jeroslow knapsack $2x_1 + \cdots + 2x_n = n$
- ullet other special cases: with u=e
 - p = e, M = n(n+1), r = (1, ..., n): Avis knapsack
 - $p = e, M = 2^{n+\ell+1}, r_j = 2^{\ell+j} + 1$: Todd knapsack
 - modification of above (Todd) settings: Gu et al. knapsacks

- p = e, M = 2, r = 0, u = e gives Jeroslow knapsack $2x_1 + \cdots + 2x_n = n$
- ullet other special cases: with u=e
 - p = e, M = n(n+1), r = (1, ..., n): Avis knapsack
 - $p = e, M = 2^{n+\ell+1}, r_j = 2^{\ell+j} + 1$: Todd knapsack
 - modification of above (Todd) settings: Gu et al. knapsacks
- ullet with $u=+\infty$

- p = e, M = 2, r = 0, u = e gives Jeroslow knapsack $2x_1 + \cdots + 2x_n = n$
- ullet other special cases: with u=e
 - p = e, M = n(n + 1), r = (1, ..., n): Avis knapsack
 - $p = e, M = 2^{n+\ell+1}, r_j = 2^{\ell+j} + 1$: Todd knapsack
 - modification of above (Todd) settings: Gu et al. knapsacks
- ullet with $u=+\infty$
 - -p > 0: Cornuejols et al. knapsacks

- p = e, M = 2, r = 0, u = e gives Jeroslow knapsack $2x_1 + \cdots + 2x_n = n$
- ullet other special cases: with u=e
 - p = e, M = n(n+1), r = (1, ..., n): Avis knapsack
 - $p = e, M = 2^{n+\ell+1}, r_j = 2^{\ell+j} + 1$: Todd knapsack
 - modification of above (Todd) settings: Gu et al. knapsacks
- ullet with $u=+\infty$
 - -p > 0: Cornuejols et al. knapsacks
 - same as above, but equality: Aardal & Lenstra knapsack

• infeasibility proven by split disjunction $px \le k \lor px \ge k+1$, for some integer k

- ullet infeasibility proven by split disjunction $m{px} \leq k \lor m{px} \geq k+1$, for some integer k
- ullet easy if branching on hyperplane px

- infeasibility proven by split disjunction $px \le k \lor px \ge k+1$, for some integer k
- ullet easy if branching on hyperplane px but hard for B&B

- infeasibility proven by split disjunction $px \le k \lor px \ge k+1$, for some integer k
- easy if branching on hyperplane px but hard for B&B Theorem: If $u_i = +\infty$, then B&B takes at least

- infeasibility proven by split disjunction $px \le k \lor px \ge k+1$, for some integer k
- easy if branching on hyperplane px but hard for B&B Theorem: If $u_j = +\infty$, then B&B takes at least

 \blacktriangleright easiness for hyperplane branching \Rightarrow hardness for ordinary B&B

- infeasibility proven by split disjunction $px \le k \lor px \ge k+1$, for some integer k
- easy if branching on hyperplane px but hard for B&B Theorem: If $u_j = +\infty$, then B&B takes at least

$$\binom{\lfloor k/\parallel \boldsymbol{p}\parallel_{\infty}\rfloor+n-1}{n-1} \quad \text{nodes}$$

- \blacktriangleright easiness for hyperplane branching \Rightarrow hardness for ordinary B&B
- Krishnamoorthy (07): generic lower bound for the # B&B nodes for infeasible integer knapsacks;

- infeasibility proven by split disjunction ${m px} \le k \lor {m px} \ge k+1$, for some integer k
- easy if branching on hyperplane px but hard for B&B Theorem: If $u_j = +\infty$, then B&B takes at least

$$\binom{\lfloor k/\parallel \boldsymbol{p}\parallel_{\infty}\rfloor+n-1}{n-1} \quad \text{nodes}$$

- \blacktriangleright easiness for hyperplane branching \Rightarrow hardness for ordinary B&B
- Krishnamoorthy (07): generic lower bound for the # B&B nodes for infeasible integer knapsacks; M^{n-1} for DKPs

- infeasibility proven by split disjunction $px \le k \lor px \ge k+1$, for some integer k
- easy if branching on hyperplane px but hard for B&B Theorem: If $u_j = +\infty$, then B&B takes at least

$$\binom{\lfloor k/\|\boldsymbol{p}\|_{\infty}\rfloor + n - 1}{n - 1} \quad \text{nodes}$$

- ightharpoonup easiness for hyperplane branching \Rightarrow hardness for ordinary B&B
- Krishnamoorthy (07): generic lower bound for the # B&B nodes for infeasible integer knapsacks; M^{n-1} for DKPs
- Recipe for generating DKPs (for t = 1):

- infeasibility proven by split disjunction $px \le k \lor px \ge k+1$, for some integer k
- easy if branching on hyperplane px but hard for B&B Theorem: If $u_j = +\infty$, then B&B takes at least

$$\binom{\lfloor k/\|\boldsymbol{p}\|_{\infty}\rfloor + n - 1}{n - 1} \quad \text{nodes}$$

- ightharpoonup easiness for hyperplane branching \Rightarrow hardness for ordinary B&B
- Krishnamoorthy (07): generic lower bound for the # B&B nodes for infeasible integer knapsacks; M^{n-1} for DKPs
- Recipe for generating DKPs (for t = 1): INPUT: p, r, u;

- infeasibility proven by split disjunction $px \leq k \vee px \geq k+1$, for some integer k
- easy if branching on hyperplane px but hard for B&B Theorem: If $u_j = +\infty$, then B&B takes at least

$$\binom{\lfloor k/\parallel \boldsymbol{p}\parallel_{\infty}\rfloor+n-1}{n-1} \quad \text{nodes}$$

- ightharpoonup easiness for hyperplane branching \Rightarrow hardness for ordinary B&B
- Krishnamoorthy (07): generic lower bound for the # B&B nodes for infeasible integer knapsacks; M^{n-1} for DKPs
- Recipe for generating DKPs (for t=1): INPUT: $\boldsymbol{p}, \boldsymbol{r}, \boldsymbol{u}$; OUTPUT: M, β_1, β_2 s.t. infeasibility of DKP is proven by branching on $\boldsymbol{p}\boldsymbol{x}$

reformulation of general IPs

$$\{ \boldsymbol{b}' \leq A\boldsymbol{x} \leq \boldsymbol{b}, \ \boldsymbol{x} \in \mathbb{Z}^n \}$$

reformulation of general IPs

$$\{ \boldsymbol{b}' \leq A\boldsymbol{x} \leq \boldsymbol{b}, \ \boldsymbol{x} \in \mathbb{Z}^n \} \rightarrow \{ \boldsymbol{b}' \leq (AU)\boldsymbol{y} \leq \boldsymbol{b}, \ \boldsymbol{y} \in \mathbb{Z}^n \}$$

reformulation of general IPs

$$\{ \boldsymbol{b}' \leq A\boldsymbol{x} \leq \boldsymbol{b}, \ \boldsymbol{x} \in \mathbb{Z}^n \} \rightarrow \{ \boldsymbol{b}' \leq (AU)\boldsymbol{y} \leq \boldsymbol{b}, \ \boldsymbol{y} \in \mathbb{Z}^n \}$$

reformulation of general IPs

$$\{ \boldsymbol{b}' \leq A\boldsymbol{x} \leq \boldsymbol{b}, \ \boldsymbol{x} \in \mathbb{Z}^n \} \rightarrow \{ \boldsymbol{b}' \leq (AU)\boldsymbol{y} \leq \boldsymbol{b}, \ \boldsymbol{y} \in \mathbb{Z}^n \}$$

U is unimodular, found by basis reduction

- simplifies and generalizes the Aardal et al. reformulation

reformulation of general IPs

$$\{ \boldsymbol{b}' \leq A\boldsymbol{x} \leq \boldsymbol{b}, \ \boldsymbol{x} \in \mathbb{Z}^n \} \rightarrow \{ \boldsymbol{b}' \leq (AU)\boldsymbol{y} \leq \boldsymbol{b}, \ \boldsymbol{y} \in \mathbb{Z}^n \}$$

- simplifies and generalizes the Aardal et al. reformulation
- dimension remains the same

reformulation of general IPs

$$\{ \boldsymbol{b}' \leq A\boldsymbol{x} \leq \boldsymbol{b}, \ \boldsymbol{x} \in \mathbb{Z}^n \} \rightarrow \{ \boldsymbol{b}' \leq (AU)\boldsymbol{y} \leq \boldsymbol{b}, \ \boldsymbol{y} \in \mathbb{Z}^n \}$$

- simplifies and generalizes the Aardal et al. reformulation
- dimension remains the same
- DKPs become easy after RSRef is applied

reformulation of general IPs

$$\{ \boldsymbol{b}' \leq A\boldsymbol{x} \leq \boldsymbol{b}, \ \boldsymbol{x} \in \mathbb{Z}^n \} \rightarrow \{ \boldsymbol{b}' \leq (AU)\boldsymbol{y} \leq \boldsymbol{b}, \ \boldsymbol{y} \in \mathbb{Z}^n \}$$

- simplifies and generalizes the Aardal et al. reformulation
- dimension remains the same
- DKPs become easy after RSRef is applied
- ullet branching on $px\iff$ branching on "last few" y_j 's
 - e.g., $n = 50, x_j \in \{0, 1\}, p_j \in [1, 10], r_j \in [-10, 10], M = 10^4$: CPLEX 9.0 takes ≥ 6.7 million B&B nodes

Rangespace Reformulation (RSRef)

reformulation of general IPs

$$\{ \boldsymbol{b}' \leq A\boldsymbol{x} \leq \boldsymbol{b}, \ \boldsymbol{x} \in \mathbb{Z}^n \} \rightarrow \{ \boldsymbol{b}' \leq (AU)\boldsymbol{y} \leq \boldsymbol{b}, \ \boldsymbol{y} \in \mathbb{Z}^n \}$$

U is unimodular, found by basis reduction

- simplifies and generalizes the Aardal et al. reformulation
- dimension remains the same
- DKPs become easy after RSRef is applied
- ullet branching on $px\iff$ branching on "last few" y_j 's
 - e.g., $n = 50, x_j \in \{0, 1\}, p_j \in [1, 10], r_j \in [-10, 10], M = 10^4$: CPLEX 9.0 takes ≥ 6.7 million B&B nodes
 - RSRef solves in root node

Let
$$p = (1, 1), M = 20, r = (1, -1), u = (6, 6)$$

Let
$$p = (1, 1), M = 20, r = (1, -1), u = (6, 6)$$

$$106 \le 21x_1 + 19x_2 \le 113$$

 $0 \le x_1, x_2 \le 6$
 $x_1, x_2 \in \mathbb{Z}$

Let
$$p = (1, 1), M = 20, r = (1, -1), u = (6, 6)$$

$$106 \le 21x_1 + 19x_2 \le 113$$

 $0 \le x_1, x_2 \le 6$
 $x_1, x_2 \in \mathbb{Z}$

Let
$$p = (1, 1), M = 20, r = (1, -1), u = (6, 6)$$

Let
$$p = (1, 1), M = 20, r = (1, -1), u = (6, 6)$$

$$106 \leq 21x_1 + 19x_2 \leq 113$$

$$0 \leq x_1, x_2 \leq 6 \longrightarrow$$

$$x_1, x_2 \in \mathbb{Z}$$

$$106 \le -2y_1 + 7y_2 \le 113
0 \le -y_1 - 6y_2 \le 6
0 \le y_1 + 7y_2 \le 6
y_1, y_2 \in \mathbb{Z}$$

DKPs get harder as t grows

DKPs get harder as t grows

Two infeasible knapsack problems: Can you tell which one is harder?

$$1473x_1 + 1524x_2 + 1569x_3 + 1570x_4 + 1575x_5 + 1624x_6 + 1625x_7$$

$$+2160x_8 + 2206x_9 + 2207x_{10} + 2211x_{11} + 2211x_{12} + 2257x_{13}$$

$$+2260x_{14} + 2305x_{15} + 2843x_{16} + 2943x_{17} + 2947x_{18} + 2991x_{19}$$

$$+2993x_{20} + 2997x_{21} + 3528x_{22} + 3577x_{23} + 3631x_{24} + 3677x_{25}$$

$$= 28980, x_i \in \{0, 1\}$$

$$1314x_1 + 1315x_2 + 1317x_3 + 1318x_4 + 1971x_5 + 1972x_6 + 1973x_7$$

$$+1976x_8 + 1977x_9 + 1977x_{10} + 2629x_{11} + 2630x_{12} + 2631x_{13}$$

$$+2631x_{14} + 2633x_{15} + 2634x_{16} + 2635x_{17} + 2635x_{18} + 3287x_{19}$$

$$+3287x_{20} + 3287x_{21} + 3289x_{22} + 3292x_{23} + 3293x_{24} + 3293x_{25}$$

$$= 28981, x_i \in \{0, 1\}$$

using CPLEX 9.0 to prove infeasibility

using CPLEX 9.0 to prove infeasibility

ullet second knapsack has t=1, and takes pprox 22,000 nodes

using CPLEX 9.0 to prove infeasibility

- second knapsack has t=1, and takes $\approx 22,000$ nodes
- first knapsack has t=2, and takes ≈ 3.6 million nodes

• Can we create and **analyze** classes of t+1-DKPs for $t \geq 2$?

- Can we create and **analyze** classes of t+1-DKPs for $t \geq 2$?
- Do they have more interesting structure than when t = 1?

- Can we create and **analyze** classes of t+1-DKPs for $t \geq 2$?
- Do they have more interesting structure than when t = 1?
- "thin" directions and integer width?

- Can we create and **analyze** classes of t + 1-DKPs for $t \ge 2$?
- Do they have more interesting structure than when t=1?
- "thin" directions and integer width?
- width and integer width:

- Can we create and **analyze** classes of t+1-DKPs for $t \geq 2$?
- Do they have more interesting structure than when t=1?
- "thin" directions and integer width?
- ullet width and integer width: given polyhedron ${\mathcal K}$, direction ${m p}$

- Can we create and **analyze** classes of t + 1-DKPs for $t \ge 2$?
- Do they have more interesting structure than when t = 1?
- "thin" directions and integer width?
- ullet width and integer width: given polyhedron ${\mathcal K}$, direction ${m p}$

$$\operatorname{width}(\boldsymbol{p}, \mathcal{K}) = \max\{\boldsymbol{p}\boldsymbol{x} \,|\, \boldsymbol{x} \in \mathcal{K}\} - \min\{\boldsymbol{p}\boldsymbol{x} \,|\, \boldsymbol{x} \in \mathcal{K}\}$$

- Can we create and **analyze** classes of t + 1-DKPs for $t \ge 2$?
- Do they have more interesting structure than when t = 1?
- "thin" directions and integer width?
- ullet width and integer width: given polyhedron ${\mathcal K}$, direction ${m p}$

```
 \begin{aligned} \operatorname{width}(\boldsymbol{p}, \mathcal{K}) &= \max\{\boldsymbol{p}\boldsymbol{x} \,|\, \boldsymbol{x} \in \mathcal{K}\} - \min\{\boldsymbol{p}\boldsymbol{x} \,|\, \boldsymbol{x} \in \mathcal{K}\} \\ \operatorname{iwidth}(\boldsymbol{p}, \mathcal{K}) &= \lfloor \max\{\boldsymbol{p}\boldsymbol{x} \,|\, \boldsymbol{x} \in \mathcal{K}\} \rfloor - \lceil \min\{\boldsymbol{p}\boldsymbol{x} \,|\, \boldsymbol{x} \in \mathcal{K}\} \rceil + 1 \end{aligned}
```


- Can we create and **analyze** classes of t + 1-DKPs for $t \ge 2$?
- Do they have more interesting structure than when t = 1?
- "thin" directions and integer width?
- ullet width and integer width: given polyhedron ${\mathcal K}$, direction ${m p}$

 $\operatorname{iwidth}(oldsymbol{p})$: # branches created by branching on the hyperplane $oldsymbol{px}$

• instance of 3-DKP $(t = 2, \ a = p_1M_1 + p_2M_2 + r)$

- ullet instance of 3-DKP $(t=2,\ m{a}=m{p}_1M_1+m{p}_2M_2+m{r})$ with $m{u}=m{e}$ $(x_j\in\{0,1\})$ such that
 - it is integer infeasible by choice of β_1, β_2 ;

- ullet instance of 3-DKP $(t=2,\ m{a}=m{p}_1M_1+m{p}_2M_2+m{r})$ with $m{u}=m{e}$ $(x_j\in\{0,1\})$ such that
 - it is integer infeasible by choice of β_1, β_2 ;
 - width(e_i , CKP) = 1 0, iwidth(e_i , CKP) = 2 for all j;

- ullet instance of 3-DKP $(t=2,\ m{a}=m{p}_1M_1+m{p}_2M_2+m{r})$ with $m{u}=m{e}$ $(x_j\in\{0,1\})$ such that
 - it is integer infeasible by choice of β_1, β_2 ;
 - width(e_j , CKP) = 1 0, iwidth(e_j , CKP) = 2 for all j;
 - $-1 < \operatorname{width}(\boldsymbol{p}_1,\mathsf{CKP}) < 2 \text{ and } \operatorname{iwidth}(\boldsymbol{p}_1,\mathsf{CKP}) = 1$,

- ullet instance of 3-DKP $(t=2,\ m{a}=m{p}_1M_1+m{p}_2M_2+m{r})$ with $m{u}=m{e}$ $(x_j\in\{0,1\})$ such that
 - it is integer infeasible by choice of β_1, β_2 ;
 - width $(e_j, CKP) = 1 0$, iwidth $(e_j, CKP) = 2$ for all j;
 - $1 < \operatorname{width}(\boldsymbol{p}_1, \mathsf{CKP}) < 2$ and $\operatorname{iwidth}(\boldsymbol{p}_1, \mathsf{CKP}) = 1$, so branching on $\boldsymbol{p}_1 \boldsymbol{x}$ amounts to just adding $\boldsymbol{p}_1 \boldsymbol{x} = k_1$ for some integer k_1 ;

- ullet instance of 3-DKP $(t=2,\ m{a}=m{p}_1M_1+m{p}_2M_2+m{r})$ with $m{u}=m{e}$ $(x_j\in\{0,1\})$ such that
 - it is integer infeasible by choice of β_1, β_2 ;
 - width $(e_j, CKP) = 1 0$, iwidth $(e_j, CKP) = 2$ for all j;
 - $1 < \operatorname{width}(\boldsymbol{p}_1, \mathsf{CKP}) < 2$ and $\operatorname{iwidth}(\boldsymbol{p}_1, \mathsf{CKP}) = 1$, so branching on $\boldsymbol{p}_1 \boldsymbol{x}$ amounts to just adding $\boldsymbol{p}_1 \boldsymbol{x} = k_1$ for some integer k_1 ;
 - width $(\boldsymbol{p}_2,\mathsf{CKP}\wedge\boldsymbol{p}_1\boldsymbol{x}=k_1)<1$ and iwidth $(\boldsymbol{p}_2,\mathsf{CKP}\wedge\boldsymbol{p}_1\boldsymbol{x}=k_1)=0.$

- ullet instance of 3-DKP $(t=2,\ m{a}=m{p}_1M_1+m{p}_2M_2+m{r})$ with $m{u}=m{e}$ $(x_j\in\{0,1\})$ such that
 - it is integer infeasible by choice of β_1, β_2 ;
 - width $(e_j, CKP) = 1 0$, iwidth $(e_j, CKP) = 2$ for all j;
 - $1 < \operatorname{width}(\boldsymbol{p}_1, \mathsf{CKP}) < 2$ and $\operatorname{iwidth}(\boldsymbol{p}_1, \mathsf{CKP}) = 1$, so branching on $\boldsymbol{p}_1 \boldsymbol{x}$ amounts to just adding $\boldsymbol{p}_1 \boldsymbol{x} = k_1$ for some integer k_1 ;
 - width $(\boldsymbol{p}_2,\mathsf{CKP}\wedge\boldsymbol{p}_1\boldsymbol{x}=k_1)<1$ and $\mathrm{iwidth}(\boldsymbol{p}_2,\mathsf{CKP}\wedge\boldsymbol{p}_1\boldsymbol{x}=k_1)=0.$
- ullet branching on $oldsymbol{p}_1oldsymbol{x}$ and then on $oldsymbol{p}_2oldsymbol{x}$ kills the problem

- ullet instance of 3-DKP $(t=2,\ m{a}=m{p}_1M_1+m{p}_2M_2+m{r})$ with $m{u}=m{e}$ $(x_j\in\{0,1\})$ such that
 - it is integer infeasible by choice of β_1, β_2 ;
 - width $(e_j, CKP) = 1 0$, iwidth $(e_j, CKP) = 2$ for all j;
 - $1 < \operatorname{width}(\boldsymbol{p}_1, \mathsf{CKP}) < 2$ and $\operatorname{iwidth}(\boldsymbol{p}_1, \mathsf{CKP}) = 1$, so branching on $\boldsymbol{p}_1 \boldsymbol{x}$ amounts to just adding $\boldsymbol{p}_1 \boldsymbol{x} = k_1$ for some integer k_1 ;
 - width $(\boldsymbol{p}_2,\mathsf{CKP}\wedge\boldsymbol{p}_1\boldsymbol{x}=k_1)<1$ and $\mathrm{iwidth}(\boldsymbol{p}_2,\mathsf{CKP}\wedge\boldsymbol{p}_1\boldsymbol{x}=k_1)=0.$
- ullet branching on $oldsymbol{p}_1oldsymbol{x}$ and then on $oldsymbol{p}_2oldsymbol{x}$ kills the problem
- ullet effect of branching on $oldsymbol{p}_1oldsymbol{x}$ cascades to the next level $oldsymbol{p}_2oldsymbol{x}$

$$4196 \leq 340 x_1 + 452 x_2 + 695 x_3 + 926 x_4 + 1050 x_5 + 1089 x_6 + 1190 x_7 + 1296 x_8 + 1342 x_9 \leq 4197 x_j \in \{0, 1\}$$

$$4196 \leq 340 x_1 + 452 x_2 + 695 x_3 + 926 x_4 + 1050 x_5 + 1089 x_6 + 1190 x_7 + 1296 x_8 + 1342 x_9 \leq 4197 x_j \in \{0, 1\}$$

• CPLEX 11.0 takes 64 B&B nodes

$$4196 \leq 340 x_1 + 452 x_2 + 695 x_3 + 926 x_4 + 1050 x_5 + 1089 x_6 + 1190 x_7 + 1296 x_8 + 1342 x_9 \leq 4197 x_j \in \{0, 1\}$$

- CPLEX 11.0 takes 64 B&B nodes
- width $(e_j, \mathsf{CKP}_1) = 1$, iwidth $(e_j, \mathsf{CKP}_1) = 2$ for all j

$$4196 \leq 340 x_1 + 452 x_2 + 695 x_3 + 926 x_4 + 1050 x_5 + 1089 x_6 + 1190 x_7 + 1296 x_8 + 1342 x_9 \leq 4197 x_j \in \{0, 1\}$$

- CPLEX 11.0 takes 64 B&B nodes
- width $(e_j, \mathsf{CKP}_1) = 1$, iwidth $(e_j, \mathsf{CKP}_1) = 2$ for all j
- $a = p_1 M_1 + p_2 M_2 + r$, with $M_1 = 127$, $M_2 = 12$,

$$4196 \leq 340 x_1 + 452 x_2 + 695 x_3 + 926 x_4 + 1050 x_5 + 1089 x_6 + 1190 x_7 + 1296 x_8 + 1342 x_9 \leq 4197 x_j \in \{0, 1\}$$

- CPLEX 11.0 takes 64 B&B nodes
- width $(e_j, \mathsf{CKP}_1) = 1$, iwidth $(e_j, \mathsf{CKP}_1) = 2$ for all j
- $a = p_1 M_1 + p_2 M_2 + r$, with $M_1 = 127$, $M_2 = 12$,

$$egin{array}{lll} m{p}_1 &=& (2, & 3, \, 5, \, 7, & 8, \, 8, & 9, \, 10, \, 10), \\ m{p}_2 &=& (7, & 6, \, 5, \, 3, & 3, \, 6, & 4, & 2, & 6), & {\sf and} \\ m{r} &=& (2, -1, \, 0, \, 1, -2, \, 1, \, -1, \, \, 2, & 0) \end{array}$$

• $\max\{p_1x | \mathsf{CKP}_1\} = 31.967, \quad \min\{p_1x | \mathsf{CKP}_1\} = 30.102;$

• $\max\{p_1x | \mathsf{CKP}_1\} = 31.967$, $\min\{p_1x | \mathsf{CKP}_1\} = 30.102$; width $(p_1, \mathsf{CKP}_1) = 1.865$,

• $\max\{p_1x \mid \mathsf{CKP}_1\} = 31.967$, $\min\{p_1x \mid \mathsf{CKP}_1\} = 30.102$; width $(p_1, \mathsf{CKP}_1) = 1.865$, iwidth $(p_1, \mathsf{CKP}_1) = 1$;

- $\max\{\boldsymbol{p}_1\boldsymbol{x} \mid \mathsf{CKP}_1\} = 31.967$, $\min\{\boldsymbol{p}_1\boldsymbol{x} \mid \mathsf{CKP}_1\} = 30.102$; width $(\boldsymbol{p}_1, \mathsf{CKP}_1) = 1.865$, iwidth $(\boldsymbol{p}_1, \mathsf{CKP}_1) = 1$;
- $p_1x = 31$ is the only branch;

- $\max\{p_1x \mid \mathsf{CKP}_1\} = 31.967$, $\min\{p_1x \mid \mathsf{CKP}_1\} = 30.102$; width $(p_1, \mathsf{CKP}_1) = 1.865$, iwidth $(p_1, \mathsf{CKP}_1) = 1$;
- $p_1x = 31$ is the only branch;
 - CPLEX 11.0 takes 37 B&B nodes for CKP₁ \wedge $p_1x = 31$

- $\max\{p_1x \mid \mathsf{CKP}_1\} = 31.967$, $\min\{p_1x \mid \mathsf{CKP}_1\} = 30.102$; width $(p_1, \mathsf{CKP}_1) = 1.865$, iwidth $(p_1, \mathsf{CKP}_1) = 1$;
- $p_1x = 31$ is the only branch;
 - CPLEX 11.0 takes 37 B&B nodes for CKP₁ \wedge $p_1x = 31$
 - $\max\{p_2x \mid \mathsf{CKP}_1 \land p_1x = 31\} = 21.989,$ $\min\{p_2x \mid \mathsf{CKP}_1 \land p_1x = 31\} = 21.083;$

- $\max\{p_1x \mid \mathsf{CKP}_1\} = 31.967$, $\min\{p_1x \mid \mathsf{CKP}_1\} = 30.102$; width $(p_1, \mathsf{CKP}_1) = 1.865$, iwidth $(p_1, \mathsf{CKP}_1) = 1$;
- $p_1x = 31$ is the only branch;
 - CPLEX 11.0 takes 37 B&B nodes for CKP₁ \wedge $p_1x = 31$
 - $\max\{p_2x \mid \mathsf{CKP}_1 \land p_1x = 31\} = 21.989,$ $\min\{p_2x \mid \mathsf{CKP}_1 \land p_1x = 31\} = 21.083;$ $\mathrm{width}(p_2, \mathsf{CKP}_1 \land p_1x = 31) = 0.906, \ \mathrm{iwidth} = 0$

- $\max\{\boldsymbol{p}_1\boldsymbol{x} \mid \mathsf{CKP}_1\} = 31.967$, $\min\{\boldsymbol{p}_1\boldsymbol{x} \mid \mathsf{CKP}_1\} = 30.102$; width $(\boldsymbol{p}_1, \mathsf{CKP}_1) = 1.865$, iwidth $(\boldsymbol{p}_1, \mathsf{CKP}_1) = 1$;
- $p_1x = 31$ is the only branch;
 - CPLEX 11.0 takes 37 B&B nodes for CKP₁ \wedge $p_1x = 31$
 - $\max\{p_2x \mid \mathsf{CKP}_1 \land p_1x = 31\} = 21.989,$ $\min\{p_2x \mid \mathsf{CKP}_1 \land p_1x = 31\} = 21.083;$ $\mathrm{width}(p_2, \mathsf{CKP}_1 \land p_1x = 31) = 0.906, \ \mathrm{iwidth} = 0$
- comparable DKP: $\boldsymbol{a} = \boldsymbol{p}_1 M + \boldsymbol{r}$, with M = 136; for $x_j \in \{0,1\}$

- $\max\{p_1x \mid \mathsf{CKP}_1\} = 31.967$, $\min\{p_1x \mid \mathsf{CKP}_1\} = 30.102$; width $(p_1, \mathsf{CKP}_1) = 1.865$, iwidth $(p_1, \mathsf{CKP}_1) = 1$;
- $p_1x = 31$ is the only branch;
 - CPLEX 11.0 takes 37 B&B nodes for CKP₁ \wedge $p_1x = 31$
 - $-\max\{\boldsymbol{p}_2\boldsymbol{x} \,|\, \mathsf{CKP}_1 \wedge \boldsymbol{p}_1\boldsymbol{x} = 31\} = 21.989,\\ \min\{\boldsymbol{p}_2\boldsymbol{x} \,|\, \mathsf{CKP}_1 \wedge \boldsymbol{p}_1\boldsymbol{x} = 31\} = 21.083;\\ \mathrm{width}(\boldsymbol{p}_2, \mathsf{CKP}_1 \wedge \boldsymbol{p}_1\boldsymbol{x} = 31) = 0.906, \text{ iwidth} = 0$
- comparable DKP: $\boldsymbol{a} = \boldsymbol{p}_1 M + \boldsymbol{r}$, with M = 136; for $x_j \in \{0, 1\}$

```
4223 \leq 274 x_1 + 407 x_2 + 680 x_3 + 953 x_4 + 1086 x_5 + 1089 x_6 + 1223 x_7 + 1362 x_8 + 1360 x_9 \leq 4224
```


- $\max\{p_1x \mid \mathsf{CKP}_1\} = 31.967$, $\min\{p_1x \mid \mathsf{CKP}_1\} = 30.102$; width $(p_1, \mathsf{CKP}_1) = 1.865$, iwidth $(p_1, \mathsf{CKP}_1) = 1$;
- $p_1x = 31$ is the only branch;
 - CPLEX 11.0 takes 37 B&B nodes for CKP₁ \wedge $p_1x = 31$
 - $-\max\{\boldsymbol{p}_2\boldsymbol{x} \,|\, \mathsf{CKP}_1 \wedge \boldsymbol{p}_1\boldsymbol{x} = 31\} = 21.989,\\ \min\{\boldsymbol{p}_2\boldsymbol{x} \,|\, \mathsf{CKP}_1 \wedge \boldsymbol{p}_1\boldsymbol{x} = 31\} = 21.083;\\ \mathrm{width}(\boldsymbol{p}_2, \mathsf{CKP}_1 \wedge \boldsymbol{p}_1\boldsymbol{x} = 31) = 0.906, \text{ iwidth} = 0$
- comparable DKP: $\boldsymbol{a} = \boldsymbol{p}_1 M + \boldsymbol{r}$, with M = 136; for $x_j \in \{0,1\}$

$$4223 \leq 274 x_1 + 407 x_2 + 680 x_3 + 953 x_4 + 1086 x_5 + 1089 x_6 + 1223 x_7 + 1362 x_8 + 1360 x_9 \leq 4224$$

CPLEX 11.0 takes 44 B&B nodes

• for CKP₁, width(p_1) = 1.865, bigger than width(e_j) = 1

- for CKP₁, width(p_1) = 1.865, bigger than width(e_j) = 1
- but $\mathrm{iwidth}({m p}_1)=1$, which is smaller than $\mathrm{iwidth}({m e}_j)=2$

- for CKP₁, width(p_1) = 1.865, bigger than width(e_j) = 1
- but $\mathrm{iwidth}(\boldsymbol{p}_1)=1$, which is smaller than $\mathrm{iwidth}(\boldsymbol{e}_j)=2$
 - width is not a good *predictor* of iwidth

- for CKP₁, width(p_1) = 1.865, bigger than width(e_j) = 1
- but $\mathrm{iwidth}(\boldsymbol{p}_1)=1$, which is smaller than $\mathrm{iwidth}(\boldsymbol{e}_j)=2$
 - width is not a good *predictor* of iwidth
 - preferable to branch on p_1 according to iwidth

- for CKP₁, width(p_1) = 1.865, bigger than width(e_j) = 1
- but $\mathrm{iwidth}(\boldsymbol{p}_1)=1$, which is smaller than $\mathrm{iwidth}(\boldsymbol{e}_j)=2$
 - width is not a good *predictor* of iwidth
 - preferable to branch on p_1 according to iwidth
 - non-trivial to identify $oldsymbol{p}_1$

- for CKP₁, width(p_1) = 1.865, bigger than width(e_j) = 1
- but $\mathrm{iwidth}(\boldsymbol{p}_1)=1$, which is smaller than $\mathrm{iwidth}(\boldsymbol{e}_j)=2$
 - width is not a good *predictor* of iwidth
 - preferable to branch on p_1 according to iwidth
 - non-trivial to identify p_1 (RSRef)

- for CKP₁, width(p_1) = 1.865, bigger than width(e_j) = 1
- but $\mathrm{iwidth}(\boldsymbol{p}_1)=1$, which is smaller than $\mathrm{iwidth}(\boldsymbol{e}_j)=2$
 - width is not a good *predictor* of iwidth
 - preferable to branch on p_1 according to iwidth
 - non-trivial to identify p_1 (RSRef)
- Cook and Kannan (personal communication)

- for CKP₁, width(p_1) = 1.865, bigger than width(e_j) = 1
- but $\mathrm{iwidth}(\boldsymbol{p}_1)=1$, which is smaller than $\mathrm{iwidth}(\boldsymbol{e}_j)=2$
 - width is not a good *predictor* of iwidth
 - preferable to branch on p_1 according to iwidth
 - non-trivial to identify p_1 (RSRef)
- Cook and Kannan (personal communication) studied cases when width = 1.9 (say) and iwidth = 1

- for CKP₁, width(p_1) = 1.865, bigger than width(e_j) = 1
- but $\mathrm{iwidth}(\boldsymbol{p}_1)=1$, which is smaller than $\mathrm{iwidth}(\boldsymbol{e}_j)=2$
 - width is not a good *predictor* of iwidth
 - preferable to branch on p_1 according to iwidth
 - non-trivial to identify p_1 (RSRef)
- Cook and Kannan (personal communication) studied cases when width = 1.9 (say) and iwidth = 1
- We create variation of CKP with $width(\mathbf{p}_1) > 1$ and $iwidth(\mathbf{p}_1) = \mathbf{2}$;

- for CKP₁, width(p_1) = 1.865, bigger than width(e_j) = 1
- but $\mathrm{iwidth}(\boldsymbol{p}_1)=1$, which is smaller than $\mathrm{iwidth}(\boldsymbol{e}_j)=2$
 - width is not a good *predictor* of iwidth
 - preferable to branch on p_1 according to iwidth
 - non-trivial to identify p_1 (RSRef)
- Cook and Kannan (personal communication) studied cases when width = 1.9 (say) and iwidth = 1
- We create variation of CKP with $width(p_1) > 1$ and $iwidth(p_1) = 2$; for both branches of p_1x , branching on p_2x proves infeasibility

$$4399 \le 344 x_1 + 458 x_2 + 705 x_3 + 940 x_4 + 1066 x_5 + 1105 x_6 + 1208 x_7 + 1316 x_8 + 1362 x_9 \le 4400 x_j \in \{0, 1\}$$

$$4399 \le 344 x_1 + 458 x_2 + 705 x_3 + 940 x_4 + 1066 x_5 + 1105 x_6 + 1208 x_7 + 1316 x_8 + 1362 x_9 \le 4400 x_j \in \{0, 1\}$$

ullet same $oldsymbol{p}_1, oldsymbol{p}_2, oldsymbol{r}$ as in CKP₁, but $M_1 = 129, \ M_2 = 12$

$$4399 \le 344 x_1 + 458 x_2 + 705 x_3 + 940 x_4 + 1066 x_5 + 1105 x_6 + 1208 x_7 + 1316 x_8 + 1362 x_9 \le 4400 x_j \in \{0, 1\}$$

- ullet same $oldsymbol{p}_1, oldsymbol{p}_2, oldsymbol{r}$ as in CKP $_1$, but $M_1=129,\ M_2=12$
 - CPLEX 11.0 takes 95 B&B nodes

$$4399 \le 344 x_1 + 458 x_2 + 705 x_3 + 940 x_4 + 1066 x_5 + 1105 x_6 + 1208 x_7 + 1316 x_8 + 1362 x_9 \le 4400 x_j \in \{0, 1\}$$

- ullet same $oldsymbol{p}_1, oldsymbol{p}_2, oldsymbol{r}$ as in CKP $_1$, but $M_1=129,\ M_2=12$
 - CPLEX 11.0 takes 95 B&B nodes
 - $-\max\{p_1x | \mathsf{CKP}_2\} = 33.032, \quad \min\{p_1x | \mathsf{CKP}_2\} = 31.165;$

$$4399 \le 344 x_1 + 458 x_2 + 705 x_3 + 940 x_4 + 1066 x_5 + 1105 x_6 + 1208 x_7 + 1316 x_8 + 1362 x_9 \le 4400 x_j \in \{0, 1\}$$

- ullet same $oldsymbol{p}_1, oldsymbol{p}_2, oldsymbol{r}$ as in CKP $_1$, but $M_1=129,\ M_2=12$
 - CPLEX 11.0 takes 95 B&B nodes
 - $\max\{p_1x | \mathsf{CKP}_2\} = 33.032$, $\min\{p_1x | \mathsf{CKP}_2\} = 31.165$; width $(p_1, \mathsf{CKP}_2) = 1.867$,

$$4399 \le 344 x_1 + 458 x_2 + 705 x_3 + 940 x_4 + 1066 x_5 + 1105 x_6 + 1208 x_7 + 1316 x_8 + 1362 x_9 \le 4400 x_j \in \{0, 1\}$$

- ullet same $oldsymbol{p}_1, oldsymbol{p}_2, oldsymbol{r}$ as in CKP $_1$, but $M_1=129,\ M_2=12$
 - CPLEX 11.0 takes 95 B&B nodes
 - $\max\{p_1x \mid \mathsf{CKP}_2\} = 33.032$, $\min\{p_1x \mid \mathsf{CKP}_2\} = 31.165$; width $(p_1, \mathsf{CKP}_2) = 1.867$, iwidth $(p_1, \mathsf{CKP}_1) = 2$;

$$4399 \le 344 x_1 + 458 x_2 + 705 x_3 + 940 x_4 + 1066 x_5 + 1105 x_6 + 1208 x_7 + 1316 x_8 + 1362 x_9 \le 4400 x_j \in \{0, 1\}$$

- ullet same $oldsymbol{p}_1, oldsymbol{p}_2, oldsymbol{r}$ as in CKP $_1$, but $M_1=129,\ M_2=12$
 - CPLEX 11.0 takes 95 B&B nodes
 - $\max\{p_1x \mid \mathsf{CKP}_2\} = 33.032$, $\min\{p_1x \mid \mathsf{CKP}_2\} = 31.165$; width $(p_1, \mathsf{CKP}_2) = 1.867$, iwidth $(p_1, \mathsf{CKP}_1) = 2$;
 - width(p_2 , CKP₂ $\wedge p_1 x = 32$) = 0.895, iwidth = 0

$$4399 \le 344 x_1 + 458 x_2 + 705 x_3 + 940 x_4 + 1066 x_5 + 1105 x_6 + 1208 x_7 + 1316 x_8 + 1362 x_9 \le 4400 x_j \in \{0, 1\}$$

- ullet same $oldsymbol{p}_1, oldsymbol{p}_2, oldsymbol{r}$ as in CKP $_1$, but $M_1=129,\ M_2=12$
 - CPLEX 11.0 takes 95 B&B nodes
 - $\max\{p_1x \mid \mathsf{CKP}_2\} = 33.032$, $\min\{p_1x \mid \mathsf{CKP}_2\} = 31.165$; width $(p_1, \mathsf{CKP}_2) = 1.867$, iwidth $(p_1, \mathsf{CKP}_1) = 2$;
 - width(\mathbf{p}_2 , CKP $_2 \wedge \mathbf{p}_1 \mathbf{x} = 32$) = 0.895, iwidth = 0 CPLEX 11.0 takes 35 B&B nodes for CKP $_2 \wedge \mathbf{p}_1 \mathbf{x} = 32$

$$4399 \le 344 x_1 + 458 x_2 + 705 x_3 + 940 x_4 + 1066 x_5 + 1105 x_6 + 1208 x_7 + 1316 x_8 + 1362 x_9 \le 4400 x_j \in \{0, 1\}$$

- ullet same $oldsymbol{p}_1, oldsymbol{p}_2, oldsymbol{r}$ as in CKP $_1$, but $M_1=129,\ M_2=12$
 - CPLEX 11.0 takes 95 B&B nodes
 - $\max\{p_1x \mid \mathsf{CKP}_2\} = 33.032$, $\min\{p_1x \mid \mathsf{CKP}_2\} = 31.165$; width $(p_1, \mathsf{CKP}_2) = 1.867$, iwidth $(p_1, \mathsf{CKP}_1) = 2$;
 - width(\mathbf{p}_2 , CKP₂ \wedge $\mathbf{p}_1\mathbf{x} = 32$) = 0.895, iwidth = 0 CPLEX 11.0 takes 35 B&B nodes for CKP₂ \wedge $\mathbf{p}_1\mathbf{x} = 32$
 - width(p_2 , CKP₂ $\wedge p_1 x = 33$) = 0.158, iwidth = 0

$$4399 \le 344 x_1 + 458 x_2 + 705 x_3 + 940 x_4 + 1066 x_5 + 1105 x_6 + 1208 x_7 + 1316 x_8 + 1362 x_9 \le 4400 x_j \in \{0, 1\}$$

- ullet same $oldsymbol{p}_1, oldsymbol{p}_2, oldsymbol{r}$ as in CKP $_1$, but $M_1=129,\ M_2=12$
 - CPLEX 11.0 takes 95 B&B nodes
 - $\max\{p_1x \mid \mathsf{CKP}_2\} = 33.032$, $\min\{p_1x \mid \mathsf{CKP}_2\} = 31.165$; width $(p_1, \mathsf{CKP}_2) = 1.867$, iwidth $(p_1, \mathsf{CKP}_1) = 2$;
 - width(\mathbf{p}_2 , CKP₂ \wedge $\mathbf{p}_1\mathbf{x} = 32$) = 0.895, iwidth = 0 CPLEX 11.0 takes 35 B&B nodes for CKP₂ \wedge $\mathbf{p}_1\mathbf{x} = 32$
 - width $(\boldsymbol{p}_2,\mathsf{CKP}_2 \wedge \boldsymbol{p}_1 \boldsymbol{x} = 33) = 0.158$, iwidth = 0 CPLEX 11.0 solves $\mathsf{CKP}_2 \wedge \boldsymbol{p}_1 \boldsymbol{x} = 32$ at the root node

$$4399 \le 344 x_1 + 458 x_2 + 705 x_3 + 940 x_4 + 1066 x_5 + 1105 x_6 + 1208 x_7 + 1316 x_8 + 1362 x_9 \le 4400 x_j \in \{0, 1\}$$

- ullet same $oldsymbol{p}_1, oldsymbol{p}_2, oldsymbol{r}$ as in CKP $_1$, but $M_1=129,\ M_2=12$
 - CPLEX 11.0 takes 95 B&B nodes
 - $\max\{p_1x \mid \mathsf{CKP}_2\} = 33.032$, $\min\{p_1x \mid \mathsf{CKP}_2\} = 31.165$; width $(p_1, \mathsf{CKP}_2) = 1.867$, iwidth $(p_1, \mathsf{CKP}_1) = 2$;
 - width(\mathbf{p}_2 , CKP₂ \wedge $\mathbf{p}_1\mathbf{x} = 32$) = 0.895, iwidth = 0 CPLEX 11.0 takes 35 B&B nodes for CKP₂ \wedge $\mathbf{p}_1\mathbf{x} = 32$
 - width $(\boldsymbol{p}_2,\mathsf{CKP}_2\wedge\boldsymbol{p}_1\boldsymbol{x}=33)=0.158$, iwidth = 0 CPLEX 11.0 solves $\mathsf{CKP}_2\wedge\boldsymbol{p}_1\boldsymbol{x}=32$ at the root node
- ullet p_1 is *not* preferable to e_j for branching, based on iwidth alone

CKP Generalizations

CKP Generalizations

• we can generalize CKPs:

- we can generalize CKPs:
 - to higher t's $(t \geq 3; \boldsymbol{a} = \boldsymbol{p}_1 M_1 + \cdots + \boldsymbol{p}_t M_t + \boldsymbol{r})$

- we can generalize CKPs:
 - to higher t's $(t \geq 3; \boldsymbol{a} = \boldsymbol{p}_1 M_1 + \dots + \boldsymbol{p}_t M_t + \boldsymbol{r})$ $1 < \operatorname{width}(\boldsymbol{p}_i \mid \mathsf{CKP} \land \boldsymbol{p}_j \boldsymbol{x} = k_j, \ j = 1, \dots, i-1) < 2$ $\operatorname{iwidth}(\boldsymbol{p}_i \mid \mathsf{CKP} \land \boldsymbol{p}_j \boldsymbol{x} = k_j, \ j = 1, \dots, i-1) = 1 \text{ or } 2$ for $i = 1, \dots, t-1$, and then $\operatorname{iwidth}(\boldsymbol{p}_t) = 0$

- we can generalize CKPs:
 - to higher t's $(t \geq 3; \boldsymbol{a} = \boldsymbol{p}_1 M_1 + \dots + \boldsymbol{p}_t M_t + \boldsymbol{r})$ $1 < \operatorname{width}(\boldsymbol{p}_i \mid \mathsf{CKP} \land \boldsymbol{p}_j \boldsymbol{x} = k_j, \ j = 1, \dots, i-1) < 2$ $\operatorname{iwidth}(\boldsymbol{p}_i \mid \mathsf{CKP} \land \boldsymbol{p}_j \boldsymbol{x} = k_j, \ j = 1, \dots, i-1) = 1 \text{ or } 2$ for $i = 1, \dots, t-1$, and then $\operatorname{iwidth}(\boldsymbol{p}_t) = 0$
 - $-\ u$ can be more general than e

- we can generalize CKPs:
 - to higher t's $(t \geq 3; \boldsymbol{a} = \boldsymbol{p}_1 M_1 + \dots + \boldsymbol{p}_t M_t + \boldsymbol{r})$ $1 < \operatorname{width}(\boldsymbol{p}_i \mid \mathsf{CKP} \land \boldsymbol{p}_j \boldsymbol{x} = k_j, \ j = 1, \dots, i-1) < 2$ $\operatorname{iwidth}(\boldsymbol{p}_i \mid \mathsf{CKP} \land \boldsymbol{p}_j \boldsymbol{x} = k_j, \ j = 1, \dots, i-1) = 1 \text{ or } 2$ for $i = 1, \dots, t-1$, and then $\operatorname{iwidth}(\boldsymbol{p}_t) = 0$
 - $-\ u$ can be more general than e
- denoted as t + 1-CKPs;

- we can generalize CKPs:
 - to higher t's $(t \geq 3; \boldsymbol{a} = \boldsymbol{p}_1 M_1 + \dots + \boldsymbol{p}_t M_t + \boldsymbol{r})$ $1 < \operatorname{width}(\boldsymbol{p}_i \mid \mathsf{CKP} \land \boldsymbol{p}_j \boldsymbol{x} = k_j, \ j = 1, \dots, i-1) < 2$ $\operatorname{iwidth}(\boldsymbol{p}_i \mid \mathsf{CKP} \land \boldsymbol{p}_j \boldsymbol{x} = k_j, \ j = 1, \dots, i-1) = 1 \text{ or } 2$ for $i = 1, \dots, t-1$, and then $\operatorname{iwidth}(\boldsymbol{p}_t) = 0$
 - u can be more general than e
- denoted as t + 1-CKPs; Recipes to generate t + 1-CKPs

- we can generalize CKPs:
 - to higher t's $(t \geq 3; \boldsymbol{a} = \boldsymbol{p}_1 M_1 + \dots + \boldsymbol{p}_t M_t + \boldsymbol{r})$ $1 < \operatorname{width}(\boldsymbol{p}_i \mid \mathsf{CKP} \land \boldsymbol{p}_j \boldsymbol{x} = k_j, \ j = 1, \dots, i-1) < 2$ $\operatorname{iwidth}(\boldsymbol{p}_i \mid \mathsf{CKP} \land \boldsymbol{p}_j \boldsymbol{x} = k_j, \ j = 1, \dots, i-1) = 1 \text{ or } 2$ for $i = 1, \dots, t-1$, and then $\operatorname{iwidth}(\boldsymbol{p}_t) = 0$
 - u can be more general than e
- denoted as t + 1-CKPs; Recipes to generate t + 1-CKPs
- computationally hard

- we can generalize CKPs:
 - to higher t's $(t \geq 3; \boldsymbol{a} = \boldsymbol{p}_1 M_1 + \dots + \boldsymbol{p}_t M_t + \boldsymbol{r})$ $1 < \operatorname{width}(\boldsymbol{p}_i \mid \mathsf{CKP} \land \boldsymbol{p}_j \boldsymbol{x} = k_j, \ j = 1, \dots, i-1) < 2$ $\operatorname{iwidth}(\boldsymbol{p}_i \mid \mathsf{CKP} \land \boldsymbol{p}_j \boldsymbol{x} = k_j, \ j = 1, \dots, i-1) = 1 \text{ or } 2$ for $i = 1, \dots, t-1$, and then $\operatorname{iwidth}(\boldsymbol{p}_t) = 0$
 - $-\ u$ can be more general than e
- denoted as t + 1-CKPs; Recipes to generate t + 1-CKPs
- computationally hard
 - with $x_j \in \{0,1\}$, we get small a_j 's, but CPLEX still struggles

- we can generalize CKPs:
 - to higher t's $(t \geq 3; \boldsymbol{a} = \boldsymbol{p}_1 M_1 + \dots + \boldsymbol{p}_t M_t + \boldsymbol{r})$ $1 < \operatorname{width}(\boldsymbol{p}_i \mid \mathsf{CKP} \land \boldsymbol{p}_j \boldsymbol{x} = k_j, \ j = 1, \dots, i-1) < 2$ $\operatorname{iwidth}(\boldsymbol{p}_i \mid \mathsf{CKP} \land \boldsymbol{p}_j \boldsymbol{x} = k_j, \ j = 1, \dots, i-1) = 1 \text{ or } 2$ for $i = 1, \dots, t-1$, and then $\operatorname{iwidth}(\boldsymbol{p}_t) = 0$
 - $-\ u$ can be more general than e
- denoted as t + 1-CKPs; Recipes to generate t + 1-CKPs
- computationally hard
 - with $x_j \in \{0,1\}$, we get small a_j 's, but CPLEX still struggles
 - e.g., 4-CKP with n=30, $a_{\rm max} \leq 9000$, CPLEX 9.0 takes ≈ 57 million B&B nodes

- we can generalize CKPs:
 - to higher t's $(t \geq 3; \boldsymbol{a} = \boldsymbol{p}_1 M_1 + \dots + \boldsymbol{p}_t M_t + \boldsymbol{r})$ $1 < \operatorname{width}(\boldsymbol{p}_i \mid \mathsf{CKP} \land \boldsymbol{p}_j \boldsymbol{x} = k_j, \ j = 1, \dots, i-1) < 2$ $\operatorname{iwidth}(\boldsymbol{p}_i \mid \mathsf{CKP} \land \boldsymbol{p}_j \boldsymbol{x} = k_j, \ j = 1, \dots, i-1) = 1 \text{ or } 2$ for $i = 1, \dots, t-1$, and then $\operatorname{iwidth}(\boldsymbol{p}_t) = 0$
 - $-\ u$ can be more general than e
- denoted as t + 1-CKPs; Recipes to generate t + 1-CKPs
- computationally hard
 - with $x_j \in \{0,1\}$, we get small a_j 's, but CPLEX still struggles
 - e.g., 4-CKP with n=30, $a_{\rm max} \leq 9000$, CPLEX 9.0 takes ≈ 57 million B&B nodes
 - dynamic programming could be effective (time = $O(n\beta_1)$)?

Computation: 4-CKPs, n = 30, u = e

Computation: 4-CKPs, n = 30, u = e

	CKP widths			CKP		$CKP_{-}m{p}_1$		$CKP_{ extsf{-}}oldsymbol{p}_{1}oldsymbol{p}_{2}$		DKP		RS
#	\mathbf{w}_1	w_{21}	w ₃₁₂	BB	TM	BB	TM	BB	TM	BB	TM	BB
1	1.55	1.42	0.92	58,057,939	u	2,448,625	126.0	205,814	13.3	11756	0.4	3
2	1.47	1.44	0.90	56,937,604	3484	740,556	41.0	66189	4.6	8708	0.3	1
3	1.57	1.50	0.94	46,187,956	3027	2,005,687	99.4	249,232	14.1	9537	0.3	5
4	1.50	1.53	0.89	55,782,856	u	477,707	25.2	252,505	13.7	6496	0.3	4
5	1.49	1.48	0.94	56,313,840	u	1,421,719	69.0	334,046	19.0	5527	0.2	3
6	1.50	1.55	0.90	55,597,050	u	1,319,626	73.0	257,922	15.0	10520	0.4	15
7	1.50	1.59	0.91	60,453,028	u	1,595,424	78.6	151,812	9.1	7336	0.3	6
8	1.57	1.52	0.95	64,409,733	u	5,324,924	278.3	310,768	19.2	10360	0.4	6
9	1.50	1.48	0.96	55,491,175	u	3,366,436	167.2	312,653	18.0	10061	0.4	5
10	1.49	1.53	0.92	60,307,524	u	3,107,323	158.2	443,789	25.6	8227	0.3	68

BB: # B&B nodes, TM: CPU time (sec), **u**: unsolved in **1 hour** time limit, typical instance: $a_{\min} \approx 4000$, $a_{\max} \approx 9000$, β_1 , $\beta_2 \approx 65000$; RS: RSRef

Used CPLEX 9.0; instances available at www.wsu.edu/ \sim kbala

Computation: 4-CKPs, n = 30, u = e

	CKP widths		dths	CKP		$CKP_{-}m{p}_1$		$CKP_{ extsf{-}}oldsymbol{p}_{1}oldsymbol{p}_{2}$		DKP		RS
#	\mathbf{w}_1	w ₂₁	w ₃₁₂	BB	TM	BB	TM	BB	TM	BB	TM	BB
1	1.55	1.42	0.92	58,057,939	u	2,448,625	126.0	205,814	13.3	11756	0.4	3
2	1.47	1.44	0.90	56,937,604	3484	740,556	41.0	66189	4.6	8708	0.3	1
3	1.57	1.50	0.94	46,187,956	3027	2,005,687	99.4	249,232	14.1	9537	0.3	5
4	1.50	1.53	0.89	55,782,856	u	477,707	25.2	252,505	13.7	6496	0.3	4
5	1.49	1.48	0.94	56,313,840	u	1,421,719	69.0	334,046	19.0	5527	0.2	3
6	1.50	1.55	0.90	55,597,050	u	1,319,626	73.0	257,922	15.0	10520	0.4	15
7	1.50	1.59	0.91	60,453,028	u	1,595,424	78.6	151,812	9.1	7336	0.3	6
8	1.57	1.52	0.95	64,409,733	u	5,324,924	278.3	310,768	19.2	10360	0.4	6
9	1.50	1.48	0.96	55,491,175	u	3,366,436	167.2	312,653	18.0	10061	0.4	5
10	1.49	1.53	0.92	60,307,524	u	3,107,323	158.2	443,789	25.6	8227	0.3	68

BB: # B&B nodes, TM: CPU time (sec), **u**: unsolved in **1 hour** time limit, typical instance: $a_{\min} \approx 4000$, $a_{\max} \approx 9000$, β_1 , $\beta_2 \approx 65000$; RS: RSRef

Used CPLEX 9.0; instances available at www.wsu.edu/ \sim kbala

ullet CKPs are classes of t+1-level decomposable knapsacks

- ullet CKPs are classes of t+1-level decomposable knapsacks
 - which are hard for ordinary B&B

- ullet CKPs are classes of t+1-level decomposable knapsacks
 - which are hard for ordinary B&B
 - have a sequence of "good" branching directions $m{p}_1,\ldots,m{p}_t$

- \bullet CKPs are classes of t+1-level decomposable knapsacks
 - which are hard for ordinary B&B
 - have a sequence of "good" branching directions $oldsymbol{p}_1,\ldots,oldsymbol{p}_t$
 - $\mathrm{iwidth}(\boldsymbol{p}_i) = 1$ or 2 in the branching sequence for i < t

- CKPs are classes of t+1-level decomposable knapsacks
 - which are hard for ordinary B&B
 - have a sequence of "good" branching directions $oldsymbol{p}_1,\ldots,oldsymbol{p}_t$
 - $\operatorname{iwidth}(\boldsymbol{p}_i) = 1$ or 2 in the branching sequence for i < t
- ullet when M_i 's are big enough, RSRef solves in at most t or 2^t nodes, respectively

- \bullet CKPs are classes of t+1-level decomposable knapsacks
 - which are hard for ordinary B&B
 - have a sequence of "good" branching directions $oldsymbol{p}_1,\ldots,oldsymbol{p}_t$
 - $\operatorname{iwidth}(\boldsymbol{p}_i) = 1$ or 2 in the branching sequence for i < t
- ullet when M_i 's are big enough, RSRef solves in at most t or 2^t nodes, respectively
- both width and iwidth can be poor indicators of "good" branching directions

Slides

Slide 1 Slide 2 Slide 3 Slide 4

Slide 5 Slide 6 Slide 7 Slide 8

Slide 9 Slide 10 Slide 11 Slide 12

Slide 13 Slide 14 Slide 15 Slide 16

Slide 17 Slide 18 Slide 19 Slide 20