Cascade Knapsack Problems

Bala Krishnamoorthy
Washington State University
joint work with
Gábor Pataki, UNC Chapel Hill

MIP 2008

August 04, 2008

Hard IP Instances

Hard IP Instances

- worst case behavior of IP algorithms

Hard IP Instances

- worst case behavior of IP algorithms
- feasibility problems;

Hard IP Instances

- worst case behavior of IP algorithms
- feasibility problems; integer infeasible

Hard IP Instances

- worst case behavior of IP algorithms
- feasibility problems; integer infeasible
- hard for branch-and-bound (B\&B), cutting planes

Hard IP Instances

- worst case behavior of IP algorithms
- feasibility problems; integer infeasible
- hard for branch-and-bound (B\&B), cutting planes
- prove bounds on running time, \# B\&B nodes

Hard IP Instances

- worst case behavior of IP algorithms
- feasibility problems; integer infeasible
- hard for branch-and-bound (B\&B), cutting planes
- prove bounds on running time, $\# B \& B$ nodes
- gain computational insights

Hard IP Instances

Hard IP Instances

- hard knapsack problems: $\left\{\beta_{1} \leq \boldsymbol{a} \boldsymbol{x} \leq \beta_{2} \mid \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\}$

Hard IP Instances

- hard knapsack problems: $\left\{\beta_{1} \leq \boldsymbol{a} \boldsymbol{x} \leq \beta_{2} \mid \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\}$
- "simple" - one constraint

Hard IP Instances

- hard knapsack problems: $\left\{\beta_{1} \leq \boldsymbol{a} \boldsymbol{x} \leq \beta_{2} \mid \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\}$
- "simple" - one constraint
- provably hard for branch-and-bound,

Hard IP Instances

- hard knapsack problems: $\left\{\beta_{1} \leq \boldsymbol{a} \boldsymbol{x} \leq \beta_{2} \mid \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\}$
- "simple" - one constraint
- provably hard for branch-and-bound, cutting planes

Hard IP Instances

- hard knapsack problems: $\left\{\beta_{1} \leq \boldsymbol{a} \boldsymbol{x} \leq \beta_{2} \mid \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\}$
- "simple" - one constraint
- provably hard for branch-and-bound, cutting planes
- can analyze mathematically

Hard IP Instances

- hard knapsack problems: $\left\{\beta_{1} \leq \boldsymbol{a} \boldsymbol{x} \leq \beta_{2} \mid \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\}$
- "simple" - one constraint
- provably hard for branch-and-bound, cutting planes
- can analyze mathematically
- marketshare problems

Hard IP Instances

- hard knapsack problems: $\left\{\beta_{1} \leq \boldsymbol{a} \boldsymbol{x} \leq \beta_{2} \mid \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\}$
- "simple" - one constraint
- provably hard for branch-and-bound, cutting planes
- can analyze mathematically
- marketshare problems
- binary IPs with a few dense constraints

Hard IP Instances

- hard knapsack problems: $\left\{\beta_{1} \leq \boldsymbol{a} \boldsymbol{x} \leq \beta_{2} \mid \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\}$
- "simple" - one constraint
- provably hard for branch-and-bound, cutting planes
- can analyze mathematically
- marketshare problems
- binary IPs with a few dense constraints
- computationally hard

Hard Knapsack Problems

Hard Knapsack Problems

- with $\beta_{1}=\beta_{2}=\beta=\left\lfloor\sum_{j} a_{j} / 2\right\rfloor, \boldsymbol{u}=\boldsymbol{e}$, i.e., $x_{j} \in\{0,1\}$

Hard Knapsack Problems

- with $\beta_{1}=\beta_{2}=\beta=\left\lfloor\sum_{j} a_{j} / 2\right\rfloor, \boldsymbol{u}=\boldsymbol{e}$, i.e., $x_{j} \in\{0,1\}$
- Jeroslow (74): $a_{j}=2, n$ is odd $\left(2 x_{1}+\cdots+2 x_{n}=n\right)$

Hard Knapsack Problems

- with $\beta_{1}=\beta_{2}=\beta=\left\lfloor\sum_{j} a_{j} / 2\right\rfloor, \boldsymbol{u}=\boldsymbol{e}$, i.e., $x_{j} \in\{0,1\}$
- Jeroslow (74): $a_{j}=2, n$ is odd $\left(2 x_{1}+\cdots+2 x_{n}=n\right)$
- Avis (Chvátal, 80): $a_{j}=n(n+1)+j$

Hard Knapsack Problems

- with $\beta_{1}=\beta_{2}=\beta=\left\lfloor\sum_{j} a_{j} / 2\right\rfloor, \boldsymbol{u}=\boldsymbol{e}$, i.e., $x_{j} \in\{0,1\}$
- Jeroslow (74): $a_{j}=2, n$ is odd $\left(2 x_{1}+\cdots+2 x_{n}=n\right)$
- Avis (Chvátal, 80): $a_{j}=n(n+1)+j$
- Todd (Chvátal, 80): $a_{j}=2^{n+\ell+1}+2^{\ell+j}+1$ for $\ell=\lfloor\log 2 n\rfloor$

Hard Knapsack Problems

- with $\beta_{1}=\beta_{2}=\beta=\left\lfloor\sum_{j} a_{j} / 2\right\rfloor, \boldsymbol{u}=\boldsymbol{e}$, i.e., $x_{j} \in\{0,1\}$
- Jeroslow (74): $a_{j}=2, n$ is odd $\left(2 x_{1}+\cdots+2 x_{n}=n\right)$
- Avis (Chvátal, 80): $a_{j}=n(n+1)+j$
- Todd (Chvátal, 80): $a_{j}=2^{n+\ell+1}+2^{\ell+j}+1$ for $\ell=\lfloor\log 2 n\rfloor$
- (ordinary) B\&B takes at least $2^{(n-1) / 2}$ nodes

Hard Knapsack Problems

- with $\beta_{1}=\beta_{2}=\beta=\left\lfloor\sum_{j} a_{j} / 2\right\rfloor, \boldsymbol{u}=\boldsymbol{e}$, i.e., $x_{j} \in\{0,1\}$
- Jeroslow (74): $a_{j}=2, n$ is odd $\left(2 x_{1}+\cdots+2 x_{n}=n\right)$
- Avis (Chvátal, 80): $a_{j}=n(n+1)+j$
- Todd (Chvátal, 80): $a_{j}=2^{n+\ell+1}+2^{\ell+j}+1$ for $\ell=\lfloor\log 2 n\rfloor$
- (ordinary) B\&B takes at least $2^{(n-1) / 2}$ nodes
- preprocessing, or single knapsack cover inequalities kill them

Hard Knapsack Problems

- with $\beta_{1}=\beta_{2}=\beta=\left\lfloor\sum_{j} a_{j} / 2\right\rfloor, \boldsymbol{u}=\boldsymbol{e}$, i.e., $x_{j} \in\{0,1\}$
- Jeroslow (74): $a_{j}=2, n$ is odd $\left(2 x_{1}+\cdots+2 x_{n}=n\right)$
- Avis (Chvátal, 80): $a_{j}=n(n+1)+j$
- Todd (Chvátal, 80): $a_{j}=2^{n+\ell+1}+2^{\ell+j}+1$ for $\ell=\lfloor\log 2 n\rfloor$
- (ordinary) B\&B takes at least $2^{(n-1) / 2}$ nodes
- preprocessing, or single knapsack cover inequalities kill them
- $\boldsymbol{u}=\boldsymbol{e}$, i.e., $x_{j} \in\{0,1\}$

Hard Knapsack Problems

- with $\beta_{1}=\beta_{2}=\beta=\left\lfloor\sum_{j} a_{j} / 2\right\rfloor, \boldsymbol{u}=\boldsymbol{e}$, i.e., $x_{j} \in\{0,1\}$
- Jeroslow (74): $a_{j}=2, n$ is odd $\left(2 x_{1}+\cdots+2 x_{n}=n\right)$
- Avis (Chvátal, 80): $a_{j}=n(n+1)+j$
- Todd (Chvátal, 80): $a_{j}=2^{n+\ell+1}+2^{\ell+j}+1$ for $\ell=\lfloor\log 2 n\rfloor$
- (ordinary) B\&B takes at least $2^{(n-1) / 2}$ nodes
- preprocessing, or single knapsack cover inequalities kill them
- $\boldsymbol{u}=\boldsymbol{e}$, i.e., $x_{j} \in\{0,1\}$
- Chvátal (80): $a_{j}=U\left[1,10^{n / 2}\right] ;$ Hunsaker and Tovey (04)

Hard Knapsack Problems

- with $\beta_{1}=\beta_{2}=\beta=\left\lfloor\sum_{j} a_{j} / 2\right\rfloor, \boldsymbol{u}=\boldsymbol{e}$, i.e., $x_{j} \in\{0,1\}$
- Jeroslow (74): $a_{j}=2, n$ is odd $\left(2 x_{1}+\cdots+2 x_{n}=n\right)$
- Avis (Chvátal, 80): $a_{j}=n(n+1)+j$
- Todd (Chvátal, 80): $a_{j}=2^{n+\ell+1}+2^{\ell+j}+1$ for $\ell=\lfloor\log 2 n\rfloor$
- (ordinary) B\&B takes at least $2^{(n-1) / 2}$ nodes
- preprocessing, or single knapsack cover inequalities kill them
- $\boldsymbol{u}=\boldsymbol{e}$, i.e., $x_{j} \in\{0,1\}$
- Chvátal (80): $a_{j}=U\left[1,10^{n / 2}\right]$; Hunsaker and Tovey (04)
- Gu, Nemhauser, Savelsberg $(98,99): a_{j} \approx 2^{n / 20}$

Hard Knapsack Problems

- with $\beta_{1}=\beta_{2}=\beta=\left\lfloor\sum_{j} a_{j} / 2\right\rfloor, \boldsymbol{u}=\boldsymbol{e}$, i.e., $x_{j} \in\{0,1\}$
- Jeroslow (74): $a_{j}=2, n$ is odd $\left(2 x_{1}+\cdots+2 x_{n}=n\right)$
- Avis (Chvátal, 80): $a_{j}=n(n+1)+j$
- Todd (Chvátal, 80): $a_{j}=2^{n+\ell+1}+2^{\ell+j}+1$ for $\ell=\lfloor\log 2 n\rfloor$
- (ordinary) B\&B takes at least $2^{(n-1) / 2}$ nodes
- preprocessing, or single knapsack cover inequalities kill them
- $\boldsymbol{u}=\boldsymbol{e}$, i.e., $x_{j} \in\{0,1\}$
- Chvátal (80): $a_{j}=U\left[1,10^{n / 2}\right]$; Hunsaker and Tovey (04)
- Gu, Nemhauser, Savelsberg $(98,99): a_{j} \approx 2^{n / 20}$
- B\&C using lifted cover inequalities takes at least $2^{n / 30}$ nodes

More Hard Knapsacks

More Hard Knapsacks

- $\beta_{2} \approx \operatorname{Frob}(\boldsymbol{a}), u_{j}=+\infty$, i.e., x_{j} are unbounded

More Hard Knapsacks

- $\beta_{2} \approx \operatorname{Frob}(\boldsymbol{a}), u_{j}=+\infty$, i.e., x_{j} are unbounded
- Cornuejols et al. (97)

More Hard Knapsacks

- $\beta_{2} \approx \operatorname{Frob}(\boldsymbol{a}), u_{j}=+\infty$, i.e., x_{j} are unbounded
- Cornuejols et al. (97) generating sets

More Hard Knapsacks

- $\beta_{2} \approx \operatorname{Frob}(\boldsymbol{a}), u_{j}=+\infty$, i.e., x_{j} are unbounded
- Cornuejols et al. (97) generating sets
- Aardal and Lenstra (04)

More Hard Knapsacks

- $\beta_{2} \approx \operatorname{Frob}(\boldsymbol{a}), u_{j}=+\infty$, i.e., x_{j} are unbounded
- Cornuejols et al. (97) generating sets
- Aardal and Lenstra (04) Aardal et al. (00) reformulation

More Hard Knapsacks

- $\beta_{2} \approx \operatorname{Frob}(\boldsymbol{a}), u_{j}=+\infty$, i.e., x_{j} are unbounded
- Cornuejols et al. (97) generating sets
- Aardal and Lenstra (04) Aardal et al. (00) reformulation - equality version of Cornujols et al. knapsack

More Hard Knapsacks

- $\beta_{2} \approx \operatorname{Frob}(\boldsymbol{a}), u_{j}=+\infty$, i.e., x_{j} are unbounded
- Cornuejols et al. (97) generating sets
- Aardal and Lenstra (04) Aardal et al. (00) reformulation - equality version of Cornujols et al. knapsack
- $\operatorname{Frob}(\boldsymbol{a})$ is the largest rhs, hence gives "hardest" instance

More Hard Knapsacks

- $\beta_{2} \approx \operatorname{Frob}(\boldsymbol{a}), u_{j}=+\infty$, i.e., x_{j} are unbounded
- Cornuejols et al. (97) generating sets
- Aardal and Lenstra (04) Aardal et al. (00) reformulation - equality version of Cornujols et al. knapsack
- $\operatorname{Frob}(\boldsymbol{a})$ is the largest rhs, hence gives "hardest" instance
- for $\boldsymbol{a}=\boldsymbol{p} M+\boldsymbol{r}$, lower bound for $\operatorname{Frob}(\boldsymbol{a})$ quadratic in M

More Hard Knapsacks

- $\beta_{2} \approx \operatorname{Frob}(\boldsymbol{a}), u_{j}=+\infty$, i.e., x_{j} are unbounded
- Cornuejols et al. (97) generating sets
- Aardal and Lenstra (04) Aardal et al. (00) reformulation - equality version of Cornujols et al. knapsack
- $\operatorname{Frob}(\boldsymbol{a})$ is the largest rhs, hence gives "hardest" instance
- for $\boldsymbol{a}=\boldsymbol{p} M+\boldsymbol{r}$, lower bound for $\operatorname{Frob}(\boldsymbol{a})$ quadratic in M
- large rhs implies hard for B\&B

More Hard Knapsacks

- $\beta_{2} \approx \operatorname{Frob}(\boldsymbol{a}), u_{j}=+\infty$, i.e., x_{j} are unbounded
- Cornuejols et al. (97) generating sets
- Aardal and Lenstra (04) Aardal et al. (00) reformulation - equality version of Cornujols et al. knapsack
- $\operatorname{Frob}(\boldsymbol{a})$ is the largest rhs, hence gives "hardest" instance
- for $\boldsymbol{a}=\boldsymbol{p} M+\boldsymbol{r}$, lower bound for $\operatorname{Frob}(\boldsymbol{a})$ quadratic in M
- large rhs implies hard for B\&B
- We study a very general class of knapsacks

$t+1$-level Decomposable Knapsack Problem

$t+$ 1-level Decomposable Knapsack Problem

- $\quad\left\{\beta_{1} \leq \boldsymbol{a} \boldsymbol{x} \leq \beta_{2} \mid \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\}$ with

$t+$ 1-level Decomposable Knapsack Problem

$$
\begin{aligned}
& \left\{\beta_{1} \leq \boldsymbol{a} \boldsymbol{x} \leq \beta_{2} \mid \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\} \text { with } \\
\boldsymbol{a}= & \boldsymbol{p}_{1} M_{1}+\cdots+\boldsymbol{p}_{t} M_{t}+\boldsymbol{r} ; \boldsymbol{p}_{i} \in \mathbb{Z}_{>0}^{n}, M_{i} \in \mathbb{Z}_{>0} ; M_{i}>M_{i+1}
\end{aligned}
$$

$t+$ 1-level Decomposable Knapsack Problem

$$
\begin{aligned}
& \left\{\beta_{1} \leq \boldsymbol{a} \boldsymbol{x} \leq \beta_{2} \mid \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\} \text { with } \\
\boldsymbol{a}= & \boldsymbol{p}_{1} M_{1}+\cdots+\boldsymbol{p}_{t} M_{t}+\boldsymbol{r} ; \boldsymbol{p}_{i} \in \mathbb{Z}_{>0}^{n}, M_{i} \in \mathbb{Z}_{>0} ; M_{i}>M_{i+1}
\end{aligned}
$$

- denoted as $t+1$-DKP

$t+1$-level Decomposable Knapsack Problem

$$
\begin{aligned}
& \quad\left\{\beta_{1} \leq \boldsymbol{a} \boldsymbol{x} \leq \beta_{2} \mid \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\} \text { with } \\
& \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\cdots+\boldsymbol{p}_{t} M_{t}+\boldsymbol{r} ; \boldsymbol{p}_{i} \in \mathbb{Z}_{>0}^{n}, M_{i} \in \mathbb{Z}_{>0} ; M_{i}>M_{i+1}
\end{aligned}
$$

- denoted as $t+1$-DKP
- for $t=1$, we write $\boldsymbol{p}_{1}=\boldsymbol{p}, M_{1}=M$, and call it simply DKP

$t+$ 1-level Decomposable Knapsack Problem

$$
\begin{aligned}
& \left\{\beta_{1} \leq \boldsymbol{a} \boldsymbol{x} \leq \beta_{2} \mid \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\} \text { with } \\
\boldsymbol{a}= & \boldsymbol{p}_{1} M_{1}+\cdots+\boldsymbol{p}_{t} M_{t}+\boldsymbol{r} ; \boldsymbol{p}_{i} \in \mathbb{Z}_{>0}^{n}, M_{i} \in \mathbb{Z}_{>0} ; M_{i}>M_{i+1}
\end{aligned}
$$

- denoted as $t+1$-DKP
- for $t=1$, we write $\boldsymbol{p}_{1}=\boldsymbol{p}, M_{1}=M$, and call it simply DKP
- Krishnamoorthy and Pataki (06) - Column basis reduction and decomposable knapsack problems (preprint available in Optimization Online)

Special Cases of $t+1$-DKPs for $t=1$

Special Cases of $t+1$-DKPs for $t=1$

- $\boldsymbol{p}=\boldsymbol{e}, M=2, \boldsymbol{r}=\mathbf{0}, \boldsymbol{u}=\boldsymbol{e}$ gives Jeroslow knapsack

$$
2 x_{1}+\cdots+2 x_{n}=n
$$

Special Cases of $t+1$-DKPs for $t=1$

- $\boldsymbol{p}=\boldsymbol{e}, M=2, \boldsymbol{r}=\mathbf{0}, \boldsymbol{u}=\boldsymbol{e}$ gives Jeroslow knapsack
$2 x_{1}+\cdots+2 x_{n}=n$
- other special cases: with $\boldsymbol{u}=\boldsymbol{e}$
$-\boldsymbol{p}=\boldsymbol{e}, M=n(n+1), \boldsymbol{r}=(1, \ldots, n):$ Avis knapsack

Special Cases of $t+1$-DKPs for $t=1$

- $\boldsymbol{p}=\boldsymbol{e}, M=2, \boldsymbol{r}=\mathbf{0}, \boldsymbol{u}=\boldsymbol{e}$ gives Jeroslow knapsack
$2 x_{1}+\cdots+2 x_{n}=n$
- other special cases: with $\boldsymbol{u}=\boldsymbol{e}$
- $\boldsymbol{p}=\boldsymbol{e}, M=n(n+1), \boldsymbol{r}=(1, \ldots, n)$: Avis knapsack
$-\boldsymbol{p}=\boldsymbol{e}, M=2^{n+\ell+1}, r_{j}=2^{\ell+j}+1$: Todd knapsack

Special Cases of $t+1$-DKPs for $t=1$

- $\boldsymbol{p}=\boldsymbol{e}, M=2, \boldsymbol{r}=\mathbf{0}, \boldsymbol{u}=\boldsymbol{e}$ gives Jeroslow knapsack
$2 x_{1}+\cdots+2 x_{n}=n$
- other special cases: with $\boldsymbol{u}=\boldsymbol{e}$
- $\boldsymbol{p}=\boldsymbol{e}, M=n(n+1), \boldsymbol{r}=(1, \ldots, n)$: Avis knapsack
$-\boldsymbol{p}=\boldsymbol{e}, M=2^{n+\ell+1}, r_{j}=2^{\ell+j}+1$: Todd knapsack
- modification of above (Todd) settings: Gu et al. knapsacks

Special Cases of $t+1$-DKPs for $t=1$

- $\boldsymbol{p}=\boldsymbol{e}, M=2, \boldsymbol{r}=\mathbf{0}, \boldsymbol{u}=\boldsymbol{e}$ gives Jeroslow knapsack
$2 x_{1}+\cdots+2 x_{n}=n$
- other special cases: with $\boldsymbol{u}=\boldsymbol{e}$
- $\boldsymbol{p}=\boldsymbol{e}, M=n(n+1), \boldsymbol{r}=(1, \ldots, n)$: Avis knapsack
$-\boldsymbol{p}=\boldsymbol{e}, M=2^{n+\ell+1}, r_{j}=2^{\ell+j}+1$: Todd knapsack
- modification of above (Todd) settings: Gu et al. knapsacks
- with $u=+\infty$

Special Cases of $t+1$-DKPs for $t=1$

- $\boldsymbol{p}=\boldsymbol{e}, M=2, \boldsymbol{r}=\mathbf{0}, \boldsymbol{u}=\boldsymbol{e}$ gives Jeroslow knapsack
$2 x_{1}+\cdots+2 x_{n}=n$
- other special cases: with $\boldsymbol{u}=\boldsymbol{e}$
- $\boldsymbol{p}=\boldsymbol{e}, M=n(n+1), \boldsymbol{r}=(1, \ldots, n)$: Avis knapsack
$-\boldsymbol{p}=\boldsymbol{e}, M=2^{n+\ell+1}, r_{j}=2^{\ell+j}+1$: Todd knapsack
- modification of above (Todd) settings: Gu et al. knapsacks
- with $u=+\infty$
- $\boldsymbol{p}>0$: Cornuejols et al. knapsacks

Special Cases of $t+1$-DKPs for $t=1$

- $\boldsymbol{p}=\boldsymbol{e}, M=2, \boldsymbol{r}=\mathbf{0}, \boldsymbol{u}=\boldsymbol{e}$ gives Jeroslow knapsack
$2 x_{1}+\cdots+2 x_{n}=n$
- other special cases: with $\boldsymbol{u}=\boldsymbol{e}$
- $\boldsymbol{p}=\boldsymbol{e}, M=n(n+1), \boldsymbol{r}=(1, \ldots, n)$: Avis knapsack
$-\boldsymbol{p}=\boldsymbol{e}, M=2^{n+\ell+1}, r_{j}=2^{\ell+j}+1$: Todd knapsack
- modification of above (Todd) settings: Gu et al. knapsacks
- with $u=+\infty$
- $\boldsymbol{p}>0$: Cornuejols et al. knapsacks
- same as above, but equality: Aardal \& Lenstra knapsack

DKPs: Properties

DKPs: Properties

- infeasibility proven by split disjunction $\boldsymbol{p} \boldsymbol{x} \leq k \vee \boldsymbol{p} \boldsymbol{x} \geq k+1$, for some integer k

DKPs: Properties

- infeasibility proven by split disjunction $\boldsymbol{p} \boldsymbol{x} \leq k \vee \boldsymbol{p} \boldsymbol{x} \geq k+1$, for some integer k
- easy if branching on hyperplane $\boldsymbol{p} \boldsymbol{x}$

DKPs: Properties

- infeasibility proven by split disjunction $\boldsymbol{p} \boldsymbol{x} \leq k \vee \boldsymbol{p} \boldsymbol{x} \geq k+1$, for some integer k
- easy if branching on hyperplane $\boldsymbol{p} \boldsymbol{x}$ but hard for $\mathrm{B} \& \mathrm{~B}$

DKPs: Properties

- infeasibility proven by split disjunction $\boldsymbol{p} \boldsymbol{x} \leq k \vee \boldsymbol{p} \boldsymbol{x} \geq k+1$, for some integer k
- easy if branching on hyperplane $\boldsymbol{p} \boldsymbol{x}$ but hard for $\mathrm{B} \& \mathrm{~B}$ Theorem: If $u_{j}=+\infty$, then $\mathrm{B} \& \mathrm{~B}$ takes at least

$$
\binom{\left\lfloor k /\|\boldsymbol{p}\|_{\infty}\right\rfloor+n-1}{n-1} \text { nodes }
$$

DKPs: Properties

- infeasibility proven by split disjunction $\boldsymbol{p} \boldsymbol{x} \leq k \vee \boldsymbol{p} \boldsymbol{x} \geq k+1$, for some integer k
- easy if branching on hyperplane $\boldsymbol{p} \boldsymbol{x}$ but hard for $\mathrm{B} \& \mathrm{~B}$ Theorem: If $u_{j}=+\infty$, then $\mathrm{B} \& \mathrm{~B}$ takes at least

$$
\binom{\left\lfloor k /\|\boldsymbol{p}\|_{\infty}\right\rfloor+n-1}{n-1} \text { nodes }
$$

- easiness for hyperplane branching \Rightarrow hardness for ordinary $B \& B$

DKPs: Properties

- infeasibility proven by split disjunction $\boldsymbol{p} \boldsymbol{x} \leq k \vee \boldsymbol{p} \boldsymbol{x} \geq k+1$, for some integer k
- easy if branching on hyperplane $\boldsymbol{p} \boldsymbol{x}$ but hard for $\mathrm{B} \& \mathrm{~B}$ Theorem: If $u_{j}=+\infty$, then $\mathrm{B} \& \mathrm{~B}$ takes at least

$$
\binom{\left\lfloor k /\|\boldsymbol{p}\|_{\infty}\right\rfloor+n-1}{n-1} \text { nodes }
$$

- easiness for hyperplane branching \Rightarrow hardness for ordinary $B \& B$
- Krishnamoorthy (07): generic lower bound for the \# B\&B nodes for infeasible integer knapsacks;

DKPs: Properties

- infeasibility proven by split disjunction $\boldsymbol{p} \boldsymbol{x} \leq k \vee \boldsymbol{p} \boldsymbol{x} \geq k+1$, for some integer k
- easy if branching on hyperplane $\boldsymbol{p} \boldsymbol{x}$ but hard for $\mathrm{B} \& \mathrm{~B}$ Theorem: If $u_{j}=+\infty$, then $\mathrm{B} \& \mathrm{~B}$ takes at least

$$
\binom{\left\lfloor k /\|\boldsymbol{p}\|_{\infty}\right\rfloor+n-1}{n-1} \text { nodes }
$$

- easiness for hyperplane branching \Rightarrow hardness for ordinary $B \& B$
- Krishnamoorthy (07): generic lower bound for the \# B\&B nodes for infeasible integer knapsacks; M^{n-1} for DKPs

DKPs: Properties

- infeasibility proven by split disjunction $\boldsymbol{p} \boldsymbol{x} \leq k \vee \boldsymbol{p} \boldsymbol{x} \geq k+1$, for some integer k
- easy if branching on hyperplane $\boldsymbol{p} \boldsymbol{x}$ but hard for $\mathrm{B} \& \mathrm{~B}$ Theorem: If $u_{j}=+\infty$, then $\mathrm{B} \& \mathrm{~B}$ takes at least

$$
\binom{\left\lfloor k /\|\boldsymbol{p}\|_{\infty}\right\rfloor+n-1}{n-1} \text { nodes }
$$

- easiness for hyperplane branching \Rightarrow hardness for ordinary $B \& B$
- Krishnamoorthy (07): generic lower bound for the \# B\&B nodes for infeasible integer knapsacks; M^{n-1} for DKPs
- Recipe for generating DKPs (for $t=1$):

DKPs: Properties

- infeasibility proven by split disjunction $\boldsymbol{p} \boldsymbol{x} \leq k \vee \boldsymbol{p} \boldsymbol{x} \geq k+1$, for some integer k
- easy if branching on hyperplane $\boldsymbol{p} \boldsymbol{x}$ but hard for $\mathrm{B} \& \mathrm{~B}$ Theorem: If $u_{j}=+\infty$, then $\mathrm{B} \& \mathrm{~B}$ takes at least

$$
\binom{\left\lfloor k /\|\boldsymbol{p}\|_{\infty}\right\rfloor+n-1}{n-1} \text { nodes }
$$

- easiness for hyperplane branching \Rightarrow hardness for ordinary $B \& B$
- Krishnamoorthy (07): generic lower bound for the \# B\&B nodes for infeasible integer knapsacks; M^{n-1} for DKPs
- Recipe for generating DKPs (for $t=1$): InPut: $\boldsymbol{p}, \boldsymbol{r}, \boldsymbol{u}$;

DKPs: Properties

- infeasibility proven by split disjunction $\boldsymbol{p} \boldsymbol{x} \leq k \vee \boldsymbol{p} \boldsymbol{x} \geq k+1$, for some integer k
- easy if branching on hyperplane $\boldsymbol{p} \boldsymbol{x}$ but hard for $\mathrm{B} \& \mathrm{~B}$ Theorem: If $u_{j}=+\infty$, then $\mathrm{B} \& \mathrm{~B}$ takes at least

$$
\binom{\left\lfloor k /\|\boldsymbol{p}\|_{\infty}\right\rfloor+n-1}{n-1} \text { nodes }
$$

- easiness for hyperplane branching \Rightarrow hardness for ordinary $B \& B$
- Krishnamoorthy (07): generic lower bound for the \# B\&B nodes for infeasible integer knapsacks; M^{n-1} for DKPs
- Recipe for generating DKPs (for $t=1$): Input: $\boldsymbol{p}, \boldsymbol{r}, \boldsymbol{u}$; Output: M, β_{1}, β_{2} s.t. infeasibility of DKP is proven by branching on $\boldsymbol{p} \boldsymbol{x}$

Rangespace Reformulation (RSRef)

Rangespace Reformulation (RSRef)

- reformulation of general IPs

$$
\left\{\boldsymbol{b}^{\prime} \leq A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\}
$$

Rangespace Reformulation (RSRef)

- reformulation of general IPs

$$
\left\{\boldsymbol{b}^{\prime} \leq A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\} \rightarrow\left\{\boldsymbol{b}^{\prime} \leq(A U) \boldsymbol{y} \leq \boldsymbol{b}, \boldsymbol{y} \in \mathbb{Z}^{n}\right\}
$$

Rangespace Reformulation (RSRef)

- reformulation of general IPs

$$
\left\{\boldsymbol{b}^{\prime} \leq A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\} \quad \rightarrow \quad\left\{\boldsymbol{b}^{\prime} \leq(A U) \boldsymbol{y} \leq \boldsymbol{b}, \boldsymbol{y} \in \mathbb{Z}^{n}\right\}
$$

U is unimodular, found by basis reduction

Rangespace Reformulation (RSRef)

- reformulation of general IPs

$$
\left\{\boldsymbol{b}^{\prime} \leq A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\} \rightarrow\left\{\boldsymbol{b}^{\prime} \leq(A U) \boldsymbol{y} \leq \boldsymbol{b}, \boldsymbol{y} \in \mathbb{Z}^{n}\right\}
$$

U is unimodular, found by basis reduction

- simplifies and generalizes the Aardal et al. reformulation

Rangespace Reformulation (RSRef)

- reformulation of general IPs

$$
\left\{\boldsymbol{b}^{\prime} \leq A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\} \rightarrow\left\{\boldsymbol{b}^{\prime} \leq(A U) \boldsymbol{y} \leq \boldsymbol{b}, \boldsymbol{y} \in \mathbb{Z}^{n}\right\}
$$

U is unimodular, found by basis reduction

- simplifies and generalizes the Aardal et al. reformulation
- dimension remains the same

Rangespace Reformulation (RSRef)

- reformulation of general IPs

$$
\left\{\boldsymbol{b}^{\prime} \leq A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\} \rightarrow\left\{\boldsymbol{b}^{\prime} \leq(A U) \boldsymbol{y} \leq \boldsymbol{b}, \boldsymbol{y} \in \mathbb{Z}^{n}\right\}
$$

U is unimodular, found by basis reduction

- simplifies and generalizes the Aardal et al. reformulation
- dimension remains the same
- DKPs become easy after RSRef is applied

Rangespace Reformulation (RSRef)

- reformulation of general IPs

$$
\left\{\boldsymbol{b}^{\prime} \leq A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\} \quad \rightarrow \quad\left\{\boldsymbol{b}^{\prime} \leq(A U) \boldsymbol{y} \leq \boldsymbol{b}, \boldsymbol{y} \in \mathbb{Z}^{n}\right\}
$$

U is unimodular, found by basis reduction

- simplifies and generalizes the Aardal et al. reformulation
- dimension remains the same
- DKPs become easy after RSRef is applied
- branching on $\boldsymbol{p} \boldsymbol{x} \Longleftrightarrow$ branching on "last few" y_{j} 's
- e.g., $n=50, x_{j} \in\{0,1\}, p_{j} \in[1,10], r_{j} \in[-10,10], M=10^{4}$: CPLEX 9.0 takes ≥ 6.7 million $B \& B$ nodes

Rangespace Reformulation (RSRef)

- reformulation of general IPs

$$
\left\{\boldsymbol{b}^{\prime} \leq A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \in \mathbb{Z}^{n}\right\} \quad \rightarrow \quad\left\{\boldsymbol{b}^{\prime} \leq(A U) \boldsymbol{y} \leq \boldsymbol{b}, \boldsymbol{y} \in \mathbb{Z}^{n}\right\}
$$

U is unimodular, found by basis reduction

- simplifies and generalizes the Aardal et al. reformulation
- dimension remains the same
- DKPs become easy after RSRef is applied
- branching on $\boldsymbol{p} \boldsymbol{x} \Longleftrightarrow$ branching on "last few" y_{j} 's
- e.g., $n=50, x_{j} \in\{0,1\}, p_{j} \in[1,10], r_{j} \in[-10,10], M=10^{4}$: CPLEX 9.0 takes ≥ 6.7 million $B \& B$ nodes
- RSRef solves in root node

DKP example in 2D

$$
\text { Let } \boldsymbol{p}=(1,1), M=20, \boldsymbol{r}=(1,-1), \boldsymbol{u}=(6,6)
$$

DKP example in 2D

$$
\begin{aligned}
& \text { Let } \boldsymbol{p}=(1,1), M=20, \boldsymbol{r}=(1,-1), \boldsymbol{u}=(6,6) \\
& \begin{aligned}
106 & \leq 21 x_{1}+19 x_{2} \leq 113 \\
0 & \leq \quad x_{1}, x_{2} \leq 6 \\
& x_{1}, x_{2} \in \mathbb{Z}
\end{aligned}
\end{aligned}
$$

DKP example in 2D

$$
\begin{aligned}
& \text { Let } \boldsymbol{p}=(1,1), M=20, \boldsymbol{r}=(1,-1), \boldsymbol{u}=(6,6) \\
& 106 \leq 21 x_{1}+19 x_{2} \leq 113 \\
& 0 \leq x_{1}, x_{2} \leq x_{0} \\
& x_{1}, x_{2} \in \mathbb{Z} \\
&
\end{aligned}
$$

DKP example in 2D

$$
\text { Let } \boldsymbol{p}=(1,1), M=20, \boldsymbol{r}=(1,-1), \boldsymbol{u}=(6,6)
$$

$$
106 \leq 21 x_{1}+19 x_{2} \leq 113
$$

$$
0 \leq x_{1}, x_{2} \quad \leq 6 \quad \rightarrow
$$

x_{2}

$$
\begin{aligned}
& 106 \leq-2 y_{1}+7 y_{2} \leq 113 \\
& \begin{array}{l}
0 \leq-y_{1}-6 y_{2} \leq 6 \\
0 \leq y_{1}+7 y_{2} \leq 6
\end{array} \\
& y_{1}, y_{2} \in \mathbb{Z}
\end{aligned}
$$

DKP example in 2D

$$
\begin{aligned}
& \text { Let } \boldsymbol{p}=(1,1), M=20, \boldsymbol{r}=(1,-1), \boldsymbol{u}=(6,6) \\
& 106 \leq 21 x_{1}+19 x_{2} \leq 113 \\
& 0 \leq x_{1}, x_{2} \leq 6 \rightarrow \\
& x_{1}, x_{2} \in \mathbb{Z}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x}_{2}
\end{aligned}
$$

DKPs get harder as t grows

DKPs get harder as t grows

Two infeasible knapsack problems: Can you tell which one is harder?

$$
\left.\left.\begin{array}{r}
1473 x_{1}+1524 x_{2}+1569 x_{3}+1570 x_{4}+1575 x_{5}+1624 x_{6}+1625 x_{7} \\
+2160 x_{8}+2206 x_{9}+2207 x_{10}+2211 x_{11}+2211 x_{12}+2257 x_{13} \\
+2260 x_{14}+2305 x_{15}+2843 x_{16}+2943 x_{17}+2947 x_{18}+2991 x_{19} \\
+2993 x_{20}+2997 x_{21}+3528 x_{22}+3577 x_{23}+3631 x_{24}+3677 x_{25} \\
=28980, x_{i} \in\{0,1\} \\
1314 x_{1}+1315 x_{2}+1317 x_{3}+1318 x_{4}+1971 x_{5}+1972 x_{6}+1973 x_{7} \\
+1976 x_{8}+1977 x_{9}+1977 x_{10}+2629 x_{11}+2630 x_{12}+2631 x_{13} \\
+2631 x_{14}+2633 x_{15}+2634 x_{16}+2635 x_{17}
\end{array}+2635 x_{18}+3287 x_{19}\right\}+3293 x_{24}+3293 x_{25}\right\}
$$

Two hard knapsacks

Two hard knapsacks

using CPLEX 9.0 to prove infeasibility

Two hard knapsacks

using CPLEX 9.0 to prove infeasibility

- second knapsack has $t=1$, and takes $\approx 22,000$ nodes

Two hard knapsacks

using CPLEX 9.0 to prove infeasibility

- second knapsack has $t=1$, and takes $\approx 22,000$ nodes
- first knapsack has $t=2$, and takes ≈ 3.6 million nodes

Questions

Questions

- Can we create and analyze classes of $t+1$-DKPs for $t \geq 2$?

Questions

- Can we create and analyze classes of $t+1$-DKPs for $t \geq 2$?
- Do they have more interesting structure than when $t=1$?

Questions

- Can we create and analyze classes of $t+1$-DKPs for $t \geq 2$?
- Do they have more interesting structure than when $t=1$?
- "thin" directions and integer width?

Questions

- Can we create and analyze classes of $t+1$-DKPs for $t \geq 2$?
- Do they have more interesting structure than when $t=1$?
- "thin" directions and integer width?
- width and integer width:

Questions

- Can we create and analyze classes of $t+1$-DKPs for $t \geq 2$?
- Do they have more interesting structure than when $t=1$?
- "thin" directions and integer width?
- width and integer width: given polyhedron \mathcal{K}, direction p

Questions

- Can we create and analyze classes of $t+1$-DKPs for $t \geq 2$?
- Do they have more interesting structure than when $t=1$?
- "thin" directions and integer width?
- width and integer width: given polyhedron \mathcal{K}, direction p

$$
\operatorname{width}(\boldsymbol{p}, \mathcal{K})=\max \{\boldsymbol{p} \boldsymbol{x} \mid \boldsymbol{x} \in \mathcal{K}\}-\min \{\boldsymbol{p} \boldsymbol{x} \mid \boldsymbol{x} \in \mathcal{K}\}
$$

Questions

- Can we create and analyze classes of $t+1$-DKPs for $t \geq 2$?
- Do they have more interesting structure than when $t=1$?
- "thin" directions and integer width?
- width and integer width: given polyhedron \mathcal{K}, direction p

$$
\begin{aligned}
\operatorname{width}(\boldsymbol{p}, \mathcal{K}) & =\max \{\boldsymbol{p} \boldsymbol{x} \mid \boldsymbol{x} \in \mathcal{K}\}-\min \{\boldsymbol{p} \boldsymbol{x} \mid \boldsymbol{x} \in \mathcal{K}\} \\
\operatorname{iwidth}(\boldsymbol{p}, \mathcal{K}) & =\lfloor\max \{\boldsymbol{p} \boldsymbol{x} \mid \boldsymbol{x} \in \mathcal{K}\}\rfloor-\lceil\min \{\boldsymbol{p} \boldsymbol{x} \mid \boldsymbol{x} \in \mathcal{K}\}\rceil+1
\end{aligned}
$$

Questions

- Can we create and analyze classes of $t+1$-DKPs for $t \geq 2$?
- Do they have more interesting structure than when $t=1$?
- "thin" directions and integer width?
- width and integer width: given polyhedron \mathcal{K}, direction p

$$
\begin{aligned}
\operatorname{width}(\boldsymbol{p}, \mathcal{K}) & =\max \{\boldsymbol{p} \boldsymbol{x} \mid \boldsymbol{x} \in \mathcal{K}\}-\min \{\boldsymbol{p} \boldsymbol{x} \mid \boldsymbol{x} \in \mathcal{K}\} \\
\operatorname{iwidth}(\boldsymbol{p}, \mathcal{K}) & =\lfloor\max \{\boldsymbol{p} \boldsymbol{x} \mid \boldsymbol{x} \in \mathcal{K}\}\rfloor-\lceil\min \{\boldsymbol{p} \boldsymbol{x} \mid \boldsymbol{x} \in \mathcal{K}\}\rceil+1
\end{aligned}
$$

iwidth (\boldsymbol{p}) : \# branches created by branching on the hyperplane $\boldsymbol{p} \boldsymbol{x}$

Cascade Knapsack Problem (CKP)

Cascade Knapsack Problem (CKP)

- instance of 3 -DKP $\left(t=2, \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\boldsymbol{p}_{2} M_{2}+\boldsymbol{r}\right)$

Cascade Knapsack Problem (CKP)

- instance of 3 -DKP $\left(t=2, \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\boldsymbol{p}_{2} M_{2}+\boldsymbol{r}\right)$ with $\boldsymbol{u}=\boldsymbol{e}$ ($x_{j} \in\{0,1\}$) such that
- it is integer infeasible by choice of β_{1}, β_{2};

Cascade Knapsack Problem (CKP)

- instance of 3 -DKP $\left(t=2, \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\boldsymbol{p}_{2} M_{2}+\boldsymbol{r}\right)$ with $\boldsymbol{u}=\boldsymbol{e}$ ($x_{j} \in\{0,1\}$) such that
- it is integer infeasible by choice of β_{1}, β_{2};
$-\operatorname{width}\left(\boldsymbol{e}_{j}, \mathrm{CKP}\right)=1-0, \quad \operatorname{iwidth}\left(\boldsymbol{e}_{j}, \mathrm{CKP}\right)=2$ for all j;

Cascade Knapsack Problem (CKP)

- instance of 3 -DKP $\left(t=2, \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\boldsymbol{p}_{2} M_{2}+\boldsymbol{r}\right)$ with $\boldsymbol{u}=\boldsymbol{e}$ ($x_{j} \in\{0,1\}$) such that
- it is integer infeasible by choice of β_{1}, β_{2};
$-\operatorname{width}\left(\boldsymbol{e}_{j}, \mathrm{CKP}\right)=1-0$, iwidth $\left(\boldsymbol{e}_{j}, \mathrm{CKP}\right)=2$ for all j;
$-1<\operatorname{width}\left(\boldsymbol{p}_{1}, C K P\right)<2$ and $\operatorname{iwidth}\left(\boldsymbol{p}_{1}\right.$, CKP $)=1$,

Cascade Knapsack Problem (CKP)

- instance of 3 -DKP $\left(t=2, \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\boldsymbol{p}_{2} M_{2}+\boldsymbol{r}\right)$ with $\boldsymbol{u}=\boldsymbol{e}$ ($x_{j} \in\{0,1\}$) such that
- it is integer infeasible by choice of β_{1}, β_{2};
$-\operatorname{width}\left(\boldsymbol{e}_{j}, \mathrm{CKP}\right)=1-0, \quad$ iwidth $\left(\boldsymbol{e}_{j}, \mathrm{CKP}\right)=2$ for all j;
$-1<\operatorname{width}\left(\boldsymbol{p}_{1}, C K P\right)<2$ and iwidth $\left(\boldsymbol{p}_{1}\right.$, CKP $)=1$, so branching on $\boldsymbol{p}_{1} \boldsymbol{x}$ amounts to just adding $\boldsymbol{p}_{1} \boldsymbol{x}=k_{1}$ for some integer k_{1};

Cascade Knapsack Problem (CKP)

- instance of 3 -DKP $\left(t=2, \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\boldsymbol{p}_{2} M_{2}+\boldsymbol{r}\right)$ with $\boldsymbol{u}=\boldsymbol{e}$ ($x_{j} \in\{0,1\}$) such that
- it is integer infeasible by choice of β_{1}, β_{2};
$-\operatorname{width}\left(\boldsymbol{e}_{j}, \mathrm{CKP}\right)=1-0, \quad$ iwidth $\left(\boldsymbol{e}_{j}, \mathrm{CKP}\right)=2$ for all j;
$-1<\operatorname{width}\left(\boldsymbol{p}_{1}\right.$, CKP $)<2$ and iwidth $\left(\boldsymbol{p}_{1}, \mathrm{CKP}\right)=1$, so branching on $\boldsymbol{p}_{1} \boldsymbol{x}$ amounts to just adding $\boldsymbol{p}_{1} \boldsymbol{x}=k_{1}$ for some integer k_{1};
$-\operatorname{width}\left(\boldsymbol{p}_{2}, \operatorname{CKP} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=k_{1}\right)<1$ and iwidth $\left(\boldsymbol{p}_{2}, \operatorname{CKP} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=\right.$ $\left.k_{1}\right)=0$.

Cascade Knapsack Problem (CKP)

- instance of 3 -DKP $\left(t=2, \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\boldsymbol{p}_{2} M_{2}+\boldsymbol{r}\right)$ with $\boldsymbol{u}=\boldsymbol{e}$ ($x_{j} \in\{0,1\}$) such that
- it is integer infeasible by choice of β_{1}, β_{2};
$-\operatorname{width}\left(\boldsymbol{e}_{j}, \mathrm{CKP}\right)=1-0, \quad$ iwidth $\left(\boldsymbol{e}_{j}, \mathrm{CKP}\right)=2$ for all j;
$-1<\operatorname{width}\left(\boldsymbol{p}_{1}, \mathrm{CKP}\right)<2$ and iwidth $\left(\boldsymbol{p}_{1}, \mathrm{CKP}\right)=1$, so branching on $\boldsymbol{p}_{1} \boldsymbol{x}$ amounts to just adding $\boldsymbol{p}_{1} \boldsymbol{x}=k_{1}$ for some integer k_{1};
$-\operatorname{width}\left(\boldsymbol{p}_{2}, \operatorname{CKP} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=k_{1}\right)<1$ and iwidth $\left(\boldsymbol{p}_{2}\right.$, CKP $\wedge \boldsymbol{p}_{1} \boldsymbol{x}=$ $\left.k_{1}\right)=0$.
- branching on $\boldsymbol{p}_{1} \boldsymbol{x}$ and then on $\boldsymbol{p}_{2} \boldsymbol{x}$ kills the problem

Cascade Knapsack Problem (CKP)

- instance of 3 -DKP $\left(t=2, \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\boldsymbol{p}_{2} M_{2}+\boldsymbol{r}\right)$ with $\boldsymbol{u}=\boldsymbol{e}$ ($x_{j} \in\{0,1\}$) such that
- it is integer infeasible by choice of β_{1}, β_{2};
$-\operatorname{width}\left(\boldsymbol{e}_{j}, \mathrm{CKP}\right)=1-0, \quad$ iwidth $\left(\boldsymbol{e}_{j}, \mathrm{CKP}\right)=2$ for all j;
$-1<\operatorname{width}\left(\boldsymbol{p}_{1}\right.$, CKP $)<2$ and iwidth $\left(\boldsymbol{p}_{1}\right.$, CKP $)=1$, so branching on $\boldsymbol{p}_{1} \boldsymbol{x}$ amounts to just adding $\boldsymbol{p}_{1} \boldsymbol{x}=k_{1}$ for some integer k_{1};
$-\operatorname{width}\left(\boldsymbol{p}_{2}, \operatorname{CKP} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=k_{1}\right)<1$ and iwidth $\left(\boldsymbol{p}_{2}\right.$, CKP $\wedge \boldsymbol{p}_{1} \boldsymbol{x}=$ $\left.k_{1}\right)=0$.
- branching on $\boldsymbol{p}_{1} \boldsymbol{x}$ and then on $\boldsymbol{p}_{2} \boldsymbol{x}$ kills the problem
- effect of branching on $\boldsymbol{p}_{1} \boldsymbol{x}$ cascades to the next level $\boldsymbol{p}_{2} \boldsymbol{x}$

Example 1: CKP $_{1}$

Example 1: CKP $_{1}$

$$
\begin{gathered}
4196 \leq 340 x_{1}+452 x_{2}+695 x_{3}+926 x_{4}+1050 x_{5} \\
+1089 x_{6}+1190 x_{7}+1296 x_{8}+1342 x_{9} \leq 4197 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

Example 1: CKP $_{1}$

$$
\begin{gathered}
4196 \leq 340 x_{1}+452 x_{2}+695 x_{3}+926 x_{4}+1050 x_{5} \\
+1089 x_{6}+1190 x_{7}+1296 x_{8}+1342 x_{9} \leq 4197 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

- CPLEX 11.0 takes 64 B\&B nodes

Example 1: CKP $_{1}$

$$
\begin{gathered}
4196 \leq 340 x_{1}+452 x_{2}+695 x_{3}+926 x_{4}+1050 x_{5} \\
+1089 x_{6}+1190 x_{7}+1296 x_{8}+1342 x_{9} \leq 4197 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

- CPLEX 11.0 takes 64 B\&B nodes
- $\operatorname{width}\left(\boldsymbol{e}_{j}, \mathrm{CKP}_{1}\right)=1, \quad \operatorname{iwidth}\left(\boldsymbol{e}_{j}, \mathrm{CKP}_{1}\right)=2$ for all j

Example 1: $\mathbf{C K P}_{1}$

$$
\begin{gathered}
4196 \leq 340 x_{1}+452 x_{2}+695 x_{3}+926 x_{4}+1050 x_{5} \\
+1089 x_{6}+1190 x_{7}+1296 x_{8}+1342 x_{9} \leq 4197 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

- CPLEX 11.0 takes 64 B\&B nodes
- $\operatorname{width}\left(\boldsymbol{e}_{j}, \mathrm{CKP}_{1}\right)=1, \quad \operatorname{iwidth}\left(\boldsymbol{e}_{j}, \mathrm{CKP}_{1}\right)=2$ for all j
- $\boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\boldsymbol{p}_{2} M_{2}+\boldsymbol{r}$, with $M_{1}=127, M_{2}=12$,

Example 1: CKP $_{1}$

$$
\begin{gathered}
4196 \leq 340 x_{1}+452 x_{2}+695 x_{3}+926 x_{4}+1050 x_{5} \\
+1089 x_{6}+1190 x_{7}+1296 x_{8}+1342 x_{9} \leq 4197 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

- CPLEX 11.0 takes 64 B\&B nodes
- $\operatorname{width}\left(\boldsymbol{e}_{j}, \operatorname{CKP}_{1}\right)=1$, iwidth $\left(\boldsymbol{e}_{j}, \mathrm{CKP}_{1}\right)=2$ for all j
- $\boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\boldsymbol{p}_{2} M_{2}+\boldsymbol{r}$, with $M_{1}=127, M_{2}=12$,

$$
\begin{aligned}
\boldsymbol{p}_{1} & =(2,3,5,7,8,8,9,10,10), \\
\boldsymbol{p}_{2} & =(7,6,5,3,3,6,4,2,6), \quad \text { and } \\
\boldsymbol{r} & =(2,-1,0,1,-2,1,-1,2,0)
\end{aligned}
$$

Example 1: $\mathbf{C K P}_{1}$ - Properties

Example 1: $\mathbf{C K P}_{1}$ - Properties

- $\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{1}\right\}=31.967, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{1}\right\}=30.102 ;$

Example 1: CKP $_{1}$ - Properties

- $\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{1}\right\}=31.967, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{1}\right\}=30.102 ;$ $\operatorname{width}\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=1.865$,

Example 1: CKP $_{1}$ - Properties

- $\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{1}\right\}=31.967, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{1}\right\}=30.102 ;$ $\operatorname{width}\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=1.865, \quad$ iwidth $\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=1 ;$

Example 1: $\mathbf{C K P}_{1}$ - Properties

- $\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{1}\right\}=31.967, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{1}\right\}=30.102 ;$ $\operatorname{width}\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=1.865, \quad$ iwidth $\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=1 ;$
- $\boldsymbol{p}_{1} \boldsymbol{x}=31$ is the only branch;

Example 1: CKP $_{1}$ - Properties

- $\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{1}\right\}=31.967, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{1}\right\}=30.102 ;$ $\operatorname{width}\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=1.865, \quad$ iwidth $\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=1 ;$
- $\boldsymbol{p}_{1} \boldsymbol{x}=31$ is the only branch;
- CPLEX 11.0 takes 37 B\&B nodes for $\mathrm{CKP}_{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31$

Example 1: $\mathbf{C K P}_{1}$ - Properties

- $\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid \mathrm{CKP}_{1}\right\}=31.967, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid \mathrm{CKP}_{1}\right\}=30.102 ;$ $\operatorname{width}\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=1.865, \quad$ iwidth $\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=1 ;$
- $\boldsymbol{p}_{1} \boldsymbol{x}=31$ is the only branch;
- CPLEX 11.0 takes $37 \mathrm{~B} \& \mathrm{~B}$ nodes for $\mathrm{CKP}_{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31$
$-\max \left\{\boldsymbol{p}_{2} \boldsymbol{x} \mid\right.$ CKP $\left._{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31\right\}=21.989$, $\min \left\{\boldsymbol{p}_{2} \boldsymbol{x} \mid \mathrm{CKP}_{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31\right\}=21.083 ;$

Example 1: $\mathbf{C K P}_{1}$ - Properties

- $\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{1}\right\}=31.967, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{1}\right\}=30.102 ;$ $\operatorname{width}\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=1.865, \quad$ iwidth $\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=1 ;$
- $\boldsymbol{p}_{1} \boldsymbol{x}=31$ is the only branch;
- CPLEX 11.0 takes $37 \mathrm{~B} \& \mathrm{~B}$ nodes for $\mathrm{CKP}_{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31$
$-\max \left\{\boldsymbol{p}_{2} \boldsymbol{x} \mid\right.$ CKP $\left._{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31\right\}=21.989$, $\min \left\{\boldsymbol{p}_{2} \boldsymbol{x} \mid \mathrm{CKP}_{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31\right\}=21.083$; width $\left(\boldsymbol{p}_{2}, \mathrm{CKP}_{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31\right)=0.906$, iwidth $=0$

Example 1: $\mathbf{C K P}_{1}$ - Properties

- $\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid \mathrm{CKP}_{1}\right\}=31.967, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid \mathrm{CKP}_{1}\right\}=30.102 ;$ $\operatorname{width}\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=1.865, \quad$ iwidth $\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=1 ;$
- $\boldsymbol{p}_{1} \boldsymbol{x}=31$ is the only branch;
- CPLEX 11.0 takes $37 \mathrm{~B} \& \mathrm{~B}$ nodes for $\mathrm{CKP}_{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31$
$-\max \left\{\boldsymbol{p}_{2} \boldsymbol{x} \mid\right.$ CKP $\left._{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31\right\}=21.989$, $\min \left\{\boldsymbol{p}_{2} \boldsymbol{x} \mid \mathrm{CKP}_{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31\right\}=21.083$; width $\left(\boldsymbol{p}_{2}, \mathrm{CKP}_{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31\right)=0.906$, iwidth $=0$
- comparable DKP: $\boldsymbol{a}=\boldsymbol{p}_{1} M+\boldsymbol{r}$, with $M=136$; for $x_{j} \in\{0,1\}$

Example 1: $\mathbf{C K P}_{1}$ - Properties

- $\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{1}\right\}=31.967, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{1}\right\}=30.102 ;$ $\operatorname{width}\left(\boldsymbol{p}_{1}\right.$, CKP $\left._{1}\right)=1.865, \quad$ iwidth $\left(\boldsymbol{p}_{1}\right.$, CKP $\left._{1}\right)=1 ;$
- $\boldsymbol{p}_{1} \boldsymbol{x}=31$ is the only branch;
- CPLEX 11.0 takes 37 B\&B nodes for CKP $_{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31$
$-\max \left\{\boldsymbol{p}_{2} \boldsymbol{x} \mid\right.$ CKP $\left._{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31\right\}=21.989$, $\min \left\{\boldsymbol{p}_{2} \boldsymbol{x} \mid \mathrm{CKP}_{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31\right\}=21.083$; $\operatorname{width}\left(\boldsymbol{p}_{2}, \mathrm{CKP}_{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31\right)=0.906$, iwidth $=0$
- comparable DKP: $\boldsymbol{a}=\boldsymbol{p}_{1} M+\boldsymbol{r}$, with $M=136$; for $x_{j} \in\{0,1\}$

$$
\begin{gathered}
4223 \leq 274 x_{1}+407 x_{2}+680 x_{3}+953 x_{4}+1086 x_{5}+ \\
1089 x_{6}+1223 x_{7}+1362 x_{8}+1360 x_{9} \leq 4224
\end{gathered}
$$

Example 1: $\mathbf{C K P}_{1}$ - Properties

- $\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{1}\right\}=31.967, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{1}\right\}=30.102 ;$ $\operatorname{width}\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=1.865, \quad$ iwidth $\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=1 ;$
- $\boldsymbol{p}_{1} \boldsymbol{x}=31$ is the only branch;
- CPLEX 11.0 takes $37 \mathrm{~B} \& \mathrm{~B}$ nodes for $\mathrm{CKP}_{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31$
$-\max \left\{\boldsymbol{p}_{2} \boldsymbol{x} \mid\right.$ CKP $\left._{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31\right\}=21.989$, $\min \left\{\boldsymbol{p}_{2} \boldsymbol{x} \mid \mathrm{CKP}_{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31\right\}=21.083$; $\operatorname{width}\left(\boldsymbol{p}_{2}, \mathrm{CKP}_{1} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=31\right)=0.906$, iwidth $=0$
- comparable DKP: $\boldsymbol{a}=\boldsymbol{p}_{1} M+\boldsymbol{r}$, with $M=136$; for $x_{j} \in\{0,1\}$

$$
\begin{gathered}
4223 \leq 274 x_{1}+407 x_{2}+680 x_{3}+953 x_{4}+1086 x_{5}+ \\
1089 x_{6}+1223 x_{7}+1362 x_{8}+1360 x_{9} \quad \leq 4224
\end{gathered}
$$

CPLEX 11.0 takes $44 \mathrm{~B} \& \mathrm{~B}$ nodes

width v / s integer width

width v / s integer width

- for CKP_{1}, $\operatorname{width}\left(\boldsymbol{p}_{1}\right)=1.865$, bigger than width $\left(\boldsymbol{e}_{j}\right)=1$

width v / s integer width

- for CKP_{1}, $\operatorname{width}\left(\boldsymbol{p}_{1}\right)=1.865$, bigger than width $\left(\boldsymbol{e}_{j}\right)=1$
- but iwidth $\left(\boldsymbol{p}_{1}\right)=1$, which is smaller than iwidth $\left(\boldsymbol{e}_{j}\right)=2$

width v / s integer width

- for CKP_{1}, $\operatorname{width}\left(\boldsymbol{p}_{1}\right)=1.865$, bigger than width $\left(\boldsymbol{e}_{j}\right)=1$
- but iwidth $\left(\boldsymbol{p}_{1}\right)=1$, which is smaller than iwidth $\left(\boldsymbol{e}_{j}\right)=2$
- width is not a good predictor of iwidth

width v / s integer width

- for CKP_{1}, $\operatorname{width}\left(\boldsymbol{p}_{1}\right)=1.865$, bigger than width $\left(\boldsymbol{e}_{j}\right)=1$
- but iwidth $\left(\boldsymbol{p}_{1}\right)=1$, which is smaller than iwidth $\left(\boldsymbol{e}_{j}\right)=2$
- width is not a good predictor of iwidth
- preferable to branch on \boldsymbol{p}_{1} according to iwidth

width v / s integer width

- for CKP_{1}, width $\left(\boldsymbol{p}_{1}\right)=1.865$, bigger than width $\left(\boldsymbol{e}_{j}\right)=1$
- but iwidth $\left(\boldsymbol{p}_{1}\right)=1$, which is smaller than iwidth $\left(\boldsymbol{e}_{j}\right)=2$
- width is not a good predictor of iwidth
- preferable to branch on \boldsymbol{p}_{1} according to iwidth
- non-trivial to identify \boldsymbol{p}_{1}

width v / s integer width

- for CKP_{1}, $\operatorname{width}\left(\boldsymbol{p}_{1}\right)=1.865$, bigger than width $\left(\boldsymbol{e}_{j}\right)=1$
- but iwidth $\left(\boldsymbol{p}_{1}\right)=1$, which is smaller than iwidth $\left(\boldsymbol{e}_{j}\right)=2$
- width is not a good predictor of iwidth
- preferable to branch on \boldsymbol{p}_{1} according to iwidth
- non-trivial to identify \boldsymbol{p}_{1} (RSRef)

width v / s integer width

- for CKP_{1}, $\operatorname{width}\left(\boldsymbol{p}_{1}\right)=1.865$, bigger than width $\left(\boldsymbol{e}_{j}\right)=1$
- but iwidth $\left(\boldsymbol{p}_{1}\right)=1$, which is smaller than iwidth $\left(\boldsymbol{e}_{j}\right)=2$
- width is not a good predictor of iwidth
- preferable to branch on \boldsymbol{p}_{1} according to iwidth
- non-trivial to identify \boldsymbol{p}_{1} (RSRef)
- Cook and Kannan (personal communication)

width v / s integer width

- for CKP_{1}, $\operatorname{width}\left(\boldsymbol{p}_{1}\right)=1.865$, bigger than width $\left(\boldsymbol{e}_{j}\right)=1$
- but iwidth $\left(\boldsymbol{p}_{1}\right)=1$, which is smaller than iwidth $\left(\boldsymbol{e}_{j}\right)=2$
- width is not a good predictor of iwidth
- preferable to branch on \boldsymbol{p}_{1} according to iwidth
- non-trivial to identify \boldsymbol{p}_{1} (RSRef)
- Cook and Kannan (personal communication) studied cases when width $=1.9$ (say) and iwidth $=1$

width v / s integer width

- for CKP_{1}, $\operatorname{width}\left(\boldsymbol{p}_{1}\right)=1.865$, bigger than width $\left(\boldsymbol{e}_{j}\right)=1$
- but iwidth $\left(\boldsymbol{p}_{1}\right)=1$, which is smaller than iwidth $\left(\boldsymbol{e}_{j}\right)=2$
- width is not a good predictor of iwidth
- preferable to branch on \boldsymbol{p}_{1} according to iwidth
- non-trivial to identify \boldsymbol{p}_{1} (RSRef)
- Cook and Kannan (personal communication) studied cases when width $=1.9$ (say) and iwidth $=1$
- We create variation of CKP with width $\left(\boldsymbol{p}_{1}\right)>1$ and $\operatorname{iwidth}\left(\boldsymbol{p}_{1}\right)=$ 2;

width v / s integer width

- for $\operatorname{CKP}_{1}, \operatorname{width}\left(\boldsymbol{p}_{1}\right)=1.865$, bigger than width $\left(\boldsymbol{e}_{j}\right)=1$
- but iwidth $\left(\boldsymbol{p}_{1}\right)=1$, which is smaller than iwidth $\left(\boldsymbol{e}_{j}\right)=2$
- width is not a good predictor of iwidth
- preferable to branch on \boldsymbol{p}_{1} according to iwidth
- non-trivial to identify \boldsymbol{p}_{1} (RSRef)
- Cook and Kannan (personal communication) studied cases when width $=1.9$ (say) and iwidth $=1$
- We create variation of CKP with width $\left(\boldsymbol{p}_{1}\right)>1$ and $\operatorname{iwidth}\left(\boldsymbol{p}_{1}\right)=$ 2 ; for both branches of $\boldsymbol{p}_{1} \boldsymbol{x}$, branching on $\boldsymbol{p}_{2} \boldsymbol{x}$ proves infeasibility

Example 2: $\mathbf{C K P}_{2}$

Example 2: $\mathbf{C K P}_{2}$

$$
\begin{gathered}
4399 \leq 344 x_{1}+458 x_{2}+705 x_{3}+940 x_{4}+1066 x_{5} \\
+1105 x_{6}+1208 x_{7}+1316 x_{8}+1362 x_{9} \leq 4400 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

Example 2: $\mathbf{C K P}_{2}$

$$
\begin{gathered}
4399 \leq 344 x_{1}+458 x_{2}+705 x_{3}+940 x_{4}+1066 x_{5} \\
+1105 x_{6}+1208 x_{7}+1316 x_{8}+1362 x_{9} \leq 4400 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

- same $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{r}$ as in CKP_{1}, but $M_{1}=129, M_{2}=12$

Example 2: $\mathbf{C K P}_{2}$

$$
\begin{gathered}
4399 \leq 344 x_{1}+458 x_{2}+705 x_{3}+940 x_{4}+1066 x_{5} \\
+1105 x_{6}+1208 x_{7}+1316 x_{8}+1362 x_{9} \leq 4400 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

- same $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{r}$ as in CKP_{1}, but $M_{1}=129, M_{2}=12$
- CPLEX 11.0 takes 95 B\&B nodes

Example 2: $\mathbf{C K P}_{2}$

$$
\begin{gathered}
4399 \leq 344 x_{1}+458 x_{2}+705 x_{3}+940 x_{4}+1066 x_{5} \\
+1105 x_{6}+1208 x_{7}+1316 x_{8}+1362 x_{9} \leq 4400 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

- same $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{r}$ as in CKP_{1}, but $M_{1}=129, M_{2}=12$
- CPLEX 11.0 takes 95 B\&B nodes
$-\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid \mathrm{CKP}_{2}\right\}=33.032, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{2}\right\}=31.165$;

Example 2: $\mathbf{C K P}_{2}$

$$
\begin{gathered}
4399 \leq 344 x_{1}+458 x_{2}+705 x_{3}+940 x_{4}+1066 x_{5} \\
+1105 x_{6}+1208 x_{7}+1316 x_{8}+1362 x_{9} \leq 4400 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

- same $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{r}$ as in CKP_{1}, but $M_{1}=129, M_{2}=12$
- CPLEX 11.0 takes 95 B\&B nodes
$-\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid \mathrm{CKP}_{2}\right\}=33.032, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{2}\right\}=31.165$; $\operatorname{width}\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{2}\right)=1.867$,

Example 2: $\mathbf{C K P}_{2}$

$$
\begin{gathered}
4399 \leq 344 x_{1}+458 x_{2}+705 x_{3}+940 x_{4}+1066 x_{5} \\
+1105 x_{6}+1208 x_{7}+1316 x_{8}+1362 x_{9} \leq 4400 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

- same $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{r}$ as in CKP_{1}, but $M_{1}=129, M_{2}=12$
- CPLEX 11.0 takes 95 B\&B nodes
$-\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid \mathrm{CKP}_{2}\right\}=33.032, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{2}\right\}=31.165$; $\operatorname{width}\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{2}\right)=1.867, \quad$ iwidth $\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=2 ;$

Example 2: $\mathbf{C K P}_{2}$

$$
\begin{gathered}
4399 \leq 344 x_{1}+458 x_{2}+705 x_{3}+940 x_{4}+1066 x_{5} \\
+1105 x_{6}+1208 x_{7}+1316 x_{8}+1362 x_{9} \leq 4400 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

- same $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{r}$ as in CKP_{1}, but $M_{1}=129, M_{2}=12$
- CPLEX 11.0 takes 95 B\&B nodes
$-\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid \mathrm{CKP}_{2}\right\}=33.032, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid\right.$ CKP $\left._{2}\right\}=31.165$;
width $\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{2}\right)=1.867, \quad$ iwidth $\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=2$;
$-\operatorname{width}\left(\boldsymbol{p}_{2}, \mathrm{CKP}_{2} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=32\right)=0.895$, iwidth $=0$

Example 2: $\mathbf{C K P}_{2}$

$$
\begin{gathered}
4399 \leq 344 x_{1}+458 x_{2}+705 x_{3}+940 x_{4}+1066 x_{5} \\
+1105 x_{6}+1208 x_{7}+1316 x_{8}+1362 x_{9} \leq 4400 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

- same $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{r}$ as in CKP_{1}, but $M_{1}=129, M_{2}=12$
- CPLEX 11.0 takes 95 B\&B nodes
$-\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid \mathrm{CKP}_{2}\right\}=33.032, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid \mathrm{CKP}_{2}\right\}=31.165$; width $\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{2}\right)=1.867, \quad$ iwidth $\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=2$;
$-\operatorname{width}\left(\boldsymbol{p}_{2}, \mathrm{CKP}_{2} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=32\right)=0.895$, iwidth $=0$ CPLEX 11.0 takes $35 \mathrm{~B} \& \mathrm{~B}$ nodes for $\mathrm{CKP}_{2} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=32$

Example 2: $\mathbf{C K P}_{2}$

$$
\begin{gathered}
4399 \leq 344 x_{1}+458 x_{2}+705 x_{3}+940 x_{4}+1066 x_{5} \\
+1105 x_{6}+1208 x_{7}+1316 x_{8}+1362 x_{9} \leq 4400 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

- same $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{r}$ as in CKP_{1}, but $M_{1}=129, M_{2}=12$
- CPLEX 11.0 takes 95 B\&B nodes
$-\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid \mathrm{CKP}_{2}\right\}=33.032, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid \mathrm{CKP}_{2}\right\}=31.165$;
width $\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{2}\right)=1.867, \quad$ iwidth $\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=2$;
$-\operatorname{width}\left(\boldsymbol{p}_{2}, \mathrm{CKP}_{2} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=32\right)=0.895$, iwidth $=0$
CPLEX 11.0 takes $35 \mathrm{~B} \& \mathrm{~B}$ nodes for $\mathrm{CKP}_{2} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=32$
$-\operatorname{width}\left(\boldsymbol{p}_{2}, \mathrm{CKP}_{2} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=33\right)=0.158$, iwidth $=0$

Example 2: $\mathbf{C K P}_{2}$

$$
\begin{gathered}
4399 \leq 344 x_{1}+458 x_{2}+705 x_{3}+940 x_{4}+1066 x_{5} \\
+1105 x_{6}+1208 x_{7}+1316 x_{8}+1362 x_{9} \leq 4400 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

- same $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{r}$ as in CKP_{1}, but $M_{1}=129, M_{2}=12$
- CPLEX 11.0 takes 95 B\&B nodes
$-\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid \mathrm{CKP}_{2}\right\}=33.032, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid \mathrm{CKP}_{2}\right\}=31.165$;
$\operatorname{width}\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{2}\right)=1.867, \quad$ iwidth $\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=2$;
$-\operatorname{width}\left(\boldsymbol{p}_{2}, \mathrm{CKP}_{2} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=32\right)=0.895$, iwidth $=0$
CPLEX 11.0 takes $35 \mathrm{~B} \& \mathrm{~B}$ nodes for $\mathrm{CKP}_{2} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=32$
$-\operatorname{width}\left(\boldsymbol{p}_{2}, \mathrm{CKP}_{2} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=33\right)=0.158$, iwidth $=0$ CPLEX 11.0 solves $\mathrm{CKP}_{2} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=32$ at the root node

Example 2: $\mathbf{C K P}_{2}$

$$
\begin{gathered}
4399 \leq 344 x_{1}+458 x_{2}+705 x_{3}+940 x_{4}+1066 x_{5} \\
+1105 x_{6}+1208 x_{7}+1316 x_{8}+1362 x_{9} \leq 4400 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

- same $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{r}$ as in CKP_{1}, but $M_{1}=129, M_{2}=12$
- CPLEX 11.0 takes 95 B\&B nodes
$-\max \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid \mathrm{CKP}_{2}\right\}=33.032, \quad \min \left\{\boldsymbol{p}_{1} \boldsymbol{x} \mid \mathrm{CKP}_{2}\right\}=31.165$;
$\operatorname{width}\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{2}\right)=1.867, \quad$ iwidth $\left(\boldsymbol{p}_{1}, \mathrm{CKP}_{1}\right)=2$;
$-\operatorname{width}\left(\boldsymbol{p}_{2}, \mathrm{CKP}_{2} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=32\right)=0.895$, iwidth $=0$
CPLEX 11.0 takes $35 \mathrm{~B} \& \mathrm{~B}$ nodes for $\mathrm{CKP}_{2} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=32$
$-\operatorname{width}\left(\boldsymbol{p}_{2}, \mathrm{CKP}_{2} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=33\right)=0.158$, iwidth $=0$
CPLEX 11.0 solves $\mathrm{CKP}_{2} \wedge \boldsymbol{p}_{1} \boldsymbol{x}=32$ at the root node
- \boldsymbol{p}_{1} is not preferable to \boldsymbol{e}_{j} for branching, based on iwidth alone

CKP Generalizations

CKP Generalizations

- we can generalize CKPs:

CKP Generalizations

- we can generalize CKPs:
- to higher t 's $\left(t \geq 3 ; \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\cdots+\boldsymbol{p}_{t} M_{t}+\boldsymbol{r}\right)$

CKP Generalizations

- we can generalize CKPs:
- to higher t 's $\left(t \geq 3 ; \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\cdots+\boldsymbol{p}_{t} M_{t}+\boldsymbol{r}\right)$ $1<\operatorname{width}\left(\boldsymbol{p}_{i} \mid \mathrm{CKP} \wedge \boldsymbol{p}_{j} \boldsymbol{x}=k_{j}, j=1, \ldots, i-1\right)<2$ $\operatorname{iwidth}\left(\boldsymbol{p}_{i} \mid \operatorname{CKP} \wedge \boldsymbol{p}_{j} \boldsymbol{x}=k_{j}, j=1, \ldots, i-1\right)=1$ or 2 for $i=1, \ldots, t-1$, and then iwidth $\left(\boldsymbol{p}_{t}\right)=0$

CKP Generalizations

- we can generalize CKPs:
- to higher t 's $\left(t \geq 3 ; \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\cdots+\boldsymbol{p}_{t} M_{t}+\boldsymbol{r}\right)$ $1<\operatorname{width}\left(\boldsymbol{p}_{i} \mid \operatorname{CKP} \wedge \boldsymbol{p}_{j} \boldsymbol{x}=k_{j}, j=1, \ldots, i-1\right)<2$ $\operatorname{iwidth}\left(\boldsymbol{p}_{i} \mid \mathrm{CKP} \wedge \boldsymbol{p}_{j} \boldsymbol{x}=k_{j}, j=1, \ldots, i-1\right)=1$ or 2 for $i=1, \ldots, t-1$, and then iwidth $\left(\boldsymbol{p}_{t}\right)=0$
- u can be more general than e

CKP Generalizations

- we can generalize CKPs:
- to higher t 's $\left(t \geq 3 ; \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\cdots+\boldsymbol{p}_{t} M_{t}+\boldsymbol{r}\right)$ $1<\operatorname{width}\left(\boldsymbol{p}_{i} \mid \mathrm{CKP} \wedge \boldsymbol{p}_{j} \boldsymbol{x}=k_{j}, j=1, \ldots, i-1\right)<2$ iwidth $\left(\boldsymbol{p}_{i} \mid \operatorname{CKP} \wedge \boldsymbol{p}_{j} \boldsymbol{x}=k_{j}, j=1, \ldots, i-1\right)=1$ or 2 for $i=1, \ldots, t-1$, and then iwidth $\left(\boldsymbol{p}_{t}\right)=0$
- u can be more general than e
- denoted as $t+1$-CKPs;

CKP Generalizations

- we can generalize CKPs:
- to higher t 's $\left(t \geq 3 ; \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\cdots+\boldsymbol{p}_{t} M_{t}+\boldsymbol{r}\right)$ $1<\operatorname{width}\left(\boldsymbol{p}_{i} \mid \mathrm{CKP} \wedge \boldsymbol{p}_{j} \boldsymbol{x}=k_{j}, j=1, \ldots, i-1\right)<2$ $\operatorname{iwidth}\left(\boldsymbol{p}_{i} \mid \operatorname{CKP} \wedge \boldsymbol{p}_{j} \boldsymbol{x}=k_{j}, j=1, \ldots, i-1\right)=1$ or 2 for $i=1, \ldots, t-1$, and then iwidth $\left(\boldsymbol{p}_{t}\right)=0$
- \boldsymbol{u} can be more general than \boldsymbol{e}
- denoted as $t+1$-CKPs; Recipes to generate $t+1$-CKPs

CKP Generalizations

- we can generalize CKPs:
- to higher t 's $\left(t \geq 3 ; \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\cdots+\boldsymbol{p}_{t} M_{t}+\boldsymbol{r}\right)$ $1<\operatorname{width}\left(\boldsymbol{p}_{i} \mid \mathrm{CKP} \wedge \boldsymbol{p}_{j} \boldsymbol{x}=k_{j}, j=1, \ldots, i-1\right)<2$ $\operatorname{iwidth}\left(\boldsymbol{p}_{i} \mid \mathrm{CKP} \wedge \boldsymbol{p}_{j} \boldsymbol{x}=k_{j}, j=1, \ldots, i-1\right)=1$ or 2 for $i=1, \ldots, t-1$, and then iwidth $\left(\boldsymbol{p}_{t}\right)=0$
- \boldsymbol{u} can be more general than \boldsymbol{e}
- denoted as $t+1$-CKPs; Recipes to generate $t+1$-CKPs
- computationally hard

CKP Generalizations

- we can generalize CKPs:
- to higher t 's $\left(t \geq 3 ; \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\cdots+\boldsymbol{p}_{t} M_{t}+\boldsymbol{r}\right)$ $1<\operatorname{width}\left(\boldsymbol{p}_{i} \mid \operatorname{CKP} \wedge \boldsymbol{p}_{j} \boldsymbol{x}=k_{j}, j=1, \ldots, i-1\right)<2$ $\operatorname{iwidth}\left(\boldsymbol{p}_{i} \mid \mathrm{CKP} \wedge \boldsymbol{p}_{j} \boldsymbol{x}=k_{j}, j=1, \ldots, i-1\right)=1$ or 2 for $i=1, \ldots, t-1$, and then iwidth $\left(\boldsymbol{p}_{t}\right)=0$
- \boldsymbol{u} can be more general than \boldsymbol{e}
- denoted as $t+1$-CKPs; Recipes to generate $t+1$-CKPs
- computationally hard
- with $x_{j} \in\{0,1\}$, we get small a_{j} 's, but CPLEX still struggles

CKP Generalizations

- we can generalize CKPs:
- to higher t 's $\left(t \geq 3 ; \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\cdots+\boldsymbol{p}_{t} M_{t}+\boldsymbol{r}\right)$ $1<\operatorname{width}\left(\boldsymbol{p}_{i} \mid \operatorname{CKP} \wedge \boldsymbol{p}_{j} \boldsymbol{x}=k_{j}, j=1, \ldots, i-1\right)<2$ $\operatorname{iwidth}\left(\boldsymbol{p}_{i} \mid \mathrm{CKP} \wedge \boldsymbol{p}_{j} \boldsymbol{x}=k_{j}, j=1, \ldots, i-1\right)=1$ or 2 for $i=1, \ldots, t-1$, and then iwidth $\left(\boldsymbol{p}_{t}\right)=0$
- \boldsymbol{u} can be more general than \boldsymbol{e}
- denoted as $t+1$-CKPs; Recipes to generate $t+1$-CKPs
- computationally hard
- with $x_{j} \in\{0,1\}$, we get small a_{j} 's, but CPLEX still struggles
- e.g., 4-CKP with $n=30, a_{\max } \leq 9000$, CPLEX 9.0 takes ≈ 57 million $B \& B$ nodes

CKP Generalizations

- we can generalize CKPs:
- to higher t 's $\left(t \geq 3 ; \boldsymbol{a}=\boldsymbol{p}_{1} M_{1}+\cdots+\boldsymbol{p}_{t} M_{t}+\boldsymbol{r}\right)$ $1<\operatorname{width}\left(\boldsymbol{p}_{i} \mid \operatorname{CKP} \wedge \boldsymbol{p}_{j} \boldsymbol{x}=k_{j}, j=1, \ldots, i-1\right)<2$ $\operatorname{iwidth}\left(\boldsymbol{p}_{i} \mid \mathrm{CKP} \wedge \boldsymbol{p}_{j} \boldsymbol{x}=k_{j}, j=1, \ldots, i-1\right)=1$ or 2 for $i=1, \ldots, t-1$, and then iwidth $\left(\boldsymbol{p}_{t}\right)=0$
- \boldsymbol{u} can be more general than e
- denoted as $t+1$-CKPs; Recipes to generate $t+1$-CKPs
- computationally hard
- with $x_{j} \in\{0,1\}$, we get small a_{j} 's, but CPLEX still struggles
- e.g., 4-CKP with $n=30, a_{\max } \leq 9000$, CPLEX 9.0 takes ≈ 57 million $B \& B$ nodes
- dynamic programming could be effective (time $=O\left(n \beta_{1}\right)$)?

Computation: 4-CKPs, $n=30, \boldsymbol{u}=\boldsymbol{e}$

Computation: 4-CKPs, $n=30, u=e$

| CKP widths | | | CKP | | CKP_ \boldsymbol{p}_{1} | | CKP_ $\boldsymbol{p}_{1} \boldsymbol{p}_{2}$ | | DKP | | RS | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | w_{1} | w_{21} | w_{312} | BB | TM | BB | TM | BB | TM | BB | TM | BB |
| 1 | 1.55 | 1.42 | 0.92 | $58,057,939$ | \mathbf{u} | $2,448,625$ | 126.0 | 205,814 | 13.3 | 11756 | 0.4 | 3 |
| 2 | 1.47 | 1.44 | 0.90 | $56,937,604$ | 3484 | 740,556 | 41.0 | 66189 | 4.6 | 8708 | 0.3 | 1 |
| 3 | 1.57 | 1.50 | 0.94 | $46,187,956$ | 3027 | $2,005,687$ | 99.4 | 249,232 | 14.1 | 9537 | 0.3 | 5 |
| 4 | 1.50 | 1.53 | 0.89 | $55,782,856$ | \mathbf{u} | 477,707 | 25.2 | 252,505 | 13.7 | 6496 | 0.3 | 4 |
| 5 | 1.49 | 1.48 | 0.94 | $56,313,840$ | \mathbf{u} | $1,421,719$ | 69.0 | 334,046 | 19.0 | 5527 | 0.2 | 3 |
| 6 | 1.50 | 1.55 | 0.90 | $55,597,050$ | \mathbf{u} | $1,319,626$ | 73.0 | 257,922 | 15.0 | 10520 | 0.4 | 15 |
| 7 | 1.50 | 1.59 | 0.91 | $60,453,028$ | \mathbf{u} | $1,595,424$ | 78.6 | 151,812 | 9.1 | 7336 | 0.3 | 6 |
| 8 | 1.57 | 1.52 | 0.95 | $64,409,733$ | \mathbf{u} | $5,324,924$ | 278.3 | 310,768 | 19.2 | 10360 | 0.4 | 6 |
| 9 | 1.50 | 1.48 | 0.96 | $55,491,175$ | \mathbf{u} | $3,366,436$ | 167.2 | 312,653 | 18.0 | 10061 | 0.4 | 5 |
| 10 | 1.49 | 1.53 | 0.92 | $60,307,524$ | \mathbf{u} | $3,107,323$ | 158.2 | 443,789 | 25.6 | 8227 | 0.3 | 68 |

BB: \# B\&B nodes, TM: CPU time (sec), u: unsolved in 1 hour time limit, typical instance: $a_{\min } \approx 4000, a_{\max } \approx 9000, \beta_{1}, \beta_{2} \approx 65000$; RS: RSRef

Used CPLEX 9.0; instances available at www.wsu.edu/~kbala

Computation: 4-CKPs, $n=30, u=e$

| CKP widths | | | CKP | | CKP_ \boldsymbol{p}_{1} | | CKP_ $\boldsymbol{p}_{1} \boldsymbol{p}_{2}$ | | DKP | | RS | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | w_{1} | w_{21} | w_{312} | BB | TM | BB | TM | BB | TM | BB | TM | BB |
| 1 | 1.55 | 1.42 | 0.92 | $58,057,939$ | \mathbf{u} | $2,448,625$ | 126.0 | 205,814 | 13.3 | 11756 | 0.4 | 3 |
| 2 | 1.47 | 1.44 | 0.90 | $56,937,604$ | 3484 | 740,556 | 41.0 | 66189 | 4.6 | 8708 | 0.3 | 1 |
| 3 | 1.57 | 1.50 | 0.94 | $46,187,956$ | 3027 | $2,005,687$ | 99.4 | 249,232 | 14.1 | 9537 | 0.3 | 5 |
| 4 | 1.50 | 1.53 | 0.89 | $55,782,856$ | \mathbf{u} | 477,707 | 25.2 | 252,505 | 13.7 | 6496 | 0.3 | 4 |
| 5 | 1.49 | 1.48 | 0.94 | $56,313,840$ | \mathbf{u} | $1,421,719$ | 69.0 | 334,046 | 19.0 | 5527 | 0.2 | 3 |
| 6 | 1.50 | 1.55 | 0.90 | $55,597,050$ | \mathbf{u} | $1,319,626$ | 73.0 | 257,922 | 15.0 | 10520 | 0.4 | 15 |
| 7 | 1.50 | 1.59 | 0.91 | $60,453,028$ | \mathbf{u} | $1,595,424$ | 78.6 | 151,812 | 9.1 | 7336 | 0.3 | 6 |
| 8 | 1.57 | 1.52 | 0.95 | $64,409,733$ | \mathbf{u} | $5,324,924$ | 278.3 | 310,768 | 19.2 | 10360 | 0.4 | 6 |
| 9 | 1.50 | 1.48 | 0.96 | $55,491,175$ | \mathbf{u} | $3,366,436$ | 167.2 | 312,653 | 18.0 | 10061 | 0.4 | 5 |
| 10 | 1.49 | 1.53 | 0.92 | $60,307,524$ | \mathbf{u} | $3,107,323$ | 158.2 | 443,789 | 25.6 | 8227 | 0.3 | 68 |

BB: \# B\&B nodes, TM: CPU time (sec), u: unsolved in 1 hour time limit, typical instance: $a_{\min } \approx 4000, a_{\max } \approx 9000, \beta_{1}, \beta_{2} \approx 65000$; RS: RSRef

Used CPLEX 9.0; instances available at www.wsu.edu/~kbala

Summary

Summary

- CKPs are classes of $t+1$-level decomposable knapsacks

Summary

- CKPs are classes of $t+1$-level decomposable knapsacks - which are hard for ordinary $B \& B$

Summary

- CKPs are classes of $t+1$-level decomposable knapsacks
- which are hard for ordinary B\&B
- have a sequence of "good" branching directions $\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{t}$

Summary

- CKPs are classes of $t+1$-level decomposable knapsacks
- which are hard for ordinary B\&B
- have a sequence of "good" branching directions $\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{t}$
- iwidth $\left(\boldsymbol{p}_{i}\right)=1$ or 2 in the branching sequence for $i<t$

Summary

- CKPs are classes of $t+1$-level decomposable knapsacks
- which are hard for ordinary B\&B
- have a sequence of "good" branching directions $\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{t}$
- iwidth $\left(\boldsymbol{p}_{i}\right)=1$ or 2 in the branching sequence for $i<t$
- when M_{i} 's are big enough, RSRef solves in at most t or 2^{t} nodes, respectively

Summary

- CKPs are classes of $t+1$-level decomposable knapsacks
- which are hard for ordinary B\&B
- have a sequence of "good" branching directions $\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{t}$
- iwidth $\left(\boldsymbol{p}_{i}\right)=1$ or 2 in the branching sequence for $i<t$
- when M_{i} 's are big enough, RSRef solves in at most t or 2^{t} nodes, respectively
- both width and iwidth can be poor indicators of "good" branching directions

Slides

Slide 1 Slide 2 Slide 3 Slide 4

Slide 5 Slide 6 Slide 7 Slide 8

Slide 9 Slide 10 Slide 11 Slide 12

Slide 13 Slide 14 Slide 15 Slide 16

Slide 17 Slide 18 Slide 19 Slide 20

