
Comparing the Approximations to the Stability Region

Although we cannot efficiently compute the exact stability region of (x∗, y∗) when
P (c∗) is NP-hard, if the convex hull of the feasible region is given by polynomially
many inequalities, as is the case when the constraint matrix is totally unimodular
and the formulation has polynomial size, we can use well-known linear program-
ming theory to generate the region. Specifically, suppose

x∗ ∈ S = {x ∈ Rn : aix ≤ bi,∀ i = 1, . . . ,m},

where ai ∈ Rn and bi ∈ R. Then by complementary slackness and LP duality, x∗

is optimal for max{cx : x ∈ S} iff c ∈ C = cone{ai : i ∈ I∗}, where I∗ = {i :
aix∗ = bi}.

For our next set of experiments, we have chosen instances of the assignment prob-
lem. We generate four 20×20 specific problem instances using costs from problem
assign100, originally from Beasley, 1990.

We generate a random direction vector d, where each component di v U(0, 1) is an
i.i.d. random variable. We calculate the value

λ− = max{λ : c∗ + λd ∈ C−},

and similarly define and calculate λ∗ and λ+ for C and C+, respectively. Note that
we always have the relation λ− ≤ λ∗ ≤ λ+, because C− ⊆ C ⊆ C+.
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For each assignment instance, we examine 100,000 randomly generated d vectors.
Our results are summarized in Table 3.

Problem λ− λ∗ λ+ λ∗−λ−
λ+−λ− λ∗ − λ− > λ+ − λ∗ λ− = λ+

(avg.) (avg.) (avg.) (avg.) (ct.) (ct.)
5× 5

assign20 1 6.0086 12.1997 12.2018 0.9999 62,835 37,164
assign20 2 4.2159 7.3348 7.3355 0.9999 98,325 1,674
assign20 3 5.2905 6.3897 6.4002 0.9975 23,673 76,326
assign20 4 3.8208 4.0776 4.078 0.9997 16,899 83,100

10× 10

assign20 1 1.2708 2.3431 2.3477 0.9982 99,995 4
assign20 2 1.5802 2.8811 2.8811 1 99,999 0
assign20 3 1.5977 1.8501 1.8501 1 45,613 54,386
assign20 4 1.4261 3.2234 3.2802 0.9789 99,996 2

20× 20

assign20 1 0.3669 0.9154 0.9246 0.9858 100,000 0
assign20 2 0.4758 0.7647 0.7647 1 100,000 0
assign20 3 0.2593 0.2613 0.2613 1 7,614 92,386
assign20 4 0.2397 0.3493 0.3494 0.9999 98,298 1,702

Table 3: Averages and counts for the assignment instances.

Conclusions
We have developed an algorithm to approximate stability region for binary MIPs
which solves at most a linear number of closely related problems. Computational
experiments demonstrate

• C− and C+ closely approximate the stability region.

• The list of solutions generated as a byproduct of our algorithm can be used
effectively to produce high quality solutions for a true cost vector that is close to
our estimate c∗.

• Results from the shooting experiments indicate that our inner approximation,
C−, can be too conservative, since it accounts for most of the uncertain region
C+ \ C−.

To determine an inner neighborhood, we first establish a preliminary fact.

Lemma 3 Let j ∈ I−k , for some k. Then (xk, yk) is optimal for Pj.

Theorem 3 Suppose Algorithm is run on problem P (c∗), terminating after ` ≤ n
steps. Let (xk, yk), zk, I

+
k , I

−
k ,∀ k = 1, . . . , ` and I∞ be obtained from the algo-

rithm. Then

C− =

c ≥ c∗ :
∑

i∈I−1 ∪···∪I
−
k

ci ≤ z∗ − zk +
∑

i∈I−1 ∪···∪I
−
k

c∗i ,∀ k = 1, . . . , `


is an inner neighborhood of P (c∗).

Comments

The stability region C depends only on (x∗, y∗) and h(y), not on c∗. However, the
inner neighborhood C− calculated using Algorithm does depend on both c∗ and
the list of solutions {(xk, yk)}`k=1 produced by Algorithm .

The list of solutions {(xk, yk)}`k=1 produced by Algorithm is also useful when
(x∗, y∗) is not optimal for P (c). Given a cost vector c, we can produce the best
solution from the list as a quick heuristic or a warm start for future solves.

Computational Results
Our goal is to study the quality of the inner and outer approximations of the stability
region, and to test the value of the solutions obtained during the execution of the
algorithm when re-optimization is necessary. All computational experiments were
carried out on a system with two 2.4 GHz Xeon processors and 2 GB RAM, and
using CPLEX 9.0 as the optimization engine.

The set of instances contains pure and mixed-integer linear programs from MI-
PLIB 3.0. For each instance, we take all binaries as x variables, i.e., variables
under scrutiny, and all others as y variables. The cost vector for x variables is ran-
domly and uniformly perturbed within 1%, 2%, 5%, 10% and 20% of c∗j for each j
independently, always in the most pertinent direction (c ≥ c∗). 1000 random cost
perturbations examined for each instance and percentage combination.

Tables 1 and 2 provide the results of our computational experiments for 5% pertur-
bations.

Region Counts Times Best is Optimal
Problem C− C+ \ C− Rn \ C+ C+ \ C− Rn \ C+ Total
dcmulti 1000 0 0 - - 1000
egout 783 217 0 217 - 1000
gen 0 0 1000 - 631 631

khb05250 360 640 0 627 - 987
lseu 0 0 1000 - 760 760
mod008 0 0 1000 - 80 80
modglob 0 1000 0 1000 - 1000
p0033 0 0 1000 - 8 8
p0201 0 0 1000 - 1000 1000
p0282 50 950 0 950 - 1000
pp08a 0 0 1000 - 393 393
qiu 0 0 1000 - 37 37

stein27 0 0 1000 - 0 0
vpm2 0 0 1000 - 315 315

Table 1: Region and optimality counts for 5% perturbations.

(optimal−best)
|optimal| 95% CI on Relative Diff.

Problem Average St. Dev. LB UB
gen 1.06E-05 1.78E-05 1.05E-05 1.06E-05

khb05250 4.46E-06 3.81E-05 4.38E-06 4.53E-06
lseu 3.25E-04 8.06E-04 3.23E-04 3.26E-04
mod008 5.91E-03 3.89E-03 5.90E-03 5.91E-03
p0033 5.12E-03 1.96E-03 5.12E-03 5.12E-03
pp08a 3.03E-04 3.96E-04 3.02E-04 3.04E-04
qiu 3.49E-02 1.94E-02 3.49E-02 3.50E-02

stein27 6.68E-03 1.88E-03 6.67E-03 6.68E-03
vpm2 6.87E-04 8.07E-04 6.85E-04 6.89E-04

Table 2: Relative difference results for 5% perturbations, where relevant.

Algorithm
We now consider the restricted problem:

zj = max {c∗x + h(y) : (x, y) ∈ X, x ∈ {0, 1}n, xj = 1 } (Pj)

W.l.o.g. we assume that Pj is feasible. Let (xj, yj) be an optimal solution to Pj and
define γj ≡ z∗ − zj + c∗j .

Lemma 2 Let c̃j = (c∗1, . . . , c
∗
j−1, γj, c

∗
j+1, . . . , c

∗
n). The solution (x∗, y∗) is optimal

for P (c̃j), ∀ j ∈ N .

By solving each of the problems Pj in turn, we have a list of cost vectors {c̃j}j∈N
for which we have proved the optimality of (x∗, y∗). These points together with c∗

form the vertices of a simplex, which by Proposition 1 is an inner neighborhood
of (x∗, y∗) (see Figure a.) However, from Remark 1, we also know that every in-
equality in the description of the stability region is of the form cx ≤ h(y∗)− υ(x),
for some x ∈ projx(X). We can therefore exploit the known structure of these in-
equalities to increase the inner neighborhood, as in Figure b. Both regions can be
expanded by adding the negative orthant to every point, as explained in Corollary
1.
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The following theorem formalizes this notion.

Theorem 1 Suppose we order the x variables so that z∗ ≥ z1 ≥ z2 ≥ · · · ≥ zn
holds. Then

C− =

{
c ≥ c∗ :

j∑
i=1

ci ≤ γj +

j−1∑
i=1

c∗i ,∀ j ∈ N

}

is an inner neighborhood of (x∗, y∗).

Corollary 1 The set {c + d : c ∈ C−, d ≤ 0} is an inner neighborhood of (x∗, y∗).

These last two results motivate a natural algorithm for determining an inner neigh-
borhood. Solve each of the problems Pj in turn, sort them by objective value, and
compute the inner neighborhood as indicated in Theorem 1. As we shall see next,
this procedure can be modified slightly to potentially reduce the number of solves
while still yielding the same region.

Outline of the Algorithm

Require: Problem P (c∗) with optimal solution (x∗, y∗) satisfying x∗ = 0.

Set (x0, y0)← (x∗, y∗), z0 ← z∗, I ← N .
Add cut D ≡ (

∑
i∈I xi ≥ 1) to P (c∗).

for k = 1, . . . , n do
Resolve modified P (c∗); get new optimal solution (xk, yk) and objective value
c∗xk + h(yk) = zk.
if P (c∗) is infeasible then

Set I∞ ← I .
Return k and exit.

end if
Set I+

k ← {i ∈ N : xki = 1}, I−k ← I ∩ I+
k .

Set I ← I \ I−k ; modify cut D accordingly.
end for

An outer neighborhood is easily obtained applying Lemma 1 to each solution (xk, yk).

Theorem 2 The set C+ =
{
c ∈ Rn : cxj ≤ z∗ − zj + c∗xj,∀ j ∈ N

}
is an outer

neighborhood of P (c∗). The outer neighborhood C+ satisfies

{c ∈ C+ : c ≥ c∗} ⊆ {c ∈ Rn : c∗j ≤ cj ≤ γj,∀ j ∈ N}.

Summary
We consider optimization problems with some binary variables, where the objective
function is linear in these variables. The stability region of a given solution of such
a problem is the polyhedral set of objective coefficients for which the solution is
optimal. A priori knowledge of this set provides valuable information for sensitivity
analysis and re-optimization when there is objective coefficient uncertainty. An
exact description of the stability region typically requires an exponential number
of inequalities. We develop useful polyhedral inner and outer approximations of
the stability region using only a linear number of inequalities. Furthermore, when
a new objective function is not in the stability region, we produce a list of good
solutions that can be used as a quick heuristic or as a warm start for future solves.

Stability Region
Consider the optimization problem

max {c∗x + h(y) : (x, y) ∈ X, x ∈ {0, 1}n } , (P (c∗))

where c∗x =
∑

i∈N c
∗
ixi and N = {1, . . . , n}. By possibly complementing the x

variables, we assume without loss of generality that (x∗, y∗) is an optimal solution
with x∗ = 0 and objective value z∗ = c∗x∗ + h(y∗) = h(y∗). We are interested in
the stability of (x∗, y∗) with respect to perturbations of c∗.

Stability Region of (x∗, y∗): Region C ⊆ Rn s.t. c ∈ C iff (x∗, y∗) is optimal for
P (c), i.e.,

C = {c ∈ Rn : cx ≤ h(y∗)− h(y),∀ (x, y) ∈ X}.

Remark 1 Let x̂ ∈ {0, 1}n, and define the optimization problem

υ(x̂) = max {h(y) : (x̂, y) ∈ X } .

If x̂ 6∈ projx(X) = {x ∈ {0, 1}n : ∃ y s.t. (x, y) ∈ X}, define υ(x̂) = −∞. Then

C = {c ∈ Rn : cx ≤ h(y∗)− υ(x),∀ x ∈ {0, 1}n}.

Approximating C
Inner Approximation Neighborhood, C−: Region C− ⊆ Rn s.t. (x∗, y∗) is optimal

for P (c), ∀ c ∈ C−.

Outer Approximation Neighborhood, C+: Region C+ ⊆ Rn s.t. (x∗, y∗) is not
optimal for P (c), ∀ c 6∈ C+.
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Proposition 1

• C− ⊆ C ⊆ C+.

• {c ∈ Rn : c ≤ c∗} is an inner neighborhood of (x∗, y∗).

• conv(C−1 ∪ C−2 ) is an inner neighborhood.

• C+
1 ∩ C+

2 is an outer neighborhood.

Lemma 1 Let (x̂, ŷ) be feasible for P (c∗), with objective value ẑ = c∗x̂+h(ŷ) ≤ z∗.
Suppose ĉ ∈ Rn satisfies

ĉx̂ > z∗ − ẑ + c∗x̂.

Then (x∗, y∗) is not optimal for P (ĉ).
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