Approximating the Stability Region of Binary Mixed-Integer Programs

Fatma Kılınç Karzan, Alejandro Toriello, Shabbir Ahmed, George Nemhauser, Martin Savelsbergh

Summary
We consider optimization problems with some binary variables, where the objectire function is linear in these variables. The stability region of a a iven solution of succh
a robblem is the onlyhedral set of objective coefticients for which the olution is a problem is the polyhedral set of objective coefficients for which the solution is
optimal. A priori knowledge of this set provides valuable information for sensitivity analysis and re-optimization when there is objective coefficient uncertainty. An exact descripion of the stability region typicially requires an exponential numbe of inequalities. We develop useful polyhedral inner and outer approximations
he stability region using only a linear number of inequalities. Furthermore, whe the stability region using only a linear number of inequalities. Furthermore, whe
a new objective function is not in the stability region, we produce a ist of goo
solutions that can be used as a quick heuristic or as a a warm start or for future solves.

Stability Region
Consider the optimization problem
max $\left\{c^{*} x+h(y):(x, y) \in X, x \in\{0,1\}^{n}\right\}, \quad\left(P\left(c^{*}\right)\right)$
where $c^{*} x=\sum_{i \in N} C_{i}^{c t} x_{i}$ and $N=\{1, \ldots, n\}$. By possibly complementing the x
variables, we assume without loss of generality that $\left(x^{*}, y^{*}\right)$ is an optimal solution variables, we assume without loss of generality that $\left(x^{*}, y^{*}\right)$ is an optimal solutio
with $x^{*}=0$ and objective value $z^{*}=c^{*} x^{*}+h\left(y^{*}\right)=h\left(y^{*}\right)$. We are interested the stability of $\left(x^{*}, y^{*}\right)$ with respect to perturbations of c^{*}.
Stability Region of $\left(x^{*}, y^{*}\right)$: Region $C \subseteq \mathbb{R}^{n}$ s.t. $c \in C$ iff $\left(x^{*}, y^{*}\right)$ is optimal for

$$
\text { P(c), 1.e., } \quad C=\left\{c \in \mathbb{R}^{n}: c x \leq h\left(y^{*}\right)-h(y), \forall(x, y) \in X\right\}
$$

Remark 1 Let $\hat{x} \in\{0,1\}^{n}$. and define the optimization problen
$o(\hat{x})=\max \{h(y):(\hat{x}, y) \in X\}$
If $\hat{x} \notin \operatorname{proj}_{x}(X)=\left\{x \in\{0,1\}^{n}: \exists y\right.$ s.t. $\left.(x, y) \in X\right\}$, define $v(\hat{x})=-\infty$. Then

$$
\nabla=\left\{c \in \mathbb{R}^{n}: c x \leq h\left(y^{*}\right)-v(x), \forall x \in\{0,1\}\right.
$$

Approximating C
Inner Approximation Neighborhood, C^{-}: Region $C^{-} \subseteq \mathbb{R}^{n}$ s.t. $\left(x^{*}, y^{*}\right)$ is optima for $P(c), \forall c \in C^{-}$

Outer Approximation Ne
optimal for $P(c), \forall c \notin C$


```
Proposition 1
-C-`\subseteqC\subseteq\mp@subsup{C}{}{+}.
*)
-C+}\mp@subsup{C}{1}{+}\cap\mp@subsup{C}{C}{+}\mathrm{ is an outer neighooghood
```

Lemma 1 Let (\hat{x}, y) befea
Suppose $\hat{c} \in \mathbb{R}^{n}$ satisfies
$\hat{c} \hat{c}>\hat{z}^{*}-\hat{z}+c^{*} \hat{n}$

Algorithm

We now consider the restricted problem
W..o.g. we assume that P_{j} i f feasible. Let $\left(x^{j}, y^{j}\right)$ be an optimal solution to P_{j} and
 $\underset{\text { for } P\left(\tilde{d}^{j}\right), \forall j \in N}{\text { Let }}$
By solving each of the problems P_{j} in turn, we have a list of cost vectors $\left.\{\tilde{\{ }\}_{j}\right\}_{j \in}$ for which we have proved the optimality of $\left(x^{*}, y^{*}\right)$. These points together with c^{*} form the vertices of a simplex, which by yroposition 1 is an inner neighborhood
of $\left(x^{*}, y^{*}\right)$ (see Figure a.) However, from Remark 1, we also know that every in of $\left(x^{*}, v^{*}\right)$ (see Figure a.) However, from Remark 1, we also know that every in
equality in the description of the stability region is of the form $c x<h\left(y^{*}\right)-v(x)$. equasite in the descripioion of the stability region is of the form $c x \leq h\left(y^{*}\right)-v(x)$
for some $x \in$ froj $j_{x}(X)$. We can therefore exploit the known structure of these in equalities to increase the inner neighborhood, as in Figure b. Both regions can b

The following theorem formalizes this notio
Theorem 1 1s
holds. Then

$$
C^{-}=\left\{c \geq c^{*}: \sum_{i=1}^{j} c_{i} \leq \gamma_{j}+\sum_{i=1}^{j-1} c_{i,}^{c^{*}, \forall j \in N}\right\}
$$

is an inner neighborhood of $\left(x^{*}, y^{*}\right)$.
Corollary 1 The set $\left\{c+d: c \in C^{-}, d \leq 0\right\}$ is an inner neighborhood of $\left(x^{*}, y^{*}\right)$, These last two results motivate a natural algorithm for determining an inner neigh borhood. Solve each of the problems P_{j} in turn, sort them by objective value, and compute the inner neighborhood as indicated in Theorem 1. As we shall see next
his procedure can be modified slightly to potentially reduce the number of solve, jelding the same region.
Outline of the Algorithm
Require: Problem $P\left(c^{*}\right)$ with optimal solution $\left(x^{*}, y^{*}\right)$ satisfying $x^{*}=0$

```
Set (\mp@subsup{x}{}{0},\mp@subsup{y}{}{0})\leftarrow(\mp@subsup{x}{}{*},\mp@subsup{v}{0}{*}),\mp@subsup{z}{0}{\prime}\leftarrow\mp@subsup{z}{}{*},I\leftarrow
```



```
    *)
    \if P(\mp@subsup{C}{}{*})\mathrm{ is infeasible}
```



```
    \,
Met I
```

 Resolve modififed \(P\left(c^{k}\right)\); get new optimal solution \(\left(x^{k}, y^{k}\right)\) and objective value
 An outer neighborhood is easily obtained applying Lemma 1 to each solution $\left(x^{k}, y^{k}\right)$. Theorem 2 The set $C^{+}=\left\{c \in \mathbb{R}^{n}: c x^{j} \leq z^{*}-z_{j}+c^{*} x^{j}, \forall j \in N\right\}$ is an outer neighborhood of $P\left(c^{*}\right)$. The outer neighborhood C^{+}satisfies
$\left\{c \in C^{+}: c \geq c^{*}\right\} \subseteq\left\{c \in \mathbb{R}^{n}: c_{i}^{*} \leq c_{j} \leq \gamma_{j}, \forall j \in N\right\}$
determine an inner neighborhood, we first establish a preliminary fact.
Lemma 3 Let $j \in I_{k}^{-}$, for some k. Then $\left(x^{k}, y^{k}\right)$ is optimal for P_{z}
Theorem 3 Suppose Algorithm is run on problem $P\left({ }^{*}\right)$, terninating affer $\ell \leq n$
steps. Let $\left(x^{*}, y^{*}\right), z_{k}, I_{k}^{+}, I_{k}^{*}, \forall k=1, \ldots, \ell$ and I_{∞} be obtained from the algoithm. Then

an inner neighborhood of $P\left(c^{\circ}\right)$
Comments
The stability region C depends only on $\left(x^{*}, y^{*}\right)$ and $h(y)$, not on c^{*}. However, the ner neighborhood C^{-}calculated using Algorithm does depend on both C^{c} an e list of solutions $\left\{\left\{x^{k} y^{k}\right)\right\}^{k}=$ produced by Algorith

The list of solutions $\left\{\left(x^{k}, y^{k}\right)\right\}_{h=1}^{\ell}$ produced by Algorithm is also useful when
$\left(x^{*}, y^{*}\right)$ is not optimal for $P(c)$. Given a cost vector c, we can produce the bes

Computational Results
Our goal is to study the quality of the inner and outer approximation of the stability egion, and to test the value of the solutions obtained during the execution of th
ligorithm when re-optimization is necessary All computational experiments wer algorithm when re-optimization is necessary. All computational experiments were
arried out on a system with two 2.4 GHz Xeon processors and 2 GB RAM, and
Ling CPIEX 9.0 as the optimization engine.

The set of instances contains pure and mixec-integer linear programs from MI
PLIB 3.0. For each instance, we take all binaries as x variables, ie. variables PLIB 3.0. For each instance, we take all binaries as x variables, i.e., variable
under scrutiny, and all others as y variables. The cost vector for x variables is ran under scrutiny, and all others as y variables. The cost vector for x variables is ran
domly and uniformly perturbed within $1 \%, 2 \%, 5 \%, 10 \%$ and 20% of $\sigma_{j}^{\text {for }}$ for each dependently, always in the most pertinent direction ($c \geq c^{*}$). 1000 random co perturbations examined for each instance and percentage combination. bations.

	Region Counts			${ }^{\text {Times Bestis Soptimal }}$		
Problem	C^{-}		$\mathbb{R}^{\text {n }}$			
dcmulti	1000	0	0			1000
egout	783	217	0	217		1000
${ }^{\text {gen }}$	0	0	1000		631	${ }^{631}$
khb05250	360 0	640 0	$\begin{gathered} 0 \\ 1000 \end{gathered}$	627	760	${ }^{987} 700$
modo 8	0	0	1000		80	80
modglob	0	1000	0	1000		1000
${ }_{\text {poob3 }}$	${ }_{0}^{0}$	${ }_{0}^{0}$	1000 1000		8 1000	8 1000
p0282	50	950	0	950		1000
ppo8a	0		1000		393	393
${ }_{\text {stein }}^{\substack{\text { qia }}}$	${ }_{0}$	${ }_{0}^{0}$	1000 1000 1		${ }_{3}^{37}$	37 0 0
	0	0	1000		315	315

Table 1: Region and optimality counts for 5% perturbations.

Problem	Onimithear		95\% CI on Relative Diff.	
	Average	St. Dev,	LB	UB
gen	${ }^{1.06 E-05}$	1.78E-05	1.05E-05	E-05
khb05250	4.46E-06	3.81E-05	4.38.-06	4.53E-06
${ }^{1 \text { seu }}$	3.25E-04	8.06E-04	3.23E-04	$3.26 \mathrm{E}-04$
mod008	5.91E-03	3.99E-03	5.90-.03	5.91E-03
p0033	5.12E-03	$1.96 \mathrm{E}-03$	5.12E-03	5.12E-03
ppo8a	3.03E-04	3.96E-04	3.02-.04	3.04E-04
qiu	3.49E-02	1.94--22	3.49E-22	3.50E-02
stein27	${ }_{\text {coseme }}^{6.685-03}$	${ }_{\text {1.888-03 }}$	${ }^{6.675-03}$	
pm2	6.87E-04	8.07E-	6.85 E	6.89E-04

Comparing the Approximations to the Stability Regio
Although we cannot efficiently compute the exact stability region of $\left(x^{*}, y^{*}\right)$ when
$P\left(c^{*}\right)$ is NP-hard, if the convex hull of the feasible region is given by polynomially ($\left.c^{*}\right)$ is NP-hard, if the convex hull of the feasible region is given by yolynomially many inequalities, as is the case when the constraint matrix is totally unimodular
and the formulation has polynomial size, we can use well-known linear programming theory to generate the region. Specifically, suppose

$$
x^{*} \in S=\left\{x \in \mathbb{R}^{n}: a^{i} x \leq b_{i}, \forall i=1, \ldots, m\right\}
$$

here $a^{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. Then by complementary slackness and $L P$ duality, x^{*} soptimal
$\left.i_{i} x^{*}=b_{i}\right\}$.
For our next set of experiments, we have chosen instances of the assignment pob m. We generate four 20×20 specific problem instances using costs from problem

We generate a random direction vector d where each component $d \backsim U(0,1)$ is an

$$
\lambda^{-}=\max \left\{\lambda: c^{*}+\lambda d \in C^{-}\right\},
$$

did similarly define and calculate λ^{*} and λ^{+}for C and C^{+}, respectively. Note that

For each assignment instance, we examine 100,000 randomly generated d vectors.

Problem	$\underset{(\text { avg })}{ }$	$\underset{(\text { ave. }}{\left(x^{\prime}\right)}$	$\left\lvert\, \begin{aligned} & \lambda^{+} \\ & \text {(avg) } \end{aligned}\right.$		(ct)	$\underset{\left(\mathrm{t}^{-}-\lambda^{+}\right)^{+}}{ }$
5×5						
assign20.1	${ }^{6} 6.0086$	${ }_{7}^{12.1937}$	${ }_{12}^{12.2018}$	0.9999	62.835 98325	${ }^{37,164}$
边	4.2159	7.3348	7.3355	${ }^{0.999}$	98.3	1,674 76,326
${ }_{\text {assin }}^{\text {assign } 20.3}$	5.2805		6.4002 4.078	${ }_{0}^{0.99975}$	23,673 16,999	70,326
10×10						
assign20.1	1.2778	${ }^{2.3431}$	${ }_{2}^{2.3477}$	0.9982	99,995	
assign20.2		2.8811	2.8811		99,999	
Stign	${ }_{1}^{1.5977}$	${ }_{\substack{1.8501 \\ 3.224}}^{1}$	1.8501 3.2802	${ }_{\substack{1 \\ 0.979}}$	4, $9,9,996$ 9,96	$\stackrel{54,386}{ }$
20×20						
Ssign20.1	0.3669	0.9154	0.9246	0.98:		
ign20.2	0.4758		0.7647		100, 01	
ign2	0.2593	0.2613	${ }^{0.2613}$		7,14 0.8298	
ign?	0.2397	0.3493	0.34	0.9999	98,298	1,702

Table 3: Averages and counts for the assigmment instances

Conclusions
We have developed an algorithm to approximate stability region for binary MIPs
hich solves at most a linear number of closely related problems. Computational experiments demonstrate

0 and O closely appring regio
The list of solutions generated as a byproduct of our algorithm can be used
effectively to produce high quality solutions for a true cost vector that is close to our csimate
Results from the shooting experiments indicate that our inner approximation,
C^{-}, can be too C^{+}, can be too conservative, since it accounts for most of the uncertain region

