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Proposal

• MILP modeling is an art, but it need not be 
unprincipled.
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Proposal

• MILP modeling is an art, but it need not be 
unprincipled.

• It has two basic components:

• Disjunctive modeling of subsets of continuous space.

• Knapsack modeling of counting ideas. 

• MILPs can model subsets of continuous space that are unions of 
polyhedra.

• …that is, represented by disjunctions of linear systems.

• So a principled approach is to analyze the problem as 

disjunctions               integer        
of linear        +      knapsack     
systems               inequalities
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Proposal

• Jeroslow’s Representability Theorem provides theoretical basis 
for disjunctive modeling.

• “Bounded MILP representability” assumes bounded integer 
variables.

• This is inadequate for knapsack modeling.
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Proposal

• Jeroslow’s Representability Theorem provides theoretical basis 
for disjunctive modeling.

• “Bounded MILP representability” assumes bounded integer 
variables.

• This is inadequate for knapsack modeling.

• We will generalize Jeroslow’s theorem.

• Knapsack modeling accommodated.

• Integer variables can be unbounded.
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Outline

• Bounded mixed integer representability

• Bounded representability theorem.

• Convex hull formulation

• Example: Fixed charge problem

• Why the disjunctive model works

• Multiple disjunctions

• Example: Facility location

• Example: Lot sizing with setup costs

• Big-M disjunctive formulation

• Example: Health care benefits
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Outline

• General mixed integer representability

• Knapsack models

• General representability theorem.

• Convex hull formulation

• Example: Facility location

• Why a single recession cone

• Example: Freight packing and transfer

• Research issues
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Bounded MILP Representability
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A subset S of       is 
bounded MILP representable
if S is the projection onto x of the 
feasible set of some MILP 
constraint set of the form

,   z

{0,1}

n m

p

Ax Bz Dy b

x

y

+ + ≥
∈ ∈
∈
ℝ ℝ

Bounded representability theorem

n
ℝ

Definition of R. Jeroslow:

Bounded general 
integer variables 
can be encoded as 
0-1 variables

Auxiliary 
continuous 
variables can 
be used
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Bounded representability theorem

Theorem (Jeroslow). A subset of continuous space is bounded 
MILP representable if and only if it is the union of finitely many 
polyhedra having the same recession cone.

Polyhedron

Recession cone 
of polyhedron

Union of polyhedra with the 
same recession cone 

(in this case, the origin)
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Start with a disjunction of linear 
systems to represent the union 
of polyhedra.

The kth polyhedron is {x | Akx ≥ b}

( )k k

k
A x b≥∨

Introduce a 0-1 variable  yk that is 
1 when x is in polyhedron k.

Disaggregate x to create an xk for 
each k.  

{ }

,  all 

1

0,1

k k k
k

k
k

k

k

k

A x b y k

y

x x

y

≥
=

=

∈

∑

∑

Convex hull formulation
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Start with a disjunction of linear 
systems to represent the union 
of polyhedra.

The kth polyhedron is {x | Akx ≥ b}

Introduce a 0-1 variable  yk that is 
1 when x is in polyhedron k.

Disaggregate x to create an xk for 
each k.  

Every bounded MILP representable
set has a model of this form.

{ }

,  all 

1

0,1

k k k
k

k
k

k

k

k

A x b y k

y

x x

y

≥
=

=

∈

∑

∑

( )k k

k
A x b≥∨

Convex hull formulation
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Convex Hull Formulation

• The continuous relaxation of this disjunctive MILP provides a 
convex hull relaxation of the disjunction.

• Strictly, it describes the closure of the convex hull.

Union of polyhedra Convex hull relaxation
(tightest linear relaxation)
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Idea behind the convex hull formulation

Convex hull relaxation

Start by formulating a convex hull 
formulation of the relaxation of the 
disjunction…

,  all 

1

[0,1]

k k k

k
k

k
k

k

k

A x b k

y

x y x

y

≥
=

=

∈

∑

∑

Write each 
solution as a 
convex 
combination 
of points in 
the 
polyhedron

x
1x

2x
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Convex hull relaxation

,  all 

1

[0,1]

k k k
k

k
k

k

k

k

A x b y k

y

x x

y

≥
=

=

∈

∑

∑

Now apply a change 
of variable

x
1x

2x

Change of 
variable

k
kx y x=

Idea behind the convex hull formulation

,  all 

1

[0,1]

k k k

k
k

k
k

k

k

A x b k

y

x y x

y

≥
=

=

∈

∑

∑

Write each 
solution as a 
convex 
combination 
of points in 
the 
polyhedron
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Now make yks 0-1 
variables to get an 
MILP representation

x

Make yks 0-1

Idea behind the convex hull formulation

Convex hull formulation

{ }

,  all 

1

0,1

k k k

k
k

k
k

k

k

A x b k

y

x y x

y

≥
=

=

∈

∑

∑

,  all 

1

[0,1]

k k k
k

k
k

k

k

k

A x b y k

y

x x

y

≥
=

=

∈

∑

∑
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When is this a valid 
formulation?

x

Idea behind the convex hull formulation

Convex hull formulation

Let’s look at an example first…

{ }

,  all 

1

0,1

k k k

k
k

k
k

k

k

A x b k

y

x y x

y

≥
=

=

∈

∑

∑
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Example: Fixed charge function

Minimize a fixed charge function:

x1

x2

2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥
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Fixed charge problem

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Feasible set
(epigraph)
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Fixed charge problem

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Union of two 
polyhedra
P1, P2

P1
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Fixed charge problem

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Union of two 
polyhedra
P1, P2

P1

P2
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Fixed charge problem

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

The 
polyhedra
have 
different 
recession 
cones.

P1

P1
recession

cone

P2

P2
recession

cone
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Fixed charge problem

Disjunctive model describes 
convex hull relaxation but 
not the feasible set.

2

1 1

2 2 1

min

0 0

0

x

x x

x x f cx

= ≥   ∨   ≥ ≥ +   

x1

x2

P1

P2
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Fixed charge problem

Start with a disjunction of 
linear systems to represent 
the union of polyhedra

2

1 2
1 1
1 2 2
2 1 2 2

1 2
1 2 1 2

1 1 1 2 2 2

min

0 0
  

0

1,  [0,1]   

,
k

x

x x

x cx x fy

y y y

x x x x x x

= ≥
≥ − + ≥
+ = ∈
= + = +

Introduce a 0-1 variable  yk

that is 1 when x is in 
polyhedron k.

Disaggregate x to create an 
xk for each k.  

2

1 1

2 2 1

min

0 0

0

x

x x

x x f cx

= ≥   ∨   ≥ ≥ +   
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2

1 2
1 1
1 2 2
2 1 2 2

1 2
1 2 1 2

1 1 1 2 2 2

min

0 0
  

0

1,  [0,1]   

,
k

x

x x

x cx x fy

y y y

x x x x x x

= ≥
≥ − + ≥
+ = ∈
= + = +

To simplify, replace        with x1 

since   

2
1x

1
1 0x =
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2

1 2
2 2 2

1 2
1 2
2

1

2

1

2

min

0
  

0

1,  [0,1]   k

x

x c x fy

y y y

x x x

x

x

≥
≥ − + ≥
+ = ∈
= +

To simplify, replace        with x1 

since   

2
1x

1
1 0x =
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2

1
1 2
2 1 2 2

1 2
1 2

2 2 2

min

0
  

0

1,  [0,1]   k

x

x

x cx x fy

y y y

x x x

≥
≥ − + ≥
+ = ∈
= +

Replace        with x2

because       plays no role in the model

2
2x
1
2x
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2

1

2

2

21

1

min

0
  

1,  [0,1]   k

x

x

cx fy

y y y

x

≥
− + ≥

+ = ∈

Replace        with x2

because       plays no role in the model

2
2x
1
2x
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2

1

1 2 2

1 2

min

0
  

1,  [0,1]   k

x

x

cx x fy

y y y

≥
− + ≥

+ = ∈

Replace y2 with y

because y1 plays no role in the model
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2

1

2 1

min

0
  

[0,1]   

x

x

x cx fy

y

≥
≥ +

∈

Replace y2 with y

because y1 plays no role in the model
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2

1

2 1

min

0
  

[0,1]   

x

x

x cx fy

y

≥
≥ +

∈

The convex hull is this.

x1

x2

P1

P2
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2

1

2 1

min

0
  

[0,1]   

x

x

x cx fy

y

≥
≥ +

∈

Relaxation correctly describes 
closure of convex hull

x1

x2

P1

P2



Slide 35

2

1

2 1

min

0
  

{0,1}   

x

x

x cx fy

y

≥
≥ +

∈

But MILP model does not 
describe feasible set

x1

x2

P1

P2
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To fix the problem…

Add an upper bound on x1

2

1
2

1 1

1

min

0 if 0

if

0

 0

x

x
x

f cx x

x M

=

≤

≥  + >

≤


x1

x2

The 
polyhedra
have the 
same 
recession 
cone.

P1

P1
recession

cone

P2

P2
recession

coneM
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Fixed charge problem

The disjunction is now… 2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

= ≤ ≤   ∨   ≥ ≥ +   

x1

x2

P1

P2

M
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Fixed charge problem

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

= ≤ ≤   ∨   ≥ ≥ +   

{ }

2

1 2
1 1 2
1 2 2
2 1 2 2

1 2
1 2 1 2

1 1 1 2 2 2

min

0 0
  

0

1,  0,1    

,
k

x

x x My

x cx x fy

y y y

x x x x x x

= ≤ ≤
≥ − + ≥
+ = ∈
= + = +

The disjunctive model is 
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{ }

2

1

2 1

min

0
  

0,1    

x

x M

x cx

y

yf

y

≤ ≤
≥ +

∈

This simplifies as before…
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{ }

2

1

2 1

min

0
  

0,1    

x

x My

x cx fy

y

≤ ≤
≥ +

∈

This simplifies as before…

{ }

2

1

2 1

min

0
  

0,1    

x

x

x cx fy

y

≥
≥ +

∈

Previous model
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{ }

2

1

2 1

min

0
  

0,1    

x

x My

x cx fy

y

≤ ≤
≥ +

∈

This simplifies as before…

{ }

min

0
  

0,1

   

cx fy

x My

y

+
≤ ≤

∈
or

“Big M”

{ }

2

1

2 1

min

0
  

0,1    

x

x

x cx fy

y

≥
≥ +

∈

Previous model
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The model now correctly 
describes the feasible set. { }

min

0
  

0,1

   

cx fy

x My

y

+
≤ ≤

∈
“Big M”

x1

x2

P1

P2

M



Slide 43

Why the disjunctive model 
works

Recession cone 
of polyhedra

Pk

P
ℓ

Let S be feasible set.

{ }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑
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Why the disjunctive model works

Pk

P
ℓ

Let S be feasible set.

 some kx S x P∈ ⇒ ∈
x

{ }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑
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Why the disjunctive model works

Pk

P
ℓ

Let S be feasible set.

 satisfies the model for

1,   other 0

,  other 0
k
k

x

y y s

x x x s

⇒

= =
= =

ℓ

ℓ

x

{ }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑

 some kx S x P∈ ⇒ ∈
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Why the disjunctive model works

Pk

P
ℓ

Conversely, suppose

, ,  satisfy the modelkx y x s

some 1 k
k ky x P⇒ = ⇒ ∈

xk

{ }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑
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some 1 k
k ky x P⇒ = ⇒ ∈

Why the disjunctive model works

Pk

P
ℓ

xk

0 for other sA x⇒ ≥ℓ ℓ
ℓ

{ }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑

, ,  satisfy the modelkx y x s

Conversely, suppose
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Why the disjunctive model works

Pk

P
ℓ

xk

s are recession directions for other sx P⇒ ℓ

ℓ

xℓ { }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑

some 1 k
k ky x P⇒ = ⇒ ∈

0 for other sA x⇒ ≥ℓ ℓ
ℓ

, ,  satisfy the modelkx y x s

Conversely, suppose
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Why the disjunctive model works

Pk

P
ℓ

xk

s are recession directions for kx P⇒ ℓ

xℓ { }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑

some 1 k
k ky x P⇒ = ⇒ ∈

0 for other sA x⇒ ≥ℓ ℓ
ℓ

, ,  satisfy the modelkx y x s

Conversely, suppose
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some 1 k
k ky x P⇒ = ⇒ ∈

Why the disjunctive model works

Pk

P
ℓ

xk

xℓ

0k k k k k

k

A x A x A x x b
≠

 
⇒ ≥ ⇒ = + ≥ 

 
∑ℓ ℓ

ℓ

{ }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑

s are recession directions for kx P⇒ ℓ

0 for other sA x⇒ ≥ℓ ℓ
ℓ

, ,  satisfy the modelkx y x s

Conversely, suppose

x = xk + xℓ
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x = xk + xℓ

Why the disjunctive model works

Pk

P
ℓ

xℓ

kx P x S⇒ ∈ ⇒ ∈

{ }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑

some 1 k
k ky x P⇒ = ⇒ ∈

0k k k k k

k

A x A x A x x b
≠

 
⇒ ≥ ⇒ = + ≥ 

 
∑ℓ ℓ

ℓ

s are recession directions for kx P⇒ ℓ

0 for other sA x⇒ ≥ℓ ℓ
ℓ

, ,  satisfy the modelkx y x s

Conversely, suppose
xk
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Multiple disjunctions

Combining individual convex hull 
formulations for two disjunctions…

does not necessarily produce a convex hull formulation for 
the pair…

Theorem.  …unless the disjunctions have no common 
variables. 

( )
( )

k k

k

k k

k

A x a

B x b

≥

≥

∨
∨
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Example:  Facility location

i j

fi cij

Fixed 
cost Transport 

cost

m possible 
factory 

locations n markets
Locate factories to 
serve markets so as 
to minimize total 
fixed cost and 
transport cost.

Dj

Demand

Cj

Capacity
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Facility location

Disjunctive model:

min

0, all 
,   all 

0
0, all j

,   all 

i ij ij
i ij

ij i
j

ij
i i

i
ij

ij j
i

z c x

x C

x j
z f i

z
x

x D j

+

≤ 
  =  ≥ ∨    = ≥  
 

=

∑ ∑

∑

∑

Factory at 
location i

No factory
at location i

Amount shipped 
from factory i to 
market j 

i j

fi cij

Fixed 
cost Transport 

cost

m possible 
factory 

locations n markets

Dj
Cj
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Facility location

MILP formulation:

Disjunctive model:

min

,  all 

,  all 

{0,1},   0,  all ,

i i ij ij
i ij

ij i i
j

ij j
i

i ij

f y c x

x C y i

x D j

y x i j

+

≤

=

∈ ≥

∑ ∑

∑

∑

min

0, all 
,   all 

0
0, all j

,   all 

i ij ij
i ij

ij i
j

ij
i i

i
ij

ij j
i

z c x

x C

x j
z f i

z
x

x D j

+

≤ 
  =  ≥ ∨    = ≥  
 

=

∑ ∑

∑

∑
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Uncapacitated facility location

Beginner’s mistake:  Model it as special case of capacitated problem

{ }

min

,  all 

0,1

1, all 

i i ij ij
i ij

ij i
j

i

ij
i

f y c x

x ny i

y

x j

+

≤

∈
=

∑ ∑

∑

∑

This is not the best model.

We can obtain a tighter model by starting with 
disjunctive formulation.

Factory i has 
max output n

Fraction of demand j
satisfied by factory i
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Uncapacitated facility location

Disjunctive model:

min

0 1, all 0,  all 
,   all 

0

1,  all 

i ij ij
i ij

ij ij

i i i

ij
i

z c x

x j x j
i

z f z

x j

+

≤ ≤ =   ∨   ≥ =   

=

∑ ∑

∑

Factory at 
location i

No factory
at location i

i j

fi cij

Fixed 
cost Transport 

cost

m possible 
factory 

locations n markets

Fraction of demand j
satisfied by factory i
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Uncapacitated facility location

MILP formulation: min

0 , all ,

1, all 

{0,1},  all 

i i ij ij
i ij

ij i

ij
i

i

f y c x

x y i j

x j

y i

+

≤ ≤
=

∈

∑ ∑

∑

This is the textbook 
model.

More constraints, 
but tighter 
relaxation.

min

,  all 

1,  all 

{0,1},  all 

i i ij ij
i ij

ij i
j

ij
i

i

f y c x

x ny i

x j

y i

+

≤

=

∈

∑ ∑

∑

∑

Beginner’s model:
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Example:  Lot sizing with setup costs

Determine lot size in each period to minimize total 
production, inventory, and setup costs.

t = 0 1 2 3 4 5 6

Demand = D0 D1 D2 D3 D4 D5 D6

Max 
production 
level

Setup cost incurred
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0 0

0 0 0
t t t t t

t t t t t

v f v v

x C x C x

≥ ≥ ≥     
∨ ∨     ≤ ≤ ≤ ≤ =     

(1)

Start 
production

(incurs setup 
cost)

(2)

Continue 
production
(no setup 

cost)

(3)

Produce 
nothing

(no production 
cost)

Fixed-cost 
variable

Fixed 
cost

Production 
level

Production 
capacity

Logical conditions:

(2) In period t ⇒ (1) or (2) in period t − 1

(1) In period t ⇒ neither (1) nor (2) in period t − 1
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0 0

0 0 0
t t t t t

t t t t t

v f v v

x C x C x

≥ ≥ ≥     
∨ ∨     ≤ ≤ ≤ ≤ =     

(1)

Start 
production

(2)

Continue 
production

(3)

Produce 
nothing

1
1

1
10

t t t

t t t

v f y

x C y

≥
≤ ≤

2

2
2

0

0
t

t t t

v

x C y

≥
≤ ≤

3

3

0

0
t

t

v

x

≥
=

3 3 3

1 1 1

, ,

{0,1},   1,2,3

k k
t t t t t tk

k k k

tk

v v x x y y

y k
= = =

= = =

∈ =

∑ ∑ ∑

Convex hull MILP model of disjunction:
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1
1

1
10

t t t

t t t

v f y

x C y

≥
≤ ≤

2

2
2

0

0
t

t t t

v

x C y

≥
≤ ≤

3

3

0

0
t

t

v

x

≥
=

3 3 3

1 1 1

, ,

{0,1},   1,2,3

k k
t t t t t tk

k k k

tk

v v x x y y

y k
= = =

= = =

∈ =

∑ ∑ ∑

Convex hull MILP model of disjunction:

To simplify, define

zt = yt1

yt = yt2
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1

10
t

t t

t

t

tv f

x

z

zC

≥
≤ ≤

2

2

0

0 t

t

t t

v

x yC

≥
≤ ≤

3

3

0

0
t

t

v

x

≥
=

3 3

1 1

, ,

{0,1},   1,

1

2,3,

k k
t t t t t t

t t

k k

v v x x

k

z y

z y
= =

+

∈ =

≤= =∑ ∑

Convex hull MILP model of disjunction:

To simplify, define

zt = yt1

yt = yt2

= 1 for startup = 1 for continued 
production
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1

10
t t t

t t t

v f z

x C z

≥
≤ ≤

2

2

0

0
t

t t t

v

x C y

≥
≤ ≤

3

3

0

0
t

t

v

x

≥
=

3 3

1 1

, , 1

, {0,1},   1,2,3

k k
t t t t t t

k k

t t

v v x x z y

z y k
= =

= = + ≤

∈ =

∑ ∑

Convex hull MILP model of disjunction:

Since
set  

3 0tx =
1 2

t t tx x x= +
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1

0 ( )t

t t t

t t tx C y

v z

z

f

≤ ≤ +
≥ 2 0tv ≥ 3 0tv ≥

3

1

, 1

, {0,1},   1,2,3

k
t t t t

k

t t

v v z y

z y k
=

= + ≤

∈ =

∑

Convex hull MILP model of disjunction:

Since
set  

3 0tx =
1 2

1 1 2x x x= +
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1

0 ( )
t t t

t t t t

v f z

x C z y

≥
≤ ≤ +

2 0tv ≥ 3 0tv ≥

3

1

, 1

, {0,1},   1,2,3

k
t t t t

k

t t

v v z y

z y k
=

= + ≤

∈ =

∑

Convex hull MILP model of disjunction:

Since vt occurs positively in the objective function, 
and            do not play a role, let 2 3,t tv v 1

t tv v=
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0 ( )
t t t

t t t t

v f z

x C z y

≥
≤ ≤ +

1

, {0,1},   1,2,3
t t

t t

z y

z y k

+ ≤
∈ =

Convex hull MILP model of disjunction:

Since vt occurs positively in the objective function, 
and            do not play a role, let 2 3,t tv v 1

t tv v=
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0 ( )
t t t

t t t t

v f z

x C z y

≥
≤ ≤ +

1 1

1 1

1

, {0,1},   1,2,3

1
t t t

t

t

t

t

t

t t

y z y

z y

z

z z

y

y

k

− −

− −

+

≤
∈

≤ −

≤
=

+
−

Formulate logical conditions:

(2) In period t ⇒ (1) or (2) in period t − 1

(1) In period t ⇒ neither (1) nor (2) in period t − 1



Slide 69

1

m

0 ( )

in ( )
n

t t t t

t t

t
t

t

t t t t

v f z

x

p x h s

z

v

C y

=

≥
≤ ≤ +

+ +∑

1 1

1 1

1

, {0,1},   1,2,3

1

t t

t t

t t t

t t t

z y

z y k

y z y

z z y
− −

− −

+ ≤
∈ =

≤ +
≤ − −

Add objective function

Unit production cost Unit holding cost
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Logical variables

To tighten an MILP formulation of

( )A B E

A B C D

E F G

y y y

∨ ∨ ∨
∨ ∨

∧ →

Replace negative with positive variables:

Put logical constraint in CNF: A B Ey y y¬ ∨ ¬ ∨

C D E∨ ∨
And add convex hull formulation of this clause.

Conjecture:  this does not tighten the formulation when the 
disjunctions have no variables in common.
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Big-M Disjunctive Formulation

Again start with a disjunction of 
linear systems.

( )k k

k
A x b≥∨

yk is 1 when x is in 
polyhedron k.

( )

{ }

1 , all 

1

0,1 , all 

k k k k
k

k
k

k

A x b y M k

y

y k

≥ − −
=

∈

∑

Mk is a vector of bounds 
that makes system k
nonbinding when yk = 0.

( )min |k k k

k
M b A x A x b

≠

 = − ≥ 
 

∨ ℓ ℓ

ℓ

Big M
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Big-M Disjunctive Formulation

Again start with a disjunction of 
linear systems.

yk is 1 when x is in 
polyhedron k.

( )

{ }

1 , all 

1

0,1 , all 

k k k k
k

k
k

k

A x b y M k

y

y k

≥ − −
=

∈

∑

Mk is a vector of bounds 
that makes system k
nonbinding when yk = 0.

( )min |k k k

k
M b A x A x b

≠

 = − ≥ 
 

∨ ℓ ℓ

ℓ

Big M

Every bounded MILP-representable set has a model of this form 
(as well as a convex hull disjunctive model).

( )k k

k
A x b≥∨
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Example: Health Care Benefits

Distribute limited health benefits to two persons.  
Person i receives utility ui.

Two criteria:

If |u1 − u2| ≤ ∆, Rawlsian:

max min{u1,u2} 

If |u1 − u2| > ∆, utilitarian:

max u1 + u2

Maximize welfare of person 
who is more seriously ill, 
unless this requires too 
much sacrifice from the 
other person.

u1

u2

∆

∆
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u1

u2

Example: Health Care Benefits

Distribute limited health benefits to two persons.  
Person i receives utility ui.

Two criteria:

If |u1 − u2| ≤ ∆, Rawlsian:

max min{u1,u2} 

If |u1 − u2| > ∆, utilitarian:

max u1 + u2

{ }1 2 1 2

1 2

1 2

max

2 min , if | |

otherwise

,

z

u u u u
z

u u

u u S

 + ∆ − ≤ ∆
≤  + 

∈

∆

∆

S

Optimization problem:
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u1

u2

Example: Health Care Benefits

Distribute limited health benefits to two persons.  
Person i receives utility ui.

Two criteria:

If |u1 − u2| ≤ ∆, Rawlsian:

max min{u1,u2} 

If |u1 − u2| > ∆, utilitarian:

max u1 + u2

{ }1 2 1 2

1 2

1 2

max

2 min , if | |

otherwise

,

z

u u u u
z

u u

u u S

 + ∆ − ≤ ∆
≤  + 

∈

Optimization problem:

∆

∆

S
Ensures continuity
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u1

u2

Example: Health Care Benefits

Distribute limited health benefits to two persons.  
Person i receives utility ui.

Ignoring S, we would like a 
convex hull MILP model of 
the epigraph.

Can we do it?

No!

{ }1 2 1 2

1 2

1 2

max

2 min , if | |

otherwise

,

z

u u u u
z

u u

u u S

 + ∆ − ≤ ∆
≤  + 

∈

∆

∆ Optimization problem:
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u1

Example: Health Care Benefits

Distribute limited health benefits to two persons.  
Person i receives utility ui.

Epigraph is union of two 
polyhedra:

P1 has recession cone

u1

u2

∆

∆

{ }( , , ) | , , 0z zα β α β α β≤ + ≥
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Example: Health Care Benefits

Distribute limited health benefits to two persons.  
Person i receives utility ui.

u2

∆

∆

P2 has recession cone

{ } { }(1,1, ) | 0 2 (1,0,0),(0,1,0)z z≤ ≤ ∪

Epigraph is union of two 
polyhedra:

P1 has recession cone

{ }( , , ) | , , 0z zα β α β α β≤ + ≥
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Example: Health Care Benefits

Distribute limited health benefits to two persons.  
Person i receives utility ui.

Solution:

Add constraint |u1 − u2| ≤ M

No need to bound u1, u2

individually

u1

u2

∆

∆

M

M
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Example: Health Care Benefits

Distribute limited health benefits to two persons.  
Person i receives utility ui.

Solution:

Add constraint |u1 − u2| ≤ M

No need to bound u1, u2

individually

P1 has recession cone

u1

u2

∆

∆

M

M

{ }(1,1, ) | 0 2z z≤ ≤
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Example: Health Care Benefits

Distribute limited health benefits to two persons.  
Person i receives utility ui.

Solution:

Add constraint |u1 − u2| ≤ M

No need to bound u1, u2

individually

P1 has recession cone
{ }(1,1, ) | 0 2z z≤ ≤

u1

u2

∆

∆

M

M

So does P2
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Example: Health Care Benefits

Distribute limited health benefits to two persons.  
Person i receives utility ui.

Big-M model:

u1

u2

∆

∆

M

M

{ }

1

2

1 2

1 2 2 1

1 2

2 ( )

2 ( )

(1 )

,

, 0, 0,1

z u M y

z u M y

z u u y

u u M u u M

u u y

≤ + ∆ + − ∆
≤ + ∆ + − ∆
≤ + + ∆ −
− ≤ − ≤

≥ ∈
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Example: Health Care Benefits

Distribute limited health benefits to two persons.  
Person i receives utility ui.

Big-M model:

u1

u2

∆

∆

M

M

{ }

1

2

1 2

1 2 2 1

1 2

2 ( )

2 ( )

(1 )

,

, 0, 0,1

z u M y

z u M y

z u u y

u u M u u M

u u y

≤ + ∆ + − ∆
≤ + ∆ + − ∆
≤ + + ∆ −
− ≤ − ≤

≥ ∈

Theorem: This is a 
convex hull formulation.
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Example: Health Care Benefits

Distribute limited health benefits to two persons.  
Person i receives utility ui.

Big-M model:

u1

u2

∆

∆

M

M

{ }

1

2

1 2

1 2 2 1

1 2

2 ( )

2 ( )

(1 )

,

, 0, 0,1

z u M y

z u M y

z u u y

u u M u u M

u u y

≤ + ∆ + − ∆
≤ + ∆ + − ∆
≤ + + ∆ −
− ≤ − ≤

≥ ∈

Theorem: This is a 
convex hull formulation.

Model is no tighter if we 
use u1, u2 ≤ M
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Example: Health Care Benefits

Optimization problem for the n-person case:

{ } { }{ }
1

max

( 1) min max 0, min

| | ,  all ,

0,

n

j j jj j
j

i j

z

z n n u u u

u u M i j

u u S

=

≤ − ∆ + + − − ∆

− ≤
≥ ∈

∑



Slide 86

Example: Health Care Benefits

Optimization problem for the n-person case:

{ } { }{ }
1

max

( 1) min max 0, min

| | ,  all ,

0,

n

j j jj j
j

i j

z

z n n u u u

u u M i j

u u S

=

≤ − ∆ + + − − ∆

− ≤
≥ ∈

∑

Big-M disjunctive 
model:

{ }

1

max

, all 

( ),  all ,

(1 ) ,  all ,

0, all 

,  all ,

0,1 , all ,

n

ij
j

ij i ij

ij j ij

ii

i j

ij

z

z w i

w u y M i j

w u y i j

y i

u u M i j

u S

y i j

=
≤ −∆ +

≤ ∆ + + − ∆
≤ + − ∆
=

− ≤
∈
∈

∑
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Example: Health Care Benefits

Optimization problem for the n-person case:

{ } { }{ }
1

max

( 1) min max 0, min

| | ,  all ,

0,

n

j j jj j
j

i j

z

z n n u u u

u u M i j

u u S

=

≤ − ∆ + + − − ∆

− ≤
≥ ∈

∑

Big-M disjunctive 
model:

{ }

1

max

, all 

( ),  all ,

(1 ) ,  all ,

0, all 

,  all ,

0,1 , all ,

n

ij
j

ij i ij

ij j ij

ii

i j

ij

z

z w i

w u y M i j

w u y i j

y i

u u M i j

u S

y i j

=
≤ −∆ +

≤ ∆ + + − ∆
≤ + − ∆
=

− ≤
∈
∈

∑
Theorem:
This is a convex 
hull formulation.
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General MILP Representability
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Knapsack Models

• Integer variables can also be used to express counting ideas.

• This is totally different from the use of 0-1 variables to express 
unions of polyhedra.

• Examples:

• Knapsack inequalities

• Packing and covering

• Logical clauses

• Cost bounds
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Knapsack Models

• Disjunctive representability does not accommodate knapsack 
constraints in a natural way.

• Knapsack constraints are bounded MILP representable only if 
integer variables are bounded.

• …and only in a technical sense.

• By regarding each integer lattice point as a polyhedron. 
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A subset S of                is MILP 
representable if S is the projection 
onto x of the feasible set of some 
MILP constraint set of the form ,   z

{0,1}

n p m

q

Ax Bz Dy b

x

y

+ + ≥
∈ × ∈
∈
ℝ ℤ ℝ

General representability theorem

n p×ℝ ℤ

Integer variables can now be unbounded :

Some modeling 
variables are 
continuous, some 
integer

Auxiliary 
continuous 
variables can 
be used
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A subset S of                is MILP 
representable if S is the projection 
onto x of the feasible set of some 
MILP constraint set of the form ,   z

{0,1}

n p m

q

Ax Bz Dy b

x

y

+ + ≥
∈ × ∈
∈
ℝ ℤ ℝ

General representability theorem

n p×ℝ ℤ

Integer variables can be unbounded:

Assume that A, B, D, b
consist of rational data
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A subset S of                is MILP 
representable if S is the projection 
onto x of the feasible set of some 
MILP constraint set of the form ,   z

{0,1}

n p m

q

Ax Bz Dy b

x

y

+ + ≥
∈ × ∈
∈
ℝ ℤ ℝ

General representability theorem

n p×ℝ ℤ

Integer variables can be unbounded:

Assume that A, B, D, b
consist of rational data

A mixed integer polyhedron is any set of the form

{ }|n px Ax b∈ × ≥ℝ ℤ
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General representability theorem

Rational vector d is a 
recession direction of a mixed 
integer polyhedron                        
if it is a recession direction of 
some polyhedron
for which 

n pP ⊂ ×ℝ ℤ

n pQ +⊂ ℝ

( )n pP Q= ∩ ×ℝ ℤ

Mixed integer 
polyhedron P
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General representability theorem

Rational vector d is a 
recession direction of a mixed 
integer polyhedron                        
if it is a recession direction of 
some polyhedron
for which 

n pP ⊂ ×ℝ ℤ

( )n pP Q= ∩ ×ℝ ℤ

Polyhedron Q 

Mixed integer 
polyhedron P

n pQ +⊂ ℝ
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General representability theorem

Rational vector d is a 
recession direction of a mixed 
integer polyhedron                        
if it is a recession direction of 
some polyhedron
for which 

n pP ⊂ ×ℝ ℤ

n pQ +⊂ ℝ

( )n pP Q= ∩ ×ℝ ℤ

Polyhedron Q 

Recession cone of Q 
= recession cone of P

Mixed integer 
polyhedron P
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General representability theorem

Lemma .  All polyhedra in
having the same nonempty
intersection with
have the same recession cone.

Polyhedron Q 

Recession cone of Q 
= recession cone of P

n p+
ℝ

Mixed integer 
polyhedron P

n p×ℝ ℤ
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General representability theorem

Theorem . A nonempty subset of                is MILP representable
if and only if it is the union of finitely many mixed integer polyhedra
in               having the same recession cone.   

n p×ℝ ℤ

Polyhedron Q 

Recession cone of Q 
= recession cone of P

Mixed integer 
polyhedron P

n p×ℝ ℤ

Union of mixed integer 
polyhedra with the same 

recession cone 
(in this case, the origin)
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Convex Hull Formulation

Start with a disjunction of linear 
systems to represent the union 
of mixed integer polyhedra.

The kth polyhedron is

( )k k

k
A x b≥∨

Aside from domain of x, the 
disjunctive model is the same as 
before.

{ }

,  all 

1

, 0,1

k k k
k

k
k

k

k
n p

k

A x b y k

y

x x

x y

≥
=

=

∈ × ∈

∑

∑

ℝ ℤ

{ }|n p k kx A x b∈ × ≥ℝ ℤ
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Convex Hull Formulation

Every MILP representable set 
has a model of this form.

( )k k

k
A x b≥∨Start with a disjunction of linear 

systems to represent the union 
of mixed integer polyhedra.

The kth polyhedron is { }|n p k kx A x b∈ × ≥ℝ ℤ

{ }

,  all 

1

, 0,1

k k k
k

k
k

k

k
n p

k

A x b y k

y

x x

x y

≥
=

=

∈ × ∈

∑

∑

ℝ ℤ

Aside from domain of x, the 
disjunctive model is the same as 
before.
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Convex Hull Formulation

Every MILP representable set 
has a model of this form.

…also a model in disjunctive 
big-M form.

( )k k

k
A x b≥∨Start with a disjunction of linear 

systems to represent the union 
of mixed integer polyhedra.

The kth polyhedron is { }|n p k kx A x b∈ × ≥ℝ ℤ

{ }

,  all 

1

, 0,1

k k k
k

k
k

k

k
n p

k

A x b y k

y

x x

x y

≥
=

=

∈ × ∈

∑

∑

ℝ ℤ

Aside from domain of x, the 
disjunctive model is the same as 
before.
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Convex Hull Formulation

Theorem .  If each mixed integer polyhedron has a convex hull 
formulation Akx ≥ bk, the disjunctive model is a convex hull 
formulation of the disjunction.

Convex hull relaxationUnion of mixed integer 
polyhedra with convex hull 

descriptions
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Example:  Facility location

i j

fi

cij
Fixed 
cost Transport 

cost per 
vehicle

m possible 
factory 

locations n markets
Locate factories to 
serve markets so as 
to minimize total 
factory cost and 
transport cost.

Fixed cost incurred 
for each vehicle 
used.

Dj
Cj

Kij
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Facility location

Disjunctive model:

min

0, all 0 ,  all ,   all 
0

,  all 

,   all 

i ij ij
i ij

ij i
j

ij
ij ij ij

i
i

ij

ij j
i

z c w

x C

x jx K w j i
zz f

w j

x D j

+

≤ 
 

=   ≤ ≤ ∨   = ≥ 
 ∈ 

=

∑ ∑

∑

∑

ℤ

Factory at 
location i

No factory
at location i

Number of 
vehicles from 
factory i to market j

i j

fi

cij
Fixed 
cost Transport 

cost per 
vehicle

m possible 
factory 

locations n markets

Cj

Kij



Slide 105

Facility location

Disjunctive model:

min

0, all 0 ,  all ,   all 
0

,  all 

,   all 

i ij ij
i ij

ij i
j

ij
ij ij ij

i
i

ij

ij j
i

z c w

x C

x jx K w j i
zz f

w j

x D j

+

≤ 
 

=   ≤ ≤ ∨   = ≥ 
 ∈ 

=

∑ ∑

∑

∑

ℤ

Factory at 
location i

No factory
at location i

Number of 
vehicles from 
factory i to market j

i j

fi

cij
Fixed 
cost Transport 

cost per 
vehicle

m possible 
factory 

locations n markets

Cj

Kij

Describes 
mixed 
integer 

polyhedron
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Facility location

MILP formulation:

Disjunctive model:

min

, all 

,  all 

0 , all ,

{0,1},   ,  all ,

i i ij ij
i ij

ij i i
j

ij j
i

ij ij ij

i ij

f y c w

x C y i

x D j

x K w i j

y w i j

+

≤

=

≤ ≤
∈ ∈

∑ ∑

∑

∑

ℤ

min

0, all 0 ,  all ,   all 
0

,  all 

,   all 

i ij ij
i ij

ij i
j

ij
ij ij ij

i
i

ij

ij j
i

z c w

x C

x jx K w j i
zz f

w j

x D j

+

≤ 
 

=   ≤ ≤ ∨   = ≥ 
 ∈ 

=

∑ ∑

∑

∑

ℤ
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,   z

{0,1}

n p m

q

Ax Bz Dy b

x

y

+ + ≥
∈ × ∈
∈
ℝ ℤ ℝ

Why a Single Recession Cone

So S is a union of mixed integer polyhedra.

Suppose S is 
represented by

For each binary , this 
describes a mixed integer  
polyhedron . 

y

( )P y
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Suppose S is 
represented by ,   z

{0,1}

n p m

q

Ax Bz Dy b

x

y

+ + ≥
∈ × ∈
∈
ℝ ℤ ℝ

Why a single recession cone

For each binary , this 
describes a mixed integer  
polyhedron    . 

So S is a union of mixed integer polyhedra.  Now x′ is a recession 
direction of nonempty          iff (x′,u′,y′) is a recession direction of

0

: 0 0 1 0

0 0 1

n p m q

x A B D x

u u

y y y

+

        
        ∈ × × ≥        
        −        

ℝ ℤ ℝ

y

y

( )P y

( )P y
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,   z

{0,1}

n p m

q

Ax Bz Dy b

x

y

+ + ≥
∈ × ∈
∈
ℝ ℤ ℝ

Why a single recession cone

For each binary y, this 
describes a mixed integer  
polyhedron P(y). 

So S is a union of mixed integer polyhedra.  Now x′ is a recession 
direction of nonempty P(y) iff (x′,u′,y′) is a recession direction of

That is, iff 0

0 0 1 0

0 0 1 0

A B D x

u

y

′     
     ′ ≥     
     ′−     

Suppose S is 
represented by

0

: 0 0 1 0

0 0 1

n p m q

x A B D x

u u

y y y

+

        
        ∈ × × ≥        
        −        

ℝ ℤ ℝ



Slide 110

,   z

{0,1}

n p m

q

Ax Bz Dy b

x

y

+ + ≥
∈ × ∈
∈
ℝ ℤ ℝ

Why a single recession cone

For each binary y, this 
describes a mixed integer  
polyhedron P(y). 

So S is a union of mixed integer polyhedra.  Now x′ is a recession 
direction of nonempty P(y) iff (x′,u′,y′) is a recession direction of

That is, iff 0
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But this is independent of y.

Suppose S is 
represented by

0
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Example: Freight Packing and Transfer

• Transport packages using n trucks

• Each package j has size aj.

• Each truck i has capacity Qi.
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Knapsack component

The trucks selected must have enough capacity to carry the load.

1

n

i i j
i j

Q y a
=

≥∑ ∑

= 1 if truck i is selected
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Disjunctive component
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mixed integer 
polyhedron
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The resulting model

Disjunctive 
component

Logical condition 
(each package must be shipped)

Knapsack 
component

1
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The resulting model
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The yi is redundant but makes 
the continuous relaxation 

tighter.

This is a modeling “trick,” part of 
the folklore of modeling.
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The resulting model
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The yi is redundant but makes 
the continuous relaxation 

tighter.

This is a modeling “trick,” part of 
the folklore of modeling.

Conventional modeling wisdom 
would not use this constraint, 

because it is the sum of the first 
constraint over i.

But it radically reduces solution 
time, because it generates 

lifted knapsack cuts.
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Research issues

• Can the simplification of a convex hull MILP formulation be 
automated?

• What are some conditions under which a big-M disjunctive model 
is a convex hull formulation?

• When does convex hull formulation of logical constraints tighten 
the model?

• How can a modeling system facilitate and encourage principled 
modeling?


