A Principled Approach to MILP Modeling

John Hooker
Carnegie Mellon University

August 2008

Slide 1

Proposal

- MILP modeling is an art, but it need not be unprincipled.

Proposal

- MILP modeling is an art, but it need not be unprincipled.

- It has two basic components:
- Disjunctive modeling of subsets of continuous space.
- Knapsack modeling of counting ideas.

Proposal

- MILP modeling is an art, but it need not be unprincipled.

- It has two basic components:
- Disjunctive modeling of subsets of continuous space.
- Knapsack modeling of counting ideas.
- MILPs can model subsets of continuous space that are unions of polyhedra.
- ...that is, represented by disjunctions of linear systems.

Proposal

- MILP modeling is an art, but it need not be unprincipled.

- It has two basic components:
- Disjunctive modeling of subsets of continuous space.
- Knapsack modeling of counting ideas.
- MILPs can model subsets of continuous space that are unions of polyhedra.
- ...that is, represented by disjunctions of linear systems.
- So a principled approach is to analyze the problem as

Slide 5

disjunctions
of linear
systems
:---:
knapsack
inequalities

Proposal

- Jeroslow's Representability Theorem provides theoretical basis for disjunctive modeling.
- "Bounded MILP representability" assumes bounded integer variables.
- This is inadequate for knapsack modeling.

Proposal

- Jeroslow's Representability Theorem provides theoretical basis for disjunctive modeling.
- "Bounded MILP representability" assumes bounded integer variables.
- This is inadequate for knapsack modeling.
- We will generalize Jeroslow's theorem.
- Knapsack modeling accommodated.
- Integer variables can be unbounded.

Outline

- Bounded mixed integer representability
- Bounded representability theorem.
- Convex hull formulation
- Example: Fixed charge problem
- Why the disjunctive model works
- Multiple disjunctions
- Example: Facility location
- Example: Lot sizing with setup costs
- Big-M disjunctive formulation
- Example: Health care benefits

Outline

- General mixed integer representability

- Knapsack models
- General representability theorem.
- Convex hull formulation
- Example: Facility location
-Why a single recession cone
- Example: Freight packing and transfer
- Research issues

Bounded MILP Representability

Bounded representability theorem

Definition of R. Jeroslow:

A subset S of \mathbb{R}^{n} is bounded MILP representable $\quad A x+B z+D y \geq b$ if S is the projection onto x of the feasible set of some MILP constraint set of the form

Bounded general integer variables can be encoded as
$0-1$ variables

Auxiliary continuous variables can be used

Bounded representability theorem

Theorem (Jeroslow). A subset of continuous space is bounded MILP representable if and only if it is the union of finitely many polyhedra having the same recession cone.

Union of polyhedra with the same recession cone (in this case, the origin)

Slide 12

Convex hull formulation

Start with a disjunction of linear systems to represent the union of polyhedra.

The k th polyhedron is $\left\{x \mid A^{k} x \geq b\right\}$

Introduce a 0-1 variable y_{k} that is 1 when x is in polyhedron k.

Disaggregate x to create an x^{k} for each k.

$$
\bigvee_{k}\left(A^{k} x \geq b^{k}\right)
$$

$$
A^{k} x^{k} \geq b^{k} y_{k}, \text { all } k
$$

$$
\sum_{k} y_{k}=1
$$

$$
x=\sum_{k} x^{k}
$$

$$
y_{k} \in\{0,1\}
$$

Convex hull formulation

Start with a disjunction of linear systems to represent the union of polyhedra.

The k th polyhedron is $\left\{x \mid A^{k} x \geq b\right\}$

Introduce a 0-1 variable y_{k} that is 1 when x is in polyhedron k.

Disaggregate x to create an x^{k} for each k.

Every bounded MILP representable set has a model of this form.

$$
\bigvee_{k}\left(A^{k} x \geq b^{k}\right)
$$

$A^{k} x^{k} \geq b^{k} y_{k}$, all k
$\sum_{k} y_{k}=1$
$x=\sum_{k} x^{k}$
$y_{k} \in\{0,1\}$

Convex Hull Formulation

- The continuous relaxation of this disjunctive MILP provides a convex hull relaxation of the disjunction.
- Strictly, it describes the closure of the convex hull.

Union of polyhedra

Convex hull relaxation
(tightest linear relaxation)

Idea behind the convex hull formulation

Start by formulating a convex hull formulation of the relaxation of the disjunction...

Write each solution as a convex combination of points in the polyhedron	$\sum_{k}^{k} x^{k} \geq b^{k}$, all k
y	

Convex hull relaxation

Idea behind the convex hull formulation

Now apply a change of variable

Write each
solution as a convex
combination of points in the
polyhedron

Convex hull relaxation

Idea behind the convex hull formulation

Now make $y_{k} s$ 0-1
variables to get an
MILP representation

$$
\begin{aligned}
& A^{k} \bar{x}^{k} \geq b^{k}, \text { all } k \\
& \sum_{k} y_{k}=1 \\
& x=\sum_{k} y_{k} \bar{x}^{k} \\
& y_{k} \in\{0,1\}
\end{aligned}
$$

Convex hull formulation

Slide 18

Idea behind the convex hull formulation

When is this a valid
Let's look at an example first... formulation?

$$
\begin{aligned}
& A^{k} \bar{x}^{k} \geq b^{k}, \text { all } k \\
& \sum_{k} y_{k}=1 \\
& x=\sum_{k} y_{k} \bar{x}^{k} \\
& y_{k} \in\{0,1\}
\end{aligned}
$$

Convex hull formulation

Slide 19

Example: Fixed charge function

Minimize a fixed charge function:

$$
\min x_{2}
$$

$$
\begin{aligned}
& x_{2} \geq\left\{\begin{array}{ll}
0 & \text { if } x_{1}=0 \\
f+c x_{1} & \text { if } x_{1}>0
\end{array}\right\} \\
& x_{1} \geq 0
\end{aligned}
$$

Slide 20

Fixed charge problem

Minimize a fixed charge function:

$$
\begin{aligned}
& \min x_{2} \\
& x_{2} \geq\left\{\begin{array}{ll}
0 & \text { if } x_{1}=0 \\
f+c x_{1} & \text { if } x_{1}>0
\end{array}\right\} \\
& x_{1} \geq 0
\end{aligned}
$$

Slide 21

Fixed charge problem

Minimize a fixed charge function:

$$
\begin{aligned}
& \min x_{2} \\
& x_{2} \geq\left\{\begin{array}{ll}
0 & \text { if } x_{1}=0 \\
f+c x_{1} & \text { if } x_{1}>0
\end{array}\right\} \\
& x_{1} \geq 0
\end{aligned}
$$

Slide 22

Fixed charge problem

Minimize a fixed charge function:

$$
\begin{aligned}
& \min x_{2} \\
& x_{2} \geq\left\{\begin{array}{ll}
0 & \text { if } x_{1}=0 \\
f+c x_{1} & \text { if } x_{1}>0
\end{array}\right\} \\
& x_{1} \geq 0
\end{aligned}
$$

Slide 23

Fixed charge problem

Minimize a fixed charge function:

$$
\begin{aligned}
& \min x_{2} \\
& x_{2} \geq\left\{\begin{array}{ll}
0 & \text { if } x_{1}=0 \\
f+c x_{1} & \text { if } x_{1}>0
\end{array}\right\} \\
& x_{1} \geq 0
\end{aligned}
$$

The polyhedra have different recession cones.

Slide 24

Fixed charge problem

Disjunctive model describes convex hull relaxation but not the feasible set.
$\min x_{2}$

$$
\binom{x_{1}=0}{x_{2} \geq 0} \vee\binom{x_{1} \geq 0}{x_{2} \geq f+c x_{1}}
$$

Fixed charge problem

Start with a disjunction of linear systems to represent the union of polyhedra

Introduce a $0-1$ variable y_{k} that is 1 when x is in polyhedron k.

Disaggregate x to create an x^{k} for each k.
$\min x_{2}$
$\binom{x_{1}=0}{x_{2} \geq 0} \vee\binom{x_{1} \geq 0}{x_{2} \geq f+c x_{1}}$
$\min x_{2}$

$$
\begin{array}{lc}
x_{1}^{1}=0 & x_{1}^{2} \geq 0 \\
x_{2}^{1} \geq 0 & -c x_{1}^{2}+x_{2}^{2} \geq f y_{2} \\
y_{1}+y_{2}=1, \quad y_{k} \in[0,1] \\
x_{1}=x_{1}^{1}+x_{1}^{2}, \quad x_{2}=x_{2}^{1}+x_{2}^{2}
\end{array}
$$

> To simplify, replace x_{1}^{2} with x_{1} since $x_{1}^{1}=0$
$\min x_{2}$
$x_{1}^{1}=0 \quad x_{1}^{2} \geq 0$
$x_{2}^{1} \geq 0 \quad-c x_{1}^{2}+x_{2}^{2} \geq f y_{2}$
$y_{1}+y_{2}=1, \quad y_{k} \in[0,1]$
$x_{1}=x_{1}^{1}+x_{1}^{2}, \quad x_{2}=x_{2}^{1}+x_{2}^{2}$

Slide 27

> To simplify, replace x_{1}^{2} with x_{1} since $x_{1}^{1}=0$
$\min x_{2}$

$$
\begin{aligned}
& \quad x_{1} \geq 0 \\
& x_{2}^{1} \geq 0 \quad-c x_{1}+x_{2}^{2} \geq f y_{2} \\
& y_{1}+y_{2}=1, \quad y_{k} \in[0,1] \\
& x_{2}=x_{2}^{1}+x_{2}^{2}
\end{aligned}
$$

Slide 28

```
Replace \(x_{2}^{2}\) with \(x_{2}\)
because \(x_{2}^{1}\) plays no role in the model
```

$$
\begin{aligned}
& \min x_{2} \\
& \quad x_{1} \geq 0 \\
& x_{2}^{1} \geq 0 \quad-c x_{1}+x_{2}^{2} \geq f y_{2} \\
& y_{1}+y_{2}=1, \quad y_{k} \in[0,1] \\
& x_{2}=x_{2}^{1}+x_{2}^{2}
\end{aligned}
$$

```
Replace \(x_{2}^{2}\) with \(x_{2}\)
because \(x_{2}^{1}\) plays no role in the model
```

$$
\begin{aligned}
& \min x_{2} \\
& x_{1} \geq 0 \\
&-c x_{1}+x_{2} \geq f y_{2} \\
& y_{1}+y_{2}=1, y_{k} \in[0,1]
\end{aligned}
$$

Replace y_{2} with y
because y_{1} plays no role in the model

$$
\begin{gathered}
\min x_{2} \\
\\
x_{1} \geq 0 \\
-c x_{1}+x_{2} \geq f y_{2} \\
y_{1}+y_{2}=1, \quad y_{k} \in[0,1]
\end{gathered}
$$

Replace y_{2} with y
because y_{1} plays no role in the model

$$
\begin{aligned}
& \min x_{2} \\
& \quad x_{1} \geq 0 \\
& x_{2} \geq c x_{1}+f y \\
& y \in[0,1]
\end{aligned}
$$

The convex hull is this.

$$
\begin{aligned}
& \min x_{2} \\
& \quad x_{1} \geq 0 \\
& x_{2} \geq c x_{1}+f y \\
& y \in[0,1]
\end{aligned}
$$

Slide 33

Relaxation correctly describes closure of convex hull

$$
\begin{aligned}
& \min x_{2} \\
& \quad x_{1} \geq 0 \\
& x_{2} \geq c x_{1}+f y \\
& y \in[0,1]
\end{aligned}
$$

But MILP model does not describe feasible set

$$
\begin{aligned}
& \min x_{2} \\
& x_{1} \geq 0 \\
& x_{2} \geq c x_{1}+f y \\
& y \in\{0,1\}
\end{aligned}
$$

To fix the problem...

$$
\text { Add an upper bound on } x_{1} \quad \begin{aligned}
& \min x_{2} \\
& x_{2} \geq\left\{\begin{array}{ll}
0 & \text { if } x_{1}=0 \\
f+c x_{1} & \text { if } x_{1}>0
\end{array}\right\} \\
& 0 \leq x_{1} \leq M
\end{aligned}
$$

The polyhedra have the same recession cone.

Slide 36

Fixed charge problem

The disjunction is now...
$\min x_{2}$

$$
\binom{x_{1}=0}{x_{2} \geq 0} \vee\binom{0 \leq x_{1} \leq M}{x_{2} \geq f+c x_{1}}
$$

Fixed charge problem

$$
\begin{aligned}
& \min x_{2} \\
& \binom{x_{1}=0}{x_{2} \geq 0} \vee\binom{0 \leq x_{1} \leq M}{x_{2} \geq f+c x_{1}}
\end{aligned}
$$

The disjunctive model is
$\min x_{2}$

$$
\begin{aligned}
& x_{1}^{1}=0 \quad 0 \leq x_{1}^{2} \leq M y_{2} \\
& x_{2}^{1} \geq 0 \quad-c x_{1}^{2}+x_{2}^{2} \geq f y_{2} \\
& y_{1}+y_{2}=1, \quad y_{k} \in\{0,1\} \\
& x_{1}=x_{1}^{1}+x_{1}^{2}, \quad x_{2}=x_{2}^{1}+x_{2}^{2}
\end{aligned}
$$

This simplifies as before...

$$
\begin{aligned}
& \min x_{2} \\
& 0 \leq x_{1} \leq M y \\
& x_{2} \geq c x_{1}+f y \\
& y \in\{0,1\}
\end{aligned}
$$

This simplifies as before...

$$
\begin{aligned}
& \min x_{2} \\
& 0 \leq x_{1} \leq M y \\
& x_{2} \geq c x_{1}+f y \\
& y \in\{0,1\}
\end{aligned}
$$

Previous model

$$
\begin{aligned}
& \min x_{2} \\
& \quad x_{1} \geq 0 \\
& x_{2} \geq c x_{1}+f y \\
& y \in\{0,1\}
\end{aligned}
$$

This simplifies as before...

$$
\begin{aligned}
& \min x_{2} \\
& 0 \leq x_{1} \leq M y \\
& x_{2} \geq c x_{1}+f y \\
& y \in\{0,1\}
\end{aligned}
$$

$$
\begin{aligned}
& \min c x+f y \\
& 0 \leq x \leq \sqrt{M y} \\
& y \in\{0,1\} \quad \text { "Big } M "
\end{aligned}
$$

Previous model
$\min x_{2}$

$$
\begin{aligned}
& \quad x_{1} \geq 0 \\
& x_{2} \geq c x_{1}+f y \\
& y \in\{0,1\}
\end{aligned}
$$

The model now correctly describes the feasible set.

$$
\begin{gathered}
\min c x+f y \\
0 \leq x \leq M y \\
y \in\{0,1\}
\end{gathered}
$$

"Big M"

Why the disjunctive model works

$\min c x$
$A^{k} x^{k} \geq b^{k} y_{k}$, all k

$$
\sum_{k} y_{k}=1
$$

$$
x=\sum_{k} x^{k}
$$

$$
y_{k} \in\{0,1\}
$$

Let S be feasible set.

Slide 43

Why the disjunctive model works

$\min c x$
$A^{k} x^{k} \geq b^{k} y_{k}$, all k

$$
\sum_{k} y_{k}=1
$$

$$
x=\sum_{k} x^{k}
$$

$$
y_{k} \in\{0,1\}
$$

Let S be feasible set.
$x \in S \quad \Rightarrow \quad x \in$ some P_{k}

Why the disjunctive model works

$\min c x$

$$
\begin{aligned}
& A^{k} x^{k} \geq b^{k} y_{k}, \text { all } k \\
& \sum_{k} y_{k}=1 \\
& x=\sum_{k} x^{k} \\
& y_{k} \in\{0,1\}
\end{aligned}
$$

Let S be feasible set.
$x \in S \quad \Rightarrow \quad x \in$ some P_{k}
$\Rightarrow \quad x$ satisfies the model for
$y_{k}=1$, other $y_{k} s=0$
$x^{k}=x$, other $x^{\prime} s=0$

Why the disjunctive model works

$\min c x$

$$
\begin{aligned}
& A^{k} x^{k} \geq b^{k} y_{k}, \text { all } k \\
& \sum_{k} y_{k}=1 \\
& x=\sum_{k} x^{k} \\
& y_{k} \in\{0,1\}
\end{aligned}
$$

Conversely, suppose
$x, y, x^{k} s$ satisfy the model
\Rightarrow some $y_{k}=1 \Rightarrow x^{k} \in P_{k}$

Why the disjunctive model works

$\min c x$

$$
\begin{aligned}
& A^{k} x^{k} \geq b^{k} y_{k}, \text { all } k \\
& \sum_{k} y_{k}=1 \\
& x=\sum_{k} x^{k} \\
& y_{k} \in\{0,1\}
\end{aligned}
$$

Conversely, suppose
$x, y, x^{k} s$ satisfy the model
\Rightarrow some $y_{k}=1 \Rightarrow x^{k} \in P_{k}$
$\Rightarrow \quad A^{\ell} x^{\ell} \geq 0$ for other ℓ s

Why the disjunctive model works

$\min c x$

$$
\begin{aligned}
& A^{k} x^{k} \geq b^{k} y_{k}, \text { all } k \\
& \sum_{k} y_{k}=1 \\
& x=\sum_{k} x^{k} \\
& y_{k} \in\{0,1\}
\end{aligned}
$$

Conversely, suppose
x, y, x^{k} s satisfy the model
\Rightarrow some $y_{k}=1 \Rightarrow x^{k} \in P_{k}$
$\Rightarrow \quad A^{\ell} x^{\ell} \geq 0$ for other ℓ s
$\Rightarrow \quad x^{\prime} \mathrm{s}$ are recession directions for other $P_{\ell} \mathrm{s}$

Slide 48

Why the disjunctive model works

$\min c x$

$$
\begin{aligned}
& A^{k} x^{k} \geq b^{k} y_{k}, \text { all } k \\
& \sum_{k} y_{k}=1 \\
& x=\sum_{k} x^{k} \\
& y_{k} \in\{0,1\}
\end{aligned}
$$

Conversely, suppose
x, y, x^{k} s satisfy the model
\Rightarrow some $y_{k}=1 \Rightarrow x^{k} \in P_{k}$
$\Rightarrow \quad A^{\ell} x^{\ell} \geq 0$ for other ℓ s
$\Rightarrow \quad x^{\prime} \mathrm{s}$ are recession directions for P_{k}

Why the disjunctive model works

$\min c x$

$$
\begin{aligned}
& A^{k} x^{k} \geq b^{k} y_{k}, \text { all } k \\
& \sum_{k} y_{k}=1 \\
& x=\sum_{k} x^{k} \\
& y_{k} \in\{0,1\}
\end{aligned}
$$

Conversely, suppose
$x, y, x^{k} s$ satisfy the model
\Rightarrow some $y_{k}=1 \Rightarrow x^{k} \in P_{k}$
$\Rightarrow \quad A^{\ell} x^{\ell} \geq 0$ for other ℓ s
$\Rightarrow \quad x^{\prime}$ s are recession directions for P_{k}
$\Rightarrow A^{k} x^{\ell} \geq 0 \Rightarrow A^{k} x=A^{k}\left(x^{k}+\sum_{\ell \neq k} x^{\ell}\right) \geq b^{k}$
Slide 50

Why the disjunctive model works

$\min c x$

$$
\begin{aligned}
& A^{k} x^{k} \geq b^{k} y_{k}, \text { all } k \\
& \sum_{k} y_{k}=1 \\
& x=\sum_{k} x^{k} \\
& y_{k} \in\{0,1\}
\end{aligned}
$$

Conversely, suppose
$x, y, x^{k} s$ satisfy the model
\Rightarrow some $y_{k}=1 \Rightarrow x^{k} \in P_{k}$
$\Rightarrow \quad A^{\ell} x^{\ell} \geq 0$ for other ℓ s

Slide 51
$\Rightarrow \quad x^{\prime}$ s are recession directions for P_{k}
$\Rightarrow A^{k} x^{\ell} \geq 0 \Rightarrow A^{k} x=A^{k}\left(x^{k}+\sum_{\ell \neq k} x^{\ell}\right) \geq b^{k}$
$\Rightarrow x \in P_{k} \Rightarrow x \in S$

Multiple disjunctions

Combining individual convex hull formulations for two disjunctions...

$$
\begin{aligned}
& V_{k}\left(A^{k} x \geq a^{k}\right) \\
& V_{k}\left(B^{k} x \geq b^{k}\right)
\end{aligned}
$$

does not necessarily produce a convex hull formulation for the pair...

Theorem. ...unless the disjunctions have no common variables.

Example: Facility location

Slide 53

Facility location

Amount shipped from factory i to market j

Disjunctive model:

$$
\begin{aligned}
& \min \sum_{i} z_{i}+\sum_{i j} c_{i j} x_{i j} \\
& \left(\begin{array}{c}
\sum_{j} x_{i j} \leq C_{i} \\
z_{i} \geq f_{i} \\
x_{i j} \geq 0, \text { all } \mathrm{j}
\end{array}\right) \vee\binom{x_{i j}=0, \text { all } j}{z_{i}=0}, \text { all } i \\
& \sum_{i} x_{i j}=D_{j}, \quad \begin{array}{ll}
\text { all } j & \text { No factory } \\
\text { Factory at } & \text { at location } i \\
\text { location } i
\end{array}
\end{aligned}
$$

Slide 54

Facility location

$$
\min \sum_{i} z_{i}+\sum_{i j} c_{i j} x_{i j}
$$

$\begin{aligned} \text { Disjunctive model: } & \left(\begin{array}{c}\sum_{j} x_{i j} \leq C_{i} \\ z_{i} \geq f_{i} \\ x_{i j} \geq 0, \text { all } \mathrm{j}\end{array}\right) \vee\binom{x_{i j}=0, \text { all } j}{z_{i}=0} \text {, all } i \\ & \sum_{i} x_{i j}=D_{j}, \text { all } j\end{aligned}$
$\min \sum_{i} f_{i} y_{i}+\sum_{i j} c_{i j} x_{i j}$
MILP formulation: $\sum_{j} x_{i j} \leq C_{i} y_{i}$, all i
$\sum_{i} x_{i j}=D_{j}$, all j
$y_{i} \in\{0,1\}, \quad x_{i j} \geq 0$, all i, j

Uncapacitated facility location

Beginner's mistake: Model it as special case of capacitated problem

$$
\begin{array}{ll}
\min \sum_{i} f_{i} y_{i}+\sum_{i j} c_{i} x_{i j}, & \begin{array}{l}
\text { Fraction of demand } j \\
\text { satisfied by factory } i
\end{array} \\
\sum_{j} x_{i j} \leq n y_{i}, & \text { all } i
\end{array} \quad \begin{array}{ll}
\text { Factory } i \text { has } \\
y_{i} \in\{0,1\} & \text { max output } n
\end{array}
$$

This is not the best model.
We can obtain a tighter model by starting with disjunctive formulation.

Uncapacitated facility location

m possible	
factory	
locations	n markets

Fraction of demand j
satisfied by factory i
Disjunctive model:

$$
\begin{aligned}
& \min \sum_{i} z_{i}+\sum_{i j} c_{i} \mid x_{i j} \\
& \binom{0 \leq x_{i j} \leq 1, \text { all } j}{z_{i} \geq f_{i}} \vee\binom{x_{i j}=0, \text { all } j}{z_{i}=0}, \text { all } i \\
& \sum_{i} x_{i j}=1, \text { all } j
\end{aligned}
$$

No factory at location i

Factory at
location i

Slide 57

Uncapacitated facility location

MILP formulation: $\min \sum_{i} f_{i} y_{i}+\sum_{i j} c_{i j} x_{i j}$

$$
\begin{aligned}
& 0 \leq x_{i j} \leq y_{i}, \text { all } i, j \\
& \sum_{i} x_{i j}=1, \text { all } j \\
& y_{i} \in\{0,1\}, \text { all } i
\end{aligned}
$$

This is the textbook model.

More constraints, but tighter relaxation.

Beginner's model: min $\sum_{i} f_{i} y_{i}+\sum_{i j} c_{i j} x_{i j}$

$$
\begin{aligned}
& \sum_{j} x_{i j} \leq n y_{i}, \\
& \sum_{i} x_{i j}=1, \text { all } j
\end{aligned}
$$

Slide 58
$y_{i} \in\{0,1\}$, all i

Example: Lot sizing with setup costs

Determine lot size in each period to minimize total production, inventory, and setup costs.

Logical conditions:
(2) In period $t \Rightarrow$ (1) or (2) in period $t-1$
(1) In period $t \Rightarrow$ neither (1) nor (2) in period $t-1$

$$
\begin{array}{ccc}
\text { Start } & \text { Continue } & \text { Produce } \tag{1}\\
\text { production } & \text { production } & \text { nothing }
\end{array}
$$

$$
\binom{v_{t} \geq f_{t}}{0 \leq x_{t} \leq C_{t}} \vee\binom{v_{t} \geq 0}{0 \leq x_{t} \leq C_{t}} \vee\binom{v_{t} \geq 0_{t}}{x_{t}=0}
$$

Convex hull MILP model of disjunction:

$$
\begin{array}{ccc}
v_{t}^{1} \geq f_{t} y_{t 1} & v_{t}^{2} \geq 0 & v_{t}^{3} \geq 0 \\
0 \leq x_{t}^{1} \leq C_{t} y_{t 1} & 0 \leq x_{t}^{2} \leq C_{t} y_{t 2} & x_{t}^{3}=0 \\
v_{t}=\sum_{k=1}^{3} v_{t}^{k}, \quad x_{t}=\sum_{k=1}^{3} x_{t}^{k}, \quad y_{t}=\sum_{k=1}^{3} y_{t k} \\
y_{t k} \in\{0,1\}, \quad k=1,2,3 &
\end{array}
$$

To simplify, define
$z_{t}=y_{t 1}$
$y_{t}=y_{t 2}$

Convex hull MILP model of disjunction:

$$
\begin{array}{ccc}
v_{t}^{1} \geq f_{t} y_{t 1} & v_{t}^{2} \geq 0 & v_{t}^{3} \geq 0 \\
0 \leq x_{t}^{1} \leq C_{t} y_{t 1} & 0 \leq x_{t}^{2} \leq C_{t} y_{t 2} & x_{t}^{3}=0 \\
v_{t}=\sum_{k=1}^{3} v_{t}^{k}, \quad x_{t}=\sum_{k=1}^{3} x_{t}^{k}, \quad y_{t}=\sum_{k=1}^{3} y_{t k} \\
y_{t k} \in\{0,1\}, \quad k=1,2,3
\end{array}
$$

Slide 62

To simplify, define

$$
\begin{aligned}
& z_{t}=y_{t 1} \\
& y_{t}=y_{t 2}
\end{aligned}
$$

Convex hull MILP model of disjunction:

$$
\begin{array}{ccc}
v_{t}^{1} \geq f_{t} z_{t} & v_{t}^{2} \geq 0 & v_{t}^{3} \geq 0 \\
0 \leq x_{t}^{1} \leq C_{t} z_{t} & 0 \leq x_{t}^{2} \leq C_{t} y_{t} & x_{t}^{3}=0 \\
v_{t}=\sum_{k=1}^{3} v_{t}^{k}, & x_{t}=\sum_{k=1}^{3} x_{t}^{k}, \\
z_{t}, y_{t} \in\{0,1\}, \quad k=1,2,3 \\
=1 \text { for startup } & y_{t} \leq 1 \\
& & 1 \text { for continued } \\
\text { production }
\end{array}
$$

$$
\begin{gathered}
\text { Since } x_{t}^{3}=0 \\
\text { set } x_{t}=x_{t}^{1}+x_{t}^{2}
\end{gathered}
$$

Convex hull MILP model of disjunction:

$$
\begin{array}{ccc}
v_{t}^{1} \geq f_{t} z_{t} & v_{t}^{2} \geq 0 & v_{t}^{3} \geq 0 \\
0 \leq x_{t}^{1} \leq C_{t} z_{t} & 0 \leq x_{t}^{2} \leq C_{t} y_{t} & x_{t}^{3}=0 \\
v_{t}=\sum_{k=1}^{3} v_{t}^{k}, & x_{t}=\sum_{k=1}^{3} x_{t}^{k}, \quad z_{t}+y_{t} \leq 1 \\
z_{t}, y_{t} \in\{0,1\}, \quad k=1,2,3
\end{array}
$$

> Since $x_{t}^{3}=0$ set $x_{1}=x_{1}^{1}+x_{2}^{2}$

Convex hull MILP model of disjunction:

$$
\begin{gathered}
v_{t}^{1} \geq f_{t} z_{t} \quad v_{t}^{2} \geq 0 \quad v_{t}^{3} \geq 0 \\
0 \leq x_{t} \leq C_{t}\left(z_{t}+y_{t}\right) \\
v_{t}=\sum_{k=1}^{3} v_{t}^{k}, \quad z_{t}+y_{t} \leq 1 \\
z_{t}, y_{t} \in\{0,1\}, \quad k=1,2,3
\end{gathered}
$$

Slide 65

Since v_{t} occurs positively in the objective function, and v_{t}^{2}, v_{t}^{3} do not play a role, let $v_{t}=v_{t}^{1}$

Convex hull MILP model of disjunction:

$$
\begin{gathered}
v_{t}^{1} \geq f_{t} z_{t} \quad v_{t}^{2} \geq 0 \quad v_{t}^{3} \geq 0 \\
0 \leq x_{t} \leq C_{t}\left(z_{t}+y_{t}\right) \\
v_{t}=\sum_{k=1}^{3} v_{t}^{k}, \quad z_{t}+y_{t} \leq 1 \\
z_{t}, y_{t} \in\{0,1\}, \quad k=1,2,3
\end{gathered}
$$

Slide 66

Since v_{t} occurs positively in the objective function, and v_{t}^{2}, v_{t}^{3} do not play a role, let $v_{t}=v_{t}^{1}$

Convex hull MILP model of disjunction:

$$
\begin{gathered}
v_{t} \geq f_{t} z_{t} \\
0 \leq x_{t} \leq C_{t}\left(z_{t}+y_{t}\right) \\
z_{t}+y_{t} \leq 1 \\
z_{t}, y_{t} \in\{0,1\}, \quad k=1,2,3
\end{gathered}
$$

Slide 67

Formulate logical conditions:
(2) In period $t \Rightarrow$ (1) or (2) in period $t-1$
(1) In period $t \Rightarrow$ neither (1) nor (2) in period $t-1$

$$
\begin{gathered}
v_{t} \geq f_{t} z_{t} \\
0 \leq x_{t} \leq C_{t}\left(z_{t}+y_{t}\right) \\
z_{t}+y_{t} \leq 1 \\
z_{t}, y_{t} \in\{0,1\}, \quad k=1,2,3 \\
y_{t} \leq z_{t-1}+y_{t-1} \\
z_{t} \leq 1-z_{t-1}-y_{t-1}
\end{gathered}
$$

Slide 68

Add objective function

Slide 69

Logical variables

To tighten an MILP formulation of

$$
\begin{aligned}
& A \vee B \vee C \vee D \\
& E \vee F \vee G \\
& \left(y_{A} \wedge y_{B}\right) \rightarrow y_{E}
\end{aligned}
$$

Put logical constraint in CNF:
$\neg y_{A} \vee \neg y_{B} \vee y_{E}$
Replace negative with positive variables: $\quad C \vee D \vee E$
And add convex hull formulation of this clause.
Conjecture: this does not tighten the formulation when the disjunctions have no variables in common.

Big-M Disjunctive Formulation

Again start with a disjunction of linear systems.
y_{k} is 1 when x is in polyhedron k.

$$
\begin{aligned}
& V_{k}\left(A^{k} x \geq b^{k}\right) \\
& A^{k} x^{k} \geq b^{k}-\left(1-y_{k}\right) M^{k}, \text { all } k \\
& \sum_{k} y_{k}=1 \\
& y_{k} \in\{0,1\}, \text { all } k
\end{aligned}
$$

M^{k} is a vector of bounds that makes system k nonbinding when $y_{k}=0$.

$$
M^{k}=b^{k}-\min \left\{A^{k} x \mid \bigvee_{\ell \neq k}\left(A^{\ell} x \geq b^{\ell}\right)\right\}
$$

Big-M Disjunctive Formulation

Again start with a disjunction of linear systems.
y_{k} is 1 when x is in polyhedron k.

$$
\begin{aligned}
& V_{k}\left(A^{k} x \geq b^{k}\right) \\
& A^{k} x^{k} \geq b^{k}-\left(1-y_{k}\right) M^{k}, \text { all } k \\
& \sum_{k} y_{k}=1 \\
& y_{k} \in\{0,1\}, \text { all } k
\end{aligned}
$$

M^{k} is a vector of bounds that makes system k nonbinding when $y_{k}=0$.

$$
M^{k}=b^{k}-\min \left\{A^{k} x \mid \bigvee_{\ell \neq k}\left(A^{\ell} x \geq b^{\ell}\right)\right\}
$$

Every bounded MILP-representable set has a model of this form (as well as a convex hull disjunctive model).

Slide 72

Example: Health Care Benefits

Distribute limited health benefits to two persons. Person i receives utility u_{i}.

Two criteria:
If $\left|u_{1}-u_{2}\right| \leq \Delta$, RawIsian: $\max \min \left\{u_{1}, u_{2}\right\}$

If $\left|u_{1}-u_{2}\right|>\Delta$, utilitarian: $\max u_{1}+u_{2}$

Maximize welfare of person who is more seriously ill, unless this requires too much sacrifice from the other person.

Slide 73

Example: Health Care Benefits

Distribute limited health benefits to two persons.
Person i receives utility u_{i}.

Two criteria:

If $\left|u_{1}-u_{2}\right| \leq \Delta$, RawIsian: $\max \min \left\{u_{1}, u_{2}\right\}$
If $\left|u_{1}-u_{2}\right|>\Delta$, utilitarian: $\max u_{1}+u_{2}$

Optimization problem:
$\max z$
$z \leq \begin{cases}2 \min \left\{u_{1}, u_{2}\right\}+\Delta & \text { if }\left|u_{1}-u_{2}\right| \leq \Delta \\ u_{1}+u_{2} & \text { otherwise }\end{cases}$
$u_{1}, u_{2} \in S$
Slide 74

Example: Health Care Benefits

Distribute limited health benefits to two persons.
Person i receives utility u_{i}.

Slide 75

Two criteria:

If $\left|u_{1}-u_{2}\right| \leq \Delta$, RawIsian: $\max \min \left\{u_{1}, u_{2}\right\}$
If $\left|u_{1}-u_{2}\right|>\Delta$, utilitarian: $\max u_{1}+u_{2}$

Optimization problem:
$\max z$
$z \leq \begin{cases}2 \min \left\{u_{1}, u_{2}\right\}+\Delta & \text { if }\left|u_{1}-u_{2}\right| \leq \Delta \\ u_{1}+u_{2} & \text { otherwise }\end{cases}$
$u_{1}, u_{2} \in S$
Ensures continuity

Example: Health Care Benefits

Distribute limited health benefits to two persons.
Person i receives utility u_{i}.

Ignoring S, we would like a convex hull MILP model of the epigraph.

Can we do it?
No!

Optimization problem:
$\max z$
$z \leq \begin{cases}2 \min \left\{u_{1}, u_{2}\right\}+\Delta & \text { if }\left|u_{1}-u_{2}\right| \leq \Delta \\ u_{1}+u_{2} & \text { otherwise }\end{cases}$
$u_{1}, u_{2} \in S$
Slide 76

Example: Health Care Benefits

Distribute limited health benefits to two persons. Person i receives utility u_{i}.

Epigraph is union of two polyhedra:
P_{1} has recession cone $\{(\alpha, \beta, z) \mid z \leq \alpha+\beta, \alpha, \beta \geq 0\}$

Slide 77

Example: Health Care Benefits

Distribute limited health benefits to two persons.
Person i receives utility u_{i}.

Epigraph is union of two polyhedra:
P_{1} has recession cone
$\{(\alpha, \beta, z) \mid z \leq \alpha+\beta, \alpha, \beta \geq 0\}$
P_{2} has recession cone $\{(1,1, z) \mid 0 \leq z \leq 2\} \cup\{(1,0,0),(0,1,0)\}$

Slide 78

Example: Health Care Benefits

Distribute limited health benefits to two persons.
Person i receives utility u_{i}.

Solution:
Add constraint $\left|u_{1}-u_{2}\right| \leq M$
No need to bound u_{1}, u_{2} individually

Slide 79

Example: Health Care Benefits

Distribute limited health benefits to two persons. Person i receives utility u_{i}.

Solution:
Add constraint $\left|u_{1}-u_{2}\right| \leq M$
No need to bound u_{1}, u_{2} individually
P_{1} has recession cone $\{(1,1, z) \mid 0 \leq z \leq 2\}$

Slide 80

Example: Health Care Benefits

Distribute limited health benefits to two persons. Person i receives utility u_{i}.

Solution:
Add constraint $\left|u_{1}-u_{2}\right| \leq M$
No need to bound u_{1}, u_{2} individually
P_{1} has recession cone $\{(1,1, z) \mid 0 \leq z \leq 2\}$

So does P_{2}

Slide 81

Example: Health Care Benefits

Distribute limited health benefits to two persons.
Person i receives utility u_{i}.
Big-M model:

$$
\begin{aligned}
& z \leq 2 u_{1}+\Delta+(M-\Delta) y \\
& z \leq 2 u_{2}+\Delta+(M-\Delta) y \\
& z \leq u_{1}+u_{2}+\Delta(1-y) \\
& u_{1}-u_{2} \leq M, \quad u_{2}-u_{1} \leq M \\
& u_{1}, u_{2} \geq 0, \quad y \in\{0,1\}
\end{aligned}
$$

Slide 82

Example: Health Care Benefits

Distribute limited health benefits to two persons. Person i receives utility u_{i}.

Big-M model:

$$
\begin{aligned}
& z \leq 2 u_{1}+\Delta+(M-\Delta) y \\
& z \leq 2 u_{2}+\Delta+(M-\Delta) y \\
& z \leq u_{1}+u_{2}+\Delta(1-y) \\
& u_{1}-u_{2} \leq M, \quad u_{2}-u_{1} \leq M \\
& u_{1}, u_{2} \geq 0, \quad y \in\{0,1\}
\end{aligned}
$$

Theorem: This is a convex hull formulation.

Slide 83

Example: Health Care Benefits

Distribute limited health benefits to two persons. Person i receives utility u_{i}.

Big-M model:

$$
\begin{aligned}
& z \leq 2 u_{1}+\Delta+(M-\Delta) y \\
& z \leq 2 u_{2}+\Delta+(M-\Delta) y \\
& z \leq u_{1}+u_{2}+\Delta(1-y) \\
& u_{1}-u_{2} \leq M, \quad u_{2}-u_{1} \leq M \\
& u_{1}, u_{2} \geq 0, \quad y \in\{0,1\}
\end{aligned}
$$

Theorem: This is a convex hull formulation.

Model is no tighter if we use $u_{1}, u_{2} \leq M$

Slide 84

Example: Health Care Benefits

Optimization problem for the n-person case:
$\max z$
$z \leq(n-1) \Delta+n \min _{j}\left\{u_{j}\right\}+\sum_{j=1}^{n} \max \left\{0, u_{j}-\min _{j}\left\{u_{j}\right\}-\Delta\right\}$
$\left|u_{i}-u_{j}\right| \leq M$, all i, j
$u \geq 0, \quad u \in S$

Slide 85

Example: Health Care Benefits

Optimization problem for the n-person case:
$\max z$
$z \leq(n-1) \Delta+n \min _{j}\left\{u_{j}\right\}+\sum_{j=1}^{n} \max \left\{0, u_{j}-\min _{j}\left\{u_{j}\right\}-\Delta\right\}$
$\left|u_{i}-u_{j}\right| \leq M$, all i, j
$u \geq 0, \quad u \in S$

Big-M disjunctive $\max z$ model:

$$
\begin{aligned}
& z \leq-\Delta+\sum_{j=1}^{n} w_{i j}, \text { all } i \\
& w_{i j} \leq \Delta+u_{i}+y_{i j}(M-\Delta), \text { all } i, j \\
& w_{i j} \leq u_{j}+\left(1-y_{i j}\right) \Delta, \text { all } i, j \\
& y_{i i}=0, \text { all } i \\
& u_{i}-u_{j} \leq M, \text { all } i, j \\
& u \in S \\
& y_{i j} \in\{0,1\}, \text { all } i, j
\end{aligned}
$$

Example: Health Care Benefits

Optimization problem for the n-person case:
$\max z$
$z \leq(n-1) \Delta+n \min _{j}\left\{u_{j}\right\}+\sum_{j=1}^{n} \max \left\{0, u_{j}-\min _{j}\left\{u_{j}\right\}-\Delta\right\}$
$\left|u_{i}-u_{j}\right| \leq M$, all i, j
$u \geq 0, \quad u \in S$
Big-Mdisjunctive $\max z$ model:

Slide 87

$$
\begin{aligned}
& z \leq-\Delta+\sum_{j=1}^{n} w_{i j}, \text { all } i \\
& w_{i j} \leq \Delta+u_{i}+y_{i j}(M-\Delta), \text { all } i, j \\
& w_{i j} \leq u_{j}+\left(1-y_{i j}\right) \Delta, \text { all } i, j \\
& y_{i i}=0, \text { all } i \\
& u_{i}-u_{j} \leq M, \text { all } i, j \\
& u \in S \\
& y_{i j} \in\{0,1\}, \text { all } i, j
\end{aligned}
$$

Theorem:

This is a convex hull formulation.

General MILP Representability

Knapsack Models

- Integer variables can also be used to express counting ideas.
- This is totally different from the use of 0-1 variables to express unions of polyhedra.
- Examples:
- Knapsack inequalities
- Packing and covering
- Logical clauses
- Cost bounds

Knapsack Models

- Disjunctive representability does not accommodate knapsack constraints in a natural way.
- Knapsack constraints are bounded MILP representable only if integer variables are bounded.
- ... and only in a technical sense.
- By regarding each integer lattice point as a polyhedron.

Slide 90

General representability theorem

Integer variables can now be unbounded:

A subset S of $\mathbb{R}^{n} \times \mathbb{Z}^{p}$ is MILP representable if S is the projection $\quad A x+B z+D y \geq b$ onto x of the feasible set of some MILP constraint set of the form

Some modeling variables are continuous, some integer

Auxiliary continuous variables can be used

General representability theorem

Integer variables can be unbounded:

A subset S of $\mathbb{R}^{n} \times \mathbb{Z}^{p}$ is MILP representable if S is the projection
onto x of the feasible set of some
MILP constraint set of the form $\quad \begin{array}{ll}A x+B z+D y \geq b \\ & x \in \mathbb{R}^{n} \times \mathbb{Z}^{p}, \quad \mathrm{Z} \in \mathbb{R}^{m} \\ y \in\{0,1\}^{q}\end{array}$

Assume that A, B, D, b consist of rational data

General representability theorem

Integer variables can be unbounded:

A subset S of $\mathbb{R}^{n} \times \mathbb{Z}^{p}$ is MILP representable if S is the projection
onto x of the feasible set of some
MILP constraint set of the form $\quad \begin{aligned} & A x+B z+D y \geq b \\ & x \in \mathbb{R}^{n} \times \mathbb{Z}^{p}, \mathrm{z} \in \mathbb{R}^{m} \\ & y \in\{0,1\}^{q}\end{aligned}$ Assume that A, B, D, b consist of rational data

A mixed integer polyhedron is any set Jof the form

Slide 93

$$
\left\{x \in \mathbb{R}^{n} \times \mathbb{Z}^{p}, A x \geq b\right\}
$$

General representability theorem

Rational vector d is a recession direction of a mixed integer polyhedron $P \subset \mathbb{R}^{n} \times \mathbb{Z}^{p}$
if it is a recession direction of some polyhedron $Q \subset \mathbb{R}^{n+p}$ for which

$$
P=Q \cap\left(\mathbb{R}^{n} \times \mathbb{Z}^{p}\right)
$$

Slide 94

General representability theorem

Rational vector d is a recession direction of a mixed integer polyhedron $P \subset \mathbb{R}^{n} \times \mathbb{Z}^{P}$
if it is a recession direction of some polyhedron $Q \subset \mathbb{R}^{n+p}$ for which

$$
P=Q \cap\left(\mathbb{R}^{n} \times \mathbb{Z}^{p}\right)
$$

Slide 95

General representability theorem

Rational vector d is a recession direction of a mixed integer polyhedron $P \subset \mathbb{R}^{n} \times \mathbb{Z}^{P}$ if it is a recession direction of some polyhedron $Q \subset \mathbb{R}^{n+p}$ for which

$$
P=Q \cap\left(\mathbb{R}^{n} \times \mathbb{Z}^{p}\right)
$$

Slide 96

General representability theorem

Lemma. All polyhedra in \mathbb{R}^{n+p} having the same nonempty intersection with $\mathbb{R}^{n} \times \mathbb{Z}^{p}$ have the same recession cone.

Slide 97

General representability theorem

Theorem. A nonempty subset of $\mathbb{R}^{n} \times \mathbb{Z}^{p}$ is MILP representable if and only if it is the union of finitely many mixed integer polyhedra in $\mathbb{R}^{n} \times \mathbb{Z}^{p}$ having the same recession cone.

Union of mixed integer polyhedra with the same recession cone (in this case, the origin)

Convex Hull Formulation

Start with a disjunction of linear systems to represent the union

$$
\bigvee_{k}\left(A^{k} x \geq b^{k}\right)
$$

of mixed integer polyhedra.
The k th polyhedron is $\left\{x \in \mathbb{R}^{n} \times \mathbb{Z}^{p} \mid A^{k} x \geq b^{k}\right\}$

Aside from domain of x, the disjunctive model is the same as before.

$$
\begin{aligned}
& A^{k} x^{k} \geq b^{k} y_{k}, \text { all } k \\
& \sum_{k} y_{k}=1 \\
& x=\sum_{k} x^{k} \\
& x \in \mathbb{R}^{n} \times \mathbb{Z}^{p}, \quad y_{k} \in\{0,1\}
\end{aligned}
$$

Convex Hull Formulation

Start with a disjunction of linear systems to represent the union

$$
\bigvee_{k}\left(A^{k} x \geq b^{k}\right)
$$

of mixed integer polyhedra.
The k th polyhedron is $\left\{x \in \mathbb{R}^{n} \times \mathbb{Z}^{p} \mid A^{k} x \geq b^{k}\right\}$

Aside from domain of x, the disjunctive model is the same as before.

$$
\begin{aligned}
& A^{k} x^{k} \geq b^{k} y_{k}, \text { all } k \\
& \sum_{k} y_{k}=1 \\
& x=\sum_{k} x^{k} \\
& x \in \mathbb{R}^{n} \times \mathbb{Z}^{p}, \quad y_{k} \in\{0,1\}
\end{aligned}
$$

Convex Hull Formulation

Start with a disjunction of linear systems to represent the union

$$
\bigvee_{k}\left(A^{k} x \geq b^{k}\right)
$$

of mixed integer polyhedra.
The k th polyhedron is $\left\{x \in \mathbb{R}^{n} \times \mathbb{Z}^{p} \mid A^{k} x \geq b^{k}\right\}$

Aside from domain of x, the disjunctive model is the same as before.

$$
\begin{aligned}
& A^{k} x^{k} \geq b^{k} y_{k}, \text { all } k \\
& \sum_{k} y_{k}=1 \\
& x=\sum_{k} x^{k} \\
& x \in \mathbb{R}^{n} \times \mathbb{Z}^{p}, \quad y_{k} \in\{0,1\}
\end{aligned}
$$

...also a model in disjunctive big-M form.

Convex Hull Formulation

Theorem. If each mixed integer polyhedron has a convex hull formulation $A^{k} x \geq b^{k}$, the disjunctive model is a convex hull formulation of the disjunction.

Union of mixed integer
polyhedra with convex hull descriptions

Convex hull relaxation

Example: Facility location

 locations n markets

Fixed cost

Locate factories to serve markets so as to minimize total factory cost and transport cost.

Fixed cost incurred for each vehicle used.

Facility location

Fixed cost
$c_{i j}$, Transport $K_{i j}$ cost per vehicle

Disjunctive model:

$$
\begin{aligned}
& \min \sum_{i} z_{i}+\sum_{i j} c_{i j} \sqrt[w_{i j}]{ } \\
& \left(\begin{array}{c}
\sum_{j} x_{i j} \leq C_{i} \\
0 \leq x_{i j} \leq K_{i j} w_{i j}, \text { all } j \\
z_{i} \geq f \\
w_{i j} \in \mathbb{Z}, \text { all } j \\
\sum_{i} x_{i j}=D_{j}, \text { all } j \\
z_{i}=0
\end{array}\right) \vee\left(\begin{array}{c}
x_{i j}=0, \text { all } j \\
\text { all } i \\
\text { No factory } \\
\text { at location } i
\end{array}\right.
\end{aligned}
$$

Factory at
location i

Facility location

Slide 105

n markets

Disjunctive model:

$$
\begin{aligned}
& \min \sum_{i} z_{i}+\sum_{i j} c_{i} \mid w_{i j} \\
& \left(\begin{array}{c}
\sum_{j} x_{i j} \leq C_{i} \\
0 \leq x_{i j} \leq K_{i j} w_{i j}, \text { all } j \\
z_{i} \geq f
\end{array}\right) \vee\binom{x_{i j}=0, \text { all } j}{z_{i}=0}, \text { all } i
\end{aligned}
$$

Describes
integer
polyhedron

Number of

 vehicles from factory i to market jFacility location $\quad \min \sum_{i} z_{i}+\sum_{i j} c_{i j} w_{i j}$

$$
\begin{aligned}
& \text { Disjunctive model: }\left(\begin{array}{c}
\sum_{j} x_{i j} \leq C_{i} \\
0 \leq x_{i j} \leq K_{i j} w_{i j} \text {, all } j \\
z_{i} \geq f \\
w_{i j} \in \mathbb{Z}, \text { all } j
\end{array}\right) \vee\binom{x_{i j}=0, \text { all } j}{z_{i}=0} \text {, all } i \\
& \sum_{i} x_{i j}=D_{j}, \text { all } j
\end{aligned}
$$

$$
\min \sum_{i} f_{i} y_{i}+\sum_{i j} c_{i j} w_{i j}
$$

MILP formulation: $\sum_{j} x_{i j} \leq C_{i} y_{i}$, all i
$\sum_{i} x_{i j}=D_{j}$, all j
$0 \leq x_{i j} \leq K_{i j} w_{i j}$, all i, j
Slide 106
$y_{i} \in\{0,1\}, \quad w_{i j} \in \mathbb{Z}$, all i, j

Why a Single Recession Cone

So S is a union of mixed integer polyhedra.

Why a single recession cone

Suppose S is $\quad A x+B z+D y \geq b \quad$ For each binary \bar{y}, this represented by $x \in \mathbb{R}^{n} \times \mathbb{Z}^{p}, \quad z \in \mathbb{R}^{m}$ $y \in\{0,1\}^{q}$ describes a mixed integer polyhedron $P(\bar{y})$.

So S is a union of mixed integer polyhedra. Now x is a recession direction of nonempty $P(\bar{y})$ iff $\left(X^{\prime}, \mathcal{L}^{\prime}, Y^{\prime}\right)$ is a recession direction of

$$
\left\{\left[\begin{array}{l}
x \\
u \\
y
\end{array}\right] \in \mathbb{R}^{n} \times \mathbb{Z}^{p} \times \mathbb{R}^{m+q}:\left[\begin{array}{ccc}
A & B & D \\
0 & 0 & 1 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
u \\
y
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
0 \\
\bar{y}
\end{array}\right]\right\}
$$

Why a single recession cone

Suppose S is $\quad A x+B z+D y \geq b \quad$ For each binary y, this represented by $\quad x \in \mathbb{R}^{n} \times \mathbb{Z}^{p}, \quad z \in \mathbb{R}^{m} \quad$ describes a mixed integer $y \in\{0,1\}^{q}$ polyhedron $P(y)$.

So S is a union of mixed integer polyhedra. Now x is a recession direction of nonempty $P(y)$ iff $\left(x, u^{\prime}, y\right)$ is a recession direction of

$$
\left\{\left[\begin{array}{l}
x \\
u \\
y
\end{array}\right] \in \mathbb{R}^{n} \times \mathbb{Z}^{p} \times \mathbb{R}^{m+q}:\left[\begin{array}{ccc}
A & B & D \\
0 & 0 & 1 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
u \\
y
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
0 \\
\bar{y}
\end{array}\right]\right\}
$$

That is, iff

$$
\left[\begin{array}{ccc}
A & B & D \\
0 & 0 & 1 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
u^{\prime} \\
y^{\prime}
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Slide 109

Why a single recession cone

Suppose S is $\quad A x+B z+D y \geq b \quad$ For each binary y, this represented by $\quad x \in \mathbb{R}^{n} \times \mathbb{Z}^{p}, \quad z \in \mathbb{R}^{m} \quad$ describes a mixed integer $y \in\{0,1\}^{q}$ polyhedron $P(y)$.

So S is a union of mixed integer polyhedra. Now x is a recession direction of nonempty $P(y)$ iff $\left(x, u^{\prime}, y\right)$ is a recession direction of

$$
\left\{\left[\begin{array}{l}
x \\
u \\
y
\end{array}\right] \in \mathbb{R}^{n} \times \mathbb{Z}^{p} \times \mathbb{R}^{m+q}:\left[\begin{array}{ccc}
A & B & D \\
0 & 0 & 1 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
u \\
y
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
0 \\
\bar{y}
\end{array}\right]\right\}
$$

That is, iff

$$
\left[\begin{array}{ccc}
A & B & D \\
0 & 0 & 1 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
u^{\prime} \\
y^{\prime}
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

But this is independent of y.

Example: Freight Packing and Transfer

- Transport packages using n trucks
- Each package j has size a_{j}.
- Each truck i has capacity Q_{i}.

Slide 111

Knapsack component

The trucks selected must have enough capacity to carry the load.

$$
\sum_{i=1}^{n} \underbrace{}_{i, y_{i} \geq} \leq \sum_{i} a_{j} a_{j}
$$

Disjunctive component

Cost variable \begin{tabular}{c}

Truck i
selected

Truck i not
selected
Cost of operating
truck i

$\sum_{j} a_{j} x_{i j} \leq Q_{i}$

$x_{i j} \in\{0,1\}$, all $\left.j\right) \vee\binom{z_{i} \geq 0}{x_{i j}=0}$

$=1$ if package j is

loaded on truck i
\end{tabular}

Disjunctive component

Slide 114

Disjunctive component

$$
\left.\begin{array}{c}
\begin{array}{c}
\text { Truck } i \\
\text { selected }
\end{array} \\
\left(\begin{array}{c}
\text { Truck } i \text { not } \\
\text { selected }
\end{array}\right. \\
\left.\begin{array}{c}
z_{i} \geq c_{i} \\
\sum_{j} a_{j} x_{i j} \leq Q_{i} \\
x_{i j} \in\{0,1\}, \text { all } j
\end{array}\right) \vee\binom{z_{i} \geq 0}{x_{i j}=0}
\end{array} \begin{array}{c}
\text { Convex hull } \\
\text { MILP } \\
\text { formulation }
\end{array}\right\} \begin{gathered}
z_{i} \geq c_{i} y_{i} \\
\sum_{j} a_{j} x_{i j} \leq Q_{i} y_{i} \\
\\
\\
\\
0 \leq x_{i j} \leq y_{i}
\end{gathered}
$$

The resulting model

Slide 116

The resulting model

$$
\begin{array}{cc}
\min \sum_{i=1}^{n} c_{i} y_{i} & \begin{array}{c}
\text { The } y_{i} \text { is redundant but makes } \\
\text { the continuous relaxation } \\
\text { tighter. }
\end{array} \\
\sum_{j} a_{j} x_{i j} \leq Q_{i} y_{i}, \text { all } i \quad \begin{array}{l}
\text { This is a modeling "trick," part of } \\
\text { the folklore of modeling. }
\end{array} \\
0 \leq x_{i j} \leq y_{i}, \text { all } i, j & \sum_{i=1}^{n} x_{i j}=1, \text { all } j \\
\sum_{i=1}^{n} Q_{i} y_{i} \geq \sum_{j} a_{j} \\
x_{i j}, y_{i} \in\{0,1\} &
\end{array}
$$

The resulting model

$$
\begin{gathered}
\min \sum_{i=1}^{n} c_{i} y_{i} \\
\sum_{j} a_{j} x_{i j} \leq Q_{i} y_{i} \text {, all } i \quad \begin{array}{c}
\text { The } y_{i} \text { is redundant but makes } \\
\text { the continuous relaxation } \\
\text { tighter. }
\end{array} \\
0 \leq x_{i j} \leq y_{i}, \text { all } i, j \\
\sum_{i=1}^{n} x_{i j}=1, \text { all is a modeling "trick," part of folklore of modeling. } \\
\text { the }
\end{gathered}
$$

Research issues

- Can the simplification of a convex hull MILP formulation be automated?
- What are some conditions under which a big-M disjunctive model is a convex hull formulation?
- When does convex hull formulation of logical constraints tighten the model?
- How can a modeling system facilitate and encourage principled modeling?

