
Algorithms for Stochastic Lot-Sizing Problems with
Backlogging

Yongpei Guan

School of Industrial Engineering
University of Oklahoma

MIP 2008
Columbia University, New York City

This research is partially supported by NSF CMMI-0700868

Guan (OU) Algorithms for SLS MIP 2008 1 / 60

Outline

1 Introduction
Motivation
Related Work

2 Our Results/Contribution
Stochastic Uncapacitated Lot-Sizing (SULS) with Backlogging
Stochastic Capacitated Lot-Sizing (SCLS) with Backlogging
Stochastic Constant Capacitated Lot-Sizing (SCCLS) with
Backlogging

3 Current Research

4 Summary and Future Research

Guan (OU) Algorithms for SLS MIP 2008 2 / 60

Outline

1 Introduction
Motivation
Related Work

2 Our Results/Contribution
Stochastic Uncapacitated Lot-Sizing (SULS) with Backlogging
Stochastic Capacitated Lot-Sizing (SCLS) with Backlogging
Stochastic Constant Capacitated Lot-Sizing (SCCLS) with
Backlogging

3 Current Research

4 Summary and Future Research

Guan (OU) Algorithms for SLS MIP 2008 3 / 60

Deterministic Inventory Planning Problems

EOQ model

Demand is a constant number for each time period
Tradeoff between set up cost and inventory holding cost:

min f (Q) = K
D

Q
+ h

Q

2
.

Economic lot-sizing model

Demand is deterministic and can be variant from period to period
Tradeoff between set up, production, and inventory holding costs.

Guan (OU) Algorithms for SLS MIP 2008 4 / 60

Deterministic Inventory Planning Problems

EOQ model

Demand is a constant number for each time period
Tradeoff between set up cost and inventory holding cost:

min f (Q) = K
D

Q
+ h

Q

2
.

Economic lot-sizing model

Demand is deterministic and can be variant from period to period
Tradeoff between set up, production, and inventory holding costs.

Guan (OU) Algorithms for SLS MIP 2008 4 / 60

Deterministic Uncapacitated Lot-Sizing Problem

Problem Description:
Decide when and how much to produce at each time period over a finite
discrete horizon so as to satisfy demands while minimizing the total cost.

(LS) : min
T∑

i=0

(αixi + βiyi + hi si)

s.t. si−1 + xi = di + si i = 0, . . . ,T ,

xi ≤ Myi i = 0, . . . ,T ,

xi , si ≥ 0, yi ∈ {0, 1} i = 0, . . . ,T ,

where x : production quantity; s: inventory; y : set-up indicator.

Guan (OU) Algorithms for SLS MIP 2008 5 / 60

Algorithms for LS and Its Variants

Uncapaciated lot-sizing problem (Wagner and Whitin 1958)

Improved algorithm (Aggarwal and Park 1993, Federgruen and Tzur
1991, and Wagelmans et al. 1992)

Uncapacitated problem with backlogging (Federgruen and Tzur 1993)

Constant capacitated lot-sizing (Florian and Klein 1971, van Hoesel
and Wagelmans 1996)

Uncapacitated problem with demand time windows (Lee et al. 2001)

Uncapacitated problem with inventory bounds (Atamtürk and
Kücükyavuz 2007, Liu 2007)

Guan (OU) Algorithms for SLS MIP 2008 6 / 60

Algorithms for LS and Its Variants

Uncapaciated lot-sizing problem (Wagner and Whitin 1958)

Improved algorithm (Aggarwal and Park 1993, Federgruen and Tzur
1991, and Wagelmans et al. 1992)

Uncapacitated problem with backlogging (Federgruen and Tzur 1993)

Constant capacitated lot-sizing (Florian and Klein 1971, van Hoesel
and Wagelmans 1996)

Uncapacitated problem with demand time windows (Lee et al. 2001)

Uncapacitated problem with inventory bounds (Atamtürk and
Kücükyavuz 2007, Liu 2007)

Guan (OU) Algorithms for SLS MIP 2008 6 / 60

Algorithms for LS and Its Variants

Uncapaciated lot-sizing problem (Wagner and Whitin 1958)

Improved algorithm (Aggarwal and Park 1993, Federgruen and Tzur
1991, and Wagelmans et al. 1992)

Uncapacitated problem with backlogging (Federgruen and Tzur 1993)

Constant capacitated lot-sizing (Florian and Klein 1971, van Hoesel
and Wagelmans 1996)

Uncapacitated problem with demand time windows (Lee et al. 2001)

Uncapacitated problem with inventory bounds (Atamtürk and
Kücükyavuz 2007, Liu 2007)

Guan (OU) Algorithms for SLS MIP 2008 6 / 60

Algorithms for LS and Its Variants

Uncapaciated lot-sizing problem (Wagner and Whitin 1958)

Improved algorithm (Aggarwal and Park 1993, Federgruen and Tzur
1991, and Wagelmans et al. 1992)

Uncapacitated problem with backlogging (Federgruen and Tzur 1993)

Constant capacitated lot-sizing (Florian and Klein 1971, van Hoesel
and Wagelmans 1996)

Uncapacitated problem with demand time windows (Lee et al. 2001)

Uncapacitated problem with inventory bounds (Atamtürk and
Kücükyavuz 2007, Liu 2007)

Guan (OU) Algorithms for SLS MIP 2008 6 / 60

Algorithms for LS and Its Variants

Uncapaciated lot-sizing problem (Wagner and Whitin 1958)

Improved algorithm (Aggarwal and Park 1993, Federgruen and Tzur
1991, and Wagelmans et al. 1992)

Uncapacitated problem with backlogging (Federgruen and Tzur 1993)

Constant capacitated lot-sizing (Florian and Klein 1971, van Hoesel
and Wagelmans 1996)

Uncapacitated problem with demand time windows (Lee et al. 2001)

Uncapacitated problem with inventory bounds (Atamtürk and
Kücükyavuz 2007, Liu 2007)

Guan (OU) Algorithms for SLS MIP 2008 6 / 60

Algorithms for LS and Its Variants

Uncapaciated lot-sizing problem (Wagner and Whitin 1958)

Improved algorithm (Aggarwal and Park 1993, Federgruen and Tzur
1991, and Wagelmans et al. 1992)

Uncapacitated problem with backlogging (Federgruen and Tzur 1993)

Constant capacitated lot-sizing (Florian and Klein 1971, van Hoesel
and Wagelmans 1996)

Uncapacitated problem with demand time windows (Lee et al. 2001)

Uncapacitated problem with inventory bounds (Atamtürk and
Kücükyavuz 2007, Liu 2007)

Guan (OU) Algorithms for SLS MIP 2008 6 / 60

Stochastic Inventory Control Problem

News vendor model

min z(y) = cy − r

∫
D

min(y ,D)dF (D)− v

∫ y

D=0
(y − D)dF (D)}.

Base stock policies

(Q, r) policies

(s, S) policies (Scarf 1960, Zheng and Federgruen 1991)

Zk(yk) = min
y≥yk

{Kδ(y − yk) + Gk(y)} − cyk ,

Gk(y) = cky + G (y) +

∫
D

Zk+1(y − D)dF (D), and

G (y) = h

∫
D

max(y − D, 0)dF (D) + b

∫
D

max(D − y , 0)dF (D),

where δ(y) is the indictor to show if y is positive and G (y) is defined
as loss function.

Guan (OU) Algorithms for SLS MIP 2008 7 / 60

Stochastic Inventory Control Problem

News vendor model

min z(y) = cy − r

∫
D

min(y ,D)dF (D)− v

∫ y

D=0
(y − D)dF (D)}.

Base stock policies

(Q, r) policies

(s, S) policies (Scarf 1960, Zheng and Federgruen 1991)

Zk(yk) = min
y≥yk

{Kδ(y − yk) + Gk(y)} − cyk ,

Gk(y) = cky + G (y) +

∫
D

Zk+1(y − D)dF (D), and

G (y) = h

∫
D

max(y − D, 0)dF (D) + b

∫
D

max(D − y , 0)dF (D),

where δ(y) is the indictor to show if y is positive and G (y) is defined
as loss function.

Guan (OU) Algorithms for SLS MIP 2008 7 / 60

Stochastic Inventory Control Problem

News vendor model

min z(y) = cy − r

∫
D

min(y ,D)dF (D)− v

∫ y

D=0
(y − D)dF (D)}.

Base stock policies

(Q, r) policies

(s, S) policies (Scarf 1960, Zheng and Federgruen 1991)

Zk(yk) = min
y≥yk

{Kδ(y − yk) + Gk(y)} − cyk ,

Gk(y) = cky + G (y) +

∫
D

Zk+1(y − D)dF (D), and

G (y) = h

∫
D

max(y − D, 0)dF (D) + b

∫
D

max(D − y , 0)dF (D),

where δ(y) is the indictor to show if y is positive and G (y) is defined
as loss function.

Guan (OU) Algorithms for SLS MIP 2008 7 / 60

Stochastic Inventory Control Problem

News vendor model

min z(y) = cy − r

∫
D

min(y ,D)dF (D)− v

∫ y

D=0
(y − D)dF (D)}.

Base stock policies

(Q, r) policies

(s, S) policies (Scarf 1960, Zheng and Federgruen 1991)

Zk(yk) = min
y≥yk

{Kδ(y − yk) + Gk(y)} − cyk ,

Gk(y) = cky + G (y) +

∫
D

Zk+1(y − D)dF (D), and

G (y) = h

∫
D

max(y − D, 0)dF (D) + b

∫
D

max(D − y , 0)dF (D),

where δ(y) is the indictor to show if y is positive and G (y) is defined
as loss function.

Guan (OU) Algorithms for SLS MIP 2008 7 / 60

Stochastic Integer Programming

Two-Stage: Significant Progress

Benders Decomposition/L-Shaped method (Benders 1962, Van Slyke
and Wets 1969)
Decomposition methods (Care and Tind 1998, Carøe and Schultz 1999,
Laporte and Louveaux 1993, and Ahmed et al 2004)
Combination of disjunctive inequalities with decomposition methods
(Ntaimo and Sen 2005, Sen and Sherali 2006)

Multi-Stage: Study Is Limited

Approximation scheme for stochastic integer programs arising in
capacity expansion (Ahmed and Sahinidis 2003)
A branch-and-price algorithm for multi-stage stochastic integer
program (Lulli and Sen 2004)
Cutting planes for multi-stage stochastic integer programs (Guan,
Ahmed and Nemhauser 2008)

Guan (OU) Algorithms for SLS MIP 2008 8 / 60

Stochastic Integer Programming

Two-Stage: Significant Progress

Benders Decomposition/L-Shaped method (Benders 1962, Van Slyke
and Wets 1969)
Decomposition methods (Care and Tind 1998, Carøe and Schultz 1999,
Laporte and Louveaux 1993, and Ahmed et al 2004)
Combination of disjunctive inequalities with decomposition methods
(Ntaimo and Sen 2005, Sen and Sherali 2006)

Multi-Stage: Study Is Limited

Approximation scheme for stochastic integer programs arising in
capacity expansion (Ahmed and Sahinidis 2003)
A branch-and-price algorithm for multi-stage stochastic integer
program (Lulli and Sen 2004)
Cutting planes for multi-stage stochastic integer programs (Guan,
Ahmed and Nemhauser 2008)

Guan (OU) Algorithms for SLS MIP 2008 8 / 60

Stochastic Integer Programming

Two-Stage: Significant Progress

Benders Decomposition/L-Shaped method (Benders 1962, Van Slyke
and Wets 1969)
Decomposition methods (Care and Tind 1998, Carøe and Schultz 1999,
Laporte and Louveaux 1993, and Ahmed et al 2004)
Combination of disjunctive inequalities with decomposition methods
(Ntaimo and Sen 2005, Sen and Sherali 2006)

Multi-Stage: Study Is Limited

Approximation scheme for stochastic integer programs arising in
capacity expansion (Ahmed and Sahinidis 2003)
A branch-and-price algorithm for multi-stage stochastic integer
program (Lulli and Sen 2004)
Cutting planes for multi-stage stochastic integer programs (Guan,
Ahmed and Nemhauser 2008)

Guan (OU) Algorithms for SLS MIP 2008 8 / 60

Stochastic Integer Programming

Two-Stage: Significant Progress

Benders Decomposition/L-Shaped method (Benders 1962, Van Slyke
and Wets 1969)
Decomposition methods (Care and Tind 1998, Carøe and Schultz 1999,
Laporte and Louveaux 1993, and Ahmed et al 2004)
Combination of disjunctive inequalities with decomposition methods
(Ntaimo and Sen 2005, Sen and Sherali 2006)

Multi-Stage: Study Is Limited

Approximation scheme for stochastic integer programs arising in
capacity expansion (Ahmed and Sahinidis 2003)
A branch-and-price algorithm for multi-stage stochastic integer
program (Lulli and Sen 2004)
Cutting planes for multi-stage stochastic integer programs (Guan,
Ahmed and Nemhauser 2008)

Guan (OU) Algorithms for SLS MIP 2008 8 / 60

Stochastic Integer Programming

Two-Stage: Significant Progress

Benders Decomposition/L-Shaped method (Benders 1962, Van Slyke
and Wets 1969)
Decomposition methods (Care and Tind 1998, Carøe and Schultz 1999,
Laporte and Louveaux 1993, and Ahmed et al 2004)
Combination of disjunctive inequalities with decomposition methods
(Ntaimo and Sen 2005, Sen and Sherali 2006)

Multi-Stage: Study Is Limited

Approximation scheme for stochastic integer programs arising in
capacity expansion (Ahmed and Sahinidis 2003)
A branch-and-price algorithm for multi-stage stochastic integer
program (Lulli and Sen 2004)
Cutting planes for multi-stage stochastic integer programs (Guan,
Ahmed and Nemhauser 2008)

Guan (OU) Algorithms for SLS MIP 2008 8 / 60

Stochastic Integer Programming

Two-Stage: Significant Progress

Benders Decomposition/L-Shaped method (Benders 1962, Van Slyke
and Wets 1969)
Decomposition methods (Care and Tind 1998, Carøe and Schultz 1999,
Laporte and Louveaux 1993, and Ahmed et al 2004)
Combination of disjunctive inequalities with decomposition methods
(Ntaimo and Sen 2005, Sen and Sherali 2006)

Multi-Stage: Study Is Limited

Approximation scheme for stochastic integer programs arising in
capacity expansion (Ahmed and Sahinidis 2003)
A branch-and-price algorithm for multi-stage stochastic integer
program (Lulli and Sen 2004)
Cutting planes for multi-stage stochastic integer programs (Guan,
Ahmed and Nemhauser 2008)

Guan (OU) Algorithms for SLS MIP 2008 8 / 60

Stochastic Integer Programming

Two-Stage: Significant Progress

Benders Decomposition/L-Shaped method (Benders 1962, Van Slyke
and Wets 1969)
Decomposition methods (Care and Tind 1998, Carøe and Schultz 1999,
Laporte and Louveaux 1993, and Ahmed et al 2004)
Combination of disjunctive inequalities with decomposition methods
(Ntaimo and Sen 2005, Sen and Sherali 2006)

Multi-Stage: Study Is Limited

Approximation scheme for stochastic integer programs arising in
capacity expansion (Ahmed and Sahinidis 2003)
A branch-and-price algorithm for multi-stage stochastic integer
program (Lulli and Sen 2004)
Cutting planes for multi-stage stochastic integer programs (Guan,
Ahmed and Nemhauser 2008)

Guan (OU) Algorithms for SLS MIP 2008 8 / 60

What Are We Going To Address?

How about the case that demands are mutually dependent for
stochastic inventory control problem? (Sampling approach?)

How to apply stochastic integer programming to formulate general
production/inventory planning under uncertainty problems?

What is the computational complexity for the problem in terms of
input size?

Guan (OU) Algorithms for SLS MIP 2008 9 / 60

What Are We Going To Address?

How about the case that demands are mutually dependent for
stochastic inventory control problem? (Sampling approach?)

How to apply stochastic integer programming to formulate general
production/inventory planning under uncertainty problems?

What is the computational complexity for the problem in terms of
input size?

Guan (OU) Algorithms for SLS MIP 2008 9 / 60

What Are We Going To Address?

How about the case that demands are mutually dependent for
stochastic inventory control problem? (Sampling approach?)

How to apply stochastic integer programming to formulate general
production/inventory planning under uncertainty problems?

What is the computational complexity for the problem in terms of
input size?

Guan (OU) Algorithms for SLS MIP 2008 9 / 60

Notation

Stage TStage 1 Stage 2

i

L

P(i)

V
j V(j)

1

Figure: Multi-stage stochastic scenario tree

Guan (OU) Algorithms for SLS MIP 2008 10 / 60

Formulation

General Stochastic Capacitated Lot-Sizing with Backlogging:

(SCLS) : min
∑
i∈V

(αixi + βiyi + hi s
+
i + bi s

−
i)

s.t. s+
i− + s−i + xi = di + s+

i + s−
i− ∀ i ∈ V,

xi ≤ µiyi ∀ i ∈ V,
xi , s

+
i , s

−
i ≥ 0, yi ∈ {0, 1} ∀ i ∈ V.

x : Production; s+: Inventory; s−: Backorder; y : Set-up Indicator.

α: Production cost; β: Setup cost; h: Holding cost;

b: Backorder cost; d : Demands; µ: Capacity.

Guan (OU) Algorithms for SLS MIP 2008 11 / 60

Outline

1 Introduction
Motivation
Related Work

2 Our Results/Contribution
Stochastic Uncapacitated Lot-Sizing (SULS) with Backlogging
Stochastic Capacitated Lot-Sizing (SCLS) with Backlogging
Stochastic Constant Capacitated Lot-Sizing (SCCLS) with
Backlogging

3 Current Research

4 Summary and Future Research

Guan (OU) Algorithms for SLS MIP 2008 12 / 60

Approximation and Polynomial Time Algorithms

A fully polynomial time approximation scheme for SULS (Halman,
Klabjan, Mostagir, Orlin and Simchi-Levi 2006)

SULS without setup cost (Huang and Ahmed 2006)

SULS with and without setup cost (Guan and Miller 2007)

SULS with random lead time (Huang and Kücükyavuz 2007)

Guan (OU) Algorithms for SLS MIP 2008 13 / 60

Approximation and Polynomial Time Algorithms

A fully polynomial time approximation scheme for SULS (Halman,
Klabjan, Mostagir, Orlin and Simchi-Levi 2006)

SULS without setup cost (Huang and Ahmed 2006)

SULS with and without setup cost (Guan and Miller 2007)

SULS with random lead time (Huang and Kücükyavuz 2007)

Guan (OU) Algorithms for SLS MIP 2008 13 / 60

Approximation and Polynomial Time Algorithms

A fully polynomial time approximation scheme for SULS (Halman,
Klabjan, Mostagir, Orlin and Simchi-Levi 2006)

SULS without setup cost (Huang and Ahmed 2006)

SULS with and without setup cost (Guan and Miller 2007)

SULS with random lead time (Huang and Kücükyavuz 2007)

Guan (OU) Algorithms for SLS MIP 2008 13 / 60

Approximation and Polynomial Time Algorithms

A fully polynomial time approximation scheme for SULS (Halman,
Klabjan, Mostagir, Orlin and Simchi-Levi 2006)

SULS without setup cost (Huang and Ahmed 2006)

SULS with and without setup cost (Guan and Miller 2007)

SULS with random lead time (Huang and Kücükyavuz 2007)

Guan (OU) Algorithms for SLS MIP 2008 13 / 60

Outline

1 Introduction
Motivation
Related Work

2 Our Results/Contribution
Stochastic Uncapacitated Lot-Sizing (SULS) with Backlogging
Stochastic Capacitated Lot-Sizing (SCLS) with Backlogging
Stochastic Constant Capacitated Lot-Sizing (SCCLS) with
Backlogging

3 Current Research

4 Summary and Future Research

Guan (OU) Algorithms for SLS MIP 2008 14 / 60

The Production Path Property

Production Path Property

For any instance of SULS with backlogging, there exists an optimal
solution (x∗, y∗, s∗) such that for each node i ∈ V,

if x∗i > 0, then x∗i = dik − s∗i− for some k ∈ V(i).

In other words, there always exists an optimal solution such that if we
produce at a node i , then we produce exactly enough to satisfy demand
along the path from node i to some descendant of node i .

Guan (OU) Algorithms for SLS MIP 2008 15 / 60

The Production Path Property

Production Path Property Corollary

For any instance of SULS with backlogging, there exists an optimal
solution (x∗, y∗, s∗) such that the inventory left after node i ∈ V

s∗i = d1k − d1i for some node k ∈ V.

Thus, there are finite number of possible values for s∗i .

Guan (OU) Algorithms for SLS MIP 2008 16 / 60

The Production Path Property

1

2

3

4

5

6

7

8

9

10

12

11

Guan (OU) Algorithms for SLS MIP 2008 17 / 60

The Production Path Property

1

2

3

4

5

6

7

8

9

10

12

11

Guan (OU) Algorithms for SLS MIP 2008 18 / 60

The Production Path Property

1

2

3

4

5

6

7

8

9

10

12

11

Guan (OU) Algorithms for SLS MIP 2008 19 / 60

Dynamic Programming Recursion

Let H(i , s) be the “cost to go” at node i , given that s units of
inventory are carried into i from i ′s parent i−

We can use the Production Path Property and backward recursion to
construct this value function at each node

Thus H(1, 0) (the value function of the root node evaluated at 0) will
yield the optimal objective function value

Take advantage of the scenario tree structure to speed up the
algorithm

Guan (OU) Algorithms for SLS MIP 2008 20 / 60

Dynamic Programming Recursion

Let H(i , s) be the “cost to go” at node i , given that s units of
inventory are carried into i from i ′s parent i−

We can use the Production Path Property and backward recursion to
construct this value function at each node

Thus H(1, 0) (the value function of the root node evaluated at 0) will
yield the optimal objective function value

Take advantage of the scenario tree structure to speed up the
algorithm

Guan (OU) Algorithms for SLS MIP 2008 20 / 60

Dynamic Programming Recursion

Let H(i , s) be the “cost to go” at node i , given that s units of
inventory are carried into i from i ′s parent i−

We can use the Production Path Property and backward recursion to
construct this value function at each node

Thus H(1, 0) (the value function of the root node evaluated at 0) will
yield the optimal objective function value

Take advantage of the scenario tree structure to speed up the
algorithm

Guan (OU) Algorithms for SLS MIP 2008 20 / 60

Dynamic Programming Recursion

Let H(i , s) be the “cost to go” at node i , given that s units of
inventory are carried into i from i ′s parent i−

We can use the Production Path Property and backward recursion to
construct this value function at each node

Thus H(1, 0) (the value function of the root node evaluated at 0) will
yield the optimal objective function value

Take advantage of the scenario tree structure to speed up the
algorithm

Guan (OU) Algorithms for SLS MIP 2008 20 / 60

Value Functions

Production Value Function:

HP(i , s) = βi+ min
k∈V(i):dik>s

{αi (dik−s)+hi (dik−di)+
∑
`∈C(i)

H(`, dik−di)}.

Non-Production Value Function:

HNP(i , s) = max{hi (s − di),−bi (s − di)}+
∑
`∈C(i)

H(`, s − di).

Value Function:

H(i , s) = min {HP(i , s),HNP(i , s)} .

We can find an algorithm that runs in O(Cn3) time, where C is the
maximum number of children and n is the total number of nodes in
the tree.

Guan (OU) Algorithms for SLS MIP 2008 21 / 60

Value Functions

Production Value Function:

HP(i , s) = βi+ min
k∈V(i):dik>s

{αi (dik−s)+hi (dik−di)+
∑
`∈C(i)

H(`, dik−di)}.

Non-Production Value Function:

HNP(i , s) = max{hi (s − di),−bi (s − di)}+
∑
`∈C(i)

H(`, s − di).

Value Function:

H(i , s) = min {HP(i , s),HNP(i , s)} .

We can find an algorithm that runs in O(Cn3) time, where C is the
maximum number of children and n is the total number of nodes in
the tree.

Guan (OU) Algorithms for SLS MIP 2008 21 / 60

Value Functions

Production Value Function:

HP(i , s) = βi+ min
k∈V(i):dik>s

{αi (dik−s)+hi (dik−di)+
∑
`∈C(i)

H(`, dik−di)}.

Non-Production Value Function:

HNP(i , s) = max{hi (s − di),−bi (s − di)}+
∑
`∈C(i)

H(`, s − di).

Value Function:

H(i , s) = min {HP(i , s),HNP(i , s)} .

We can find an algorithm that runs in O(Cn3) time, where C is the
maximum number of children and n is the total number of nodes in
the tree.

Guan (OU) Algorithms for SLS MIP 2008 21 / 60

Value Functions

Production Value Function:

HP(i , s) = βi+ min
k∈V(i):dik>s

{αi (dik−s)+hi (dik−di)+
∑
`∈C(i)

H(`, dik−di)}.

Non-Production Value Function:

HNP(i , s) = max{hi (s − di),−bi (s − di)}+
∑
`∈C(i)

H(`, s − di).

Value Function:

H(i , s) = min {HP(i , s),HNP(i , s)} .

We can find an algorithm that runs in O(Cn3) time, where C is the
maximum number of children and n is the total number of nodes in
the tree.

Guan (OU) Algorithms for SLS MIP 2008 21 / 60

Can We Do Better? The Algorithm

It is sufficient to calculate and store H(i , s) for s = d1k − d1i− for all
k ∈ V. Due to the relationship between nodes in the tree as shown in the
following,

sss

H(1, s)

0
. . .

d1i (0)

H(i , s)

. . .
d1j(0)

H(j , s)

there are n inventory values to be stored for each node.

Guan (OU) Algorithms for SLS MIP 2008 22 / 60

The Algorithm (Initial Step)

1 set relationship indicator δ(i , k) between each node i ∈ V and each
node k ∈ V(i). For instance, δ(i , k) = 1 if node k ∈ V(i) and
δ(i , k) = 0, otherwise;

2 use θ(i , s) to store
∑

`∈C(i)H(`, s) for which s = d1k − d1i for all
k ∈ V and initialize them to zero.

This initial step can be completed in O(n2) time.

Guan (OU) Algorithms for SLS MIP 2008 23 / 60

The Algorithm (The Leaf Node)

H(i , s)

s
0 d i di

hi−bi

−αi

1 H(i , s) where s = d1k − d1i− for each node k ∈ V can be calculated
and stored in O(n) time.

2 Increase θ(i−, d1k − d1i−) by H(i , d1k − d1i−) for each node k ∈ V.
This step takes O(n) time.

Guan (OU) Algorithms for SLS MIP 2008 24 / 60

The Algorithm (The Induction Step)

Let
φ(i , k) = βi + αidik + hi (dik − di) +

∑
`∈C(i)

H(`, dik − di).

Assuming there are r linear pieces, each piece of the production value
function can be described as follows:

HP(i , s) = φ(i , k1)− αi s if s ≤ dik1 ,

HP(i , s) = φ(i , k2)− αi s if dik1 < s ≤ dik2 ,

...

HP(i , s) = φ(i , kr)− αi s if dikr−1 < s ≤ dikr ,

where kj = argmin{φ(i , k) : k ∈ V(i) and dik > dikj−1
}.

Guan (OU) Algorithms for SLS MIP 2008 25 / 60

The Algorithm (The Induction Step)

The production value function:

s

HP(i , s)

0 dik1 dik2 dik3

φ(i, k1)− αi s

φ(i, k2)− αi s

φ(i, k3)− αi s

Guan (OU) Algorithms for SLS MIP 2008 26 / 60

The Algorithm (The Induction Step)

Step 1: Calculate HP(i , s) for s = d1k − d1i− for each k ∈ V

s

H(i , s)

0
. . .

dij
. . .

dik din

φ(i, n)− αi s

φ(i, k)− αi s

φ(i, j)− αi s

Guan (OU) Algorithms for SLS MIP 2008 27 / 60

The Algorithm (The Induction Step)

Step 1: Calculate HP(i , s) for s = d1k − d1i− for each k ∈ V

s

H(i , s)

0
. . .

dij
. . .

dik din

Guan (OU) Algorithms for SLS MIP 2008 28 / 60

The Algorithm (The Induction Step)

Step 2: Calculate and store HNP(i , s) for s = d1k − d1i− for each node
k ∈ V: since θ(i , s) =

∑
`∈C(i)H(`, s) for s = d1k − d1i for each node

k ∈ V is obtained, this step can be obtained in O(n) time;

Step 3: Calculate and store H(i , s) for s = d1k − d1i− for each node
k ∈ V: this step can be completed in O(n) time;

Step 4: Update θ(i−, s) for s = d1k − d1i− for each node k ∈ V:
increase θ(i−, d1k − d1i−) by H(i , d1k − d1i−) for each node k ∈ V.
This step can be completed in O(n) time.

Guan (OU) Algorithms for SLS MIP 2008 29 / 60

Computational Complexity for SULS with Backlogging

Theorem: The general SULS with backlogging can be solved in O(n2)
time, regardless of the scenario tree structure.

Remark: For the case that initial inventory level is a decision variable, it
can be transformed into the case with zero initial inventory by adding a
dummy root node 0 as the parent node of node 1.

Remark: In this paper, a more efficient algorithm is developed comparing
to the one studied in Guan and Miller (2007) in which backlogging is not
allowed and the computational complexity is O(n2 max{C, log n}).

Guan (OU) Algorithms for SLS MIP 2008 30 / 60

Outline

1 Introduction
Motivation
Related Work

2 Our Results/Contribution
Stochastic Uncapacitated Lot-Sizing (SULS) with Backlogging
Stochastic Capacitated Lot-Sizing (SCLS) with Backlogging
Stochastic Constant Capacitated Lot-Sizing (SCCLS) with
Backlogging

3 Current Research

4 Summary and Future Research

Guan (OU) Algorithms for SLS MIP 2008 31 / 60

The Production Path Property

SCLS Production Path Property

For any instance of SCLS with backlogging, there exists an optimal
solution (x∗, y∗, s∗) such that for each node i ∈ V,

if 0 < x∗i < µi , then x∗i + s∗i− = dik −
∑

j∈S µj for some node k ∈ V(i)

and S ⊆ P(k) \ P(i)and x∗j = 0 or µj for each j ∈ P(k) \ P(i).

In other words, there always exists an optimal solution such that if we
produce at a node i , then we produce enough to satisfy demands along the
path from node i to some descendant of node i besides some nodes along
this path producing at their capacities.

Guan (OU) Algorithms for SLS MIP 2008 32 / 60

The Production Path Property

1

2

3

4

5

6

7

8

9

10

12

11
0 or µ4

0 or µ7

0 or µ11

Guan (OU) Algorithms for SLS MIP 2008 33 / 60

Value Functions

Production Value Function:

Hµ̃P (i , s) = min
k∈V(i):dik−

∑
j∈S µj−µi≤s<dik−

∑
j∈S µj and S⊆P(k)\P(i)

Hk,S
P (i , s),

where

Hk,S
P (i , s) = βi + αi (dik −

∑
j∈S

µj − s)

+ max

hi (dik −
∑
j∈S

µj − di),−bi (dik −
∑
j∈S

µj − di)

+

∑
`∈C(i)

H(`, dik −
∑
j∈S

µj − di).

Guan (OU) Algorithms for SLS MIP 2008 34 / 60

Value Functions

Production at Capacity

Hµi
P (i , s) = βi + αiµi + max{hi (µi + s − di),−bi (µi + s − di)}

+
∑
`∈C(i)

H(`, µi + s − di)

Non-Production Value Function

HNP(i , s) = max {hi (s − di),−bi (s − di)}+
∑
`∈C(i)

H(`, s − di)

Value Function

H(i , s) = min
{
Hµi

P (i , s),Hµ̃P (i , s),HNP(i , s)
}

Guan (OU) Algorithms for SLS MIP 2008 35 / 60

Value Functions

Production at Capacity

Hµi
P (i , s) = βi + αiµi + max{hi (µi + s − di),−bi (µi + s − di)}

+
∑
`∈C(i)

H(`, µi + s − di)

Non-Production Value Function

HNP(i , s) = max {hi (s − di),−bi (s − di)}+
∑
`∈C(i)

H(`, s − di)

Value Function

H(i , s) = min
{
Hµi

P (i , s),Hµ̃P (i , s),HNP(i , s)
}

Guan (OU) Algorithms for SLS MIP 2008 35 / 60

Value Functions

Production at Capacity

Hµi
P (i , s) = βi + αiµi + max{hi (µi + s − di),−bi (µi + s − di)}

+
∑
`∈C(i)

H(`, µi + s − di)

Non-Production Value Function

HNP(i , s) = max {hi (s − di),−bi (s − di)}+
∑
`∈C(i)

H(`, s − di)

Value Function

H(i , s) = min
{
Hµi

P (i , s),Hµ̃P (i , s),HNP(i , s)
}

Guan (OU) Algorithms for SLS MIP 2008 35 / 60

Observations

Observation: The summation of piecewise linear and continuous
functions is still a piecewise linear and continuous function

Observation: The minimum of two piecewise linear and continuous
functions is still a piecewise linear and continuous function

Guan (OU) Algorithms for SLS MIP 2008 36 / 60

Observations

Observation: The summation of piecewise linear and continuous
functions is still a piecewise linear and continuous function

Observation: The minimum of two piecewise linear and continuous
functions is still a piecewise linear and continuous function

Guan (OU) Algorithms for SLS MIP 2008 36 / 60

Value Function for Leaf Nodes

H(i , s)

s
0 d i di

hi

−bi

−αi

−bi

di − µi

Guan (OU) Algorithms for SLS MIP 2008 37 / 60

A Lemma

Lemma: The value function Hµ̃P(i , s) for each node i ∈ V is right
continuous and piecewise linear with the same slope −αi . Corresponding
to each piece of the production value function ending with
s = dik −

∑
j∈S µj , if it intercrosses with HNP(i , s) and both HNP(i , s) and∑

`∈C(i)H(`,S) are piecewise linear and continuous, then there exists a

point s∗ such that HNP(i , s∗) = Hµ̃P (i , s∗) and HNP(i , s) < Hµ̃P (i , s) for
each s > s∗ within the piece.

Guan (OU) Algorithms for SLS MIP 2008 38 / 60

Value Functions Hµ̃
P
(i , s) vs HNP(i , s)

0

Hµ̃P(i , s) and HNP(i , s)

s

HNP(i , s)

s = dik −
∑

j∈S µj

Hµ̃P(i , s)

s∗

Guan (OU) Algorithms for SLS MIP 2008 39 / 60

Value Function H(i , s)

Proposition: The value functions H(i , s),Hµi
P (i , s), and HNP(i , s) for each

node i ∈ V are piecewise linear and continuous.

Proof sketch.

1 H′(i , s) = min{HNP(i , s),Hµi
P (i , s)} is piecewise linear and continuous.

2 If the jump point is in the form of s = dik −
∑

j∈S µj , then according
to Lemma,

H′(i , s) ≤ HNP(i , s) ≤ Hµ̃P (i , s).

3 If the jump point is in the form of s = dik −
∑

j∈S µj − µi , then the
production reaches its capacity and

H′(i , s) ≤ Hµi
P (i , s) = Hµ̃P (i , s).

Guan (OU) Algorithms for SLS MIP 2008 40 / 60

Dynamic Programming Recursion: Leaf Nodes

H(i , s)

s
0 d i di

hi−bi

−αi

−bi

di − µi

H(i , s) =

βi + αiµi

+(di − µi − s) if s < di − µi ,

αi (di − s) + βi if di − µi ≤ s < d i ,

bi (di − s) if d i ≤ s < di ,

hi (s − di) if s ≥ di ,

Guan (OU) Algorithms for SLS MIP 2008 41 / 60

Number of Breakpoints

The breakpoint s = s ′ is a “convex” breakpoint of H(i , s) if

lim
s→s′−

∂H(i , s)/∂s < lim
s→s′+

∂H(i , s)/∂s.

Proposition

All “convex” breakpoints in H(i , s), HNP(i , s), and Hµi
P (i , s) are in the

form s = dik −
∑

j∈S µj for some node k ∈ V(i) and S ⊆ P(k) \ P(i−).

Guan (OU) Algorithms for SLS MIP 2008 42 / 60

Number of Breakpoints

Lemma: The number of breakpoints of the non-production value function
|BNP(i)| ≤∑

`∈C(i) |B(`)| if |C(i)| ≥ 2 for each i ∈ V \ L.

Lemma: The breakpoints for Hµi
P (i , s) belong to the node set in which all

the “old” breakpoints in HNP(i , s) are shifted to the left by µi .

Lemma: The number of breakpoints generated by H(i , s) is at most
4|BNP(i)|.

Guan (OU) Algorithms for SLS MIP 2008 43 / 60

More on |B(i)| ≤ 4|BNP(i)|

1 The number of breakpoints of Hµi
P (i , s) is the same as the number of

breakpoints of HNP(i , s).

2 Denote the breakpoints for HNP(i , s) as s = s [1], s [2], . . . , s [m] such
that −∞ = s [1] ≤ s [2] ≤ . . . ≤ s [m], and the interval [s [k], s [k+1]) as
the kth interval in HNP(i , s).

3 For each interval, we want to prove

|B(i)|k ≤ 2(|BNP(i)|k + |Bµi
P (i)|k).

Guan (OU) Algorithms for SLS MIP 2008 44 / 60

Two Cases

Case 1: HNP(i , s [k]) > Hµ̃P (i , s [k]).

s

Hµ̃P (i , s)

r1
s∗1

r2
s∗2

r3 . . .

rm
s∗m

s [r1](s [k]) s [r2] s [r3] s [rm]. . . s [k+1]

HNP(i , s)

Guan (OU) Algorithms for SLS MIP 2008 45 / 60

Two Cases

Case 2: HNP(i , s [k]) ≤ Hµ̃P (i , s [k]).

s

Hµ̃P (i , s)

r1 s∗1

r2

r3 . . .

rm
s∗m

s [k+1]s [r1](s [k]) s [r2] s [r3] s [rm]. . . s [k+2]

HNP(i , s)

Guan (OU) Algorithms for SLS MIP 2008 46 / 60

An Example

H(i , s)

s

Hµ̃P (i , s)

Hµi
P (i , s)

HNP(i , s)

Guan (OU) Algorithms for SLS MIP 2008 47 / 60

Number of Breakpoints

Proposition

The total number of breakpoints |B(i)| is bounded by O(|V(i)|3).

Proof sketch.
1 For each leaf node i , |B(i)| ≤ 4 = 4|V(i)|.
2 If |B(`)| ≤ 4T−t(`)+1|V(`)|, then

|B(i)| ≤ 4
∑
`∈C(i)

|B(`)| ≤ 4
∑
`∈C(i)

4T−t(`)+1|V(`)|

= 4T−t(i)+1
∑
`∈C(i)

|V(`)| ≤ 4T−t(i)+1|V(i)|.

3 The number of breakpoints

|B(i)| ≤ 4T−t(i)+1|V(i)| ≤ (|V(i)|+ 1)2|V(i)|,
since

|V(i)| ≥ 1 + 21 + . . .+ 2T−t(i) = 2T−t(i)+1 − 1.

Guan (OU) Algorithms for SLS MIP 2008 48 / 60

Computational Complexity for SCLS

Theorem: If C(i) ≥ 2 for each node i ∈ V \ L, then the optimal value
function of SCLS with backlogging can be obtained in O(n4) time.

Algorithm sketch

1. For the leaf node, we need to calculate and store 4 breakpoints.

2. Calculate and store
∑

`∈C(i)H(`, s): Since θ(i , s) is obtained when we
finish calculating all children of node i , this step can be completed in
O(n3) time.

3. Obtain and store HNP(i , s): This step can be obtained by moving∑
`∈C(i)H(`, s) to the right by di units plus the piecewise linear

function max {hi (s − di),−bi (s − di)}. It can be completed in O(n3)
time.

Guan (OU) Algorithms for SLS MIP 2008 49 / 60

Computational Complexity for SCLS

Theorem: If C(i) ≥ 2 for each node i ∈ V \ L, then the optimal value
function of SCLS with backlogging can be obtained in O(n4) time.

Algorithm sketch

1. For the leaf node, we need to calculate and store 4 breakpoints.

2. Calculate and store
∑

`∈C(i)H(`, s): Since θ(i , s) is obtained when we
finish calculating all children of node i , this step can be completed in
O(n3) time.

3. Obtain and store HNP(i , s): This step can be obtained by moving∑
`∈C(i)H(`, s) to the right by di units plus the piecewise linear

function max {hi (s − di),−bi (s − di)}. It can be completed in O(n3)
time.

Guan (OU) Algorithms for SLS MIP 2008 49 / 60

Computational Complexity for SCLS

Theorem: If C(i) ≥ 2 for each node i ∈ V \ L, then the optimal value
function of SCLS with backlogging can be obtained in O(n4) time.

Algorithm sketch

1. For the leaf node, we need to calculate and store 4 breakpoints.

2. Calculate and store
∑

`∈C(i)H(`, s): Since θ(i , s) is obtained when we
finish calculating all children of node i , this step can be completed in
O(n3) time.

3. Obtain and store HNP(i , s): This step can be obtained by moving∑
`∈C(i)H(`, s) to the right by di units plus the piecewise linear

function max {hi (s − di),−bi (s − di)}. It can be completed in O(n3)
time.

Guan (OU) Algorithms for SLS MIP 2008 49 / 60

Computational Complexity for SCLS

4. Obtain and store Hµi
P (i , s): It can be obtained by moving HNP(i , s) to

the left by µi plus a constant number βi + αiµi . This step can be
completed in O(n3) time.

5. Calculate and store H′(i , s) = min{HNP(i , s),Hµi
P (i , s)}: Take the

minimum of the two functions between any two consecutive
breakpoints in HNP(i , s) and Hµi

P (i , s).

Guan (OU) Algorithms for SLS MIP 2008 50 / 60

Computational Complexity for SCLS

4. Obtain and store Hµi
P (i , s): It can be obtained by moving HNP(i , s) to

the left by µi plus a constant number βi + αiµi . This step can be
completed in O(n3) time.

5. Calculate and store H′(i , s) = min{HNP(i , s),Hµi
P (i , s)}: Take the

minimum of the two functions between any two consecutive
breakpoints in HNP(i , s) and Hµi

P (i , s).

Guan (OU) Algorithms for SLS MIP 2008 50 / 60

Computational Complexity for SCLS

6. Among the breakpoints generated by HNP(i , s) and Hµi
P (i , s),

calculate φ(k ,S) =
βi +αi (dik −

∑
j∈S µj) + max {hi∆k,S ,−bi∆k,S}+

∑
`∈C(i)H(`,∆k,S)

where ∆k,S = dik −
∑

j∈S µj − di for each node k ∈ V(i) and
S ⊆ P(k) \ P(i).

For each combination of a node k ∈ V(i) and a set S ⊆ P(k) \ P(i),
based on the result in Step 2, the value of the function∑

`∈C(i)H(`,∆k,S) can be obtained by binary search in

O(log n3) = O(log n) time. Therefore, this entire step can be
completed in O(n2 log n) time.

Guan (OU) Algorithms for SLS MIP 2008 51 / 60

Computational Complexity for SCLS

7. Calculate and store H(i , s) = min{HP(i , s),H′(i , s)}:
Sort φ(k,S) in a non-decreasing order and build a corresponding list
ξ1, which takes O(n2 log n) time.

Build a list ξ2 to store the start and end breakpoints for all linear pieces
of HP(i , s). All these linear pieces are stored according to increasing
sequence of their start breakpoint inventory values. Initially ξ2 = ∅.

Starting from the first one in ξ1, for each pair k and S , we generate the
value functions HP(i , s) and H(i , s) for the interval
[dik −

∑
j∈S µj − µi , dik −

∑
j∈S µj) in the following steps:

Guan (OU) Algorithms for SLS MIP 2008 52 / 60

Computational Complexity for SCLS

7. 1 Find a linear piece in ξ2 whose end breakpoint is the largest and in the
interval [dik −

∑
j∈S µj − µi , dik −

∑
j∈S µj). Denote it as s = dks ;

2 Find a linear piece in ξ2 whose start breakpoint is the smallest and in
the interval [dik −

∑
j∈S µj − µi , dik −

∑
j∈S µj). Denote it as s = eks ;

3 Due to fixed interval length µi for each pair, the value of HP(i , s) in
the interval [dks , eks) should be equal to φ(k ,S)− αi s and the
corresponding values for other parts of the interval
[dik −

∑
j∈S µj − µi , dik −

∑
j∈S µj) are decided by other pairs;

4 Obtain H(i , s) = min{HP(i , s),H′(i , s)} for the interval [dks , eks) and
insert the linear piece of HP(i , s) for the interval [dks , eks) to the right
position in ξ2 to maintain the increasing sequence.

Note that there are at most O(n2) pairs. We can use the binary
search to find the start and end breakpoints, which takes O(log n)
time. The number of breakpoints in H′(i , s) is bounded by O(n3).
Thus, this step can be finished in O(n3) time.

Guan (OU) Algorithms for SLS MIP 2008 53 / 60

Computational Complexity for SCLS

HP(i , s)

s
s = dks

s = eks

8. Update θ(i−, s) by adding H(i , s): This step can be completed in
O(n3) time since the number of breakpoints is bounded by O(n3).

Guan (OU) Algorithms for SLS MIP 2008 54 / 60

Outline

1 Introduction
Motivation
Related Work

2 Our Results/Contribution
Stochastic Uncapacitated Lot-Sizing (SULS) with Backlogging
Stochastic Capacitated Lot-Sizing (SCLS) with Backlogging
Stochastic Constant Capacitated Lot-Sizing (SCCLS) with
Backlogging

3 Current Research

4 Summary and Future Research

Guan (OU) Algorithms for SLS MIP 2008 55 / 60

Production Path Property

SCCLS Production Path Property

There exists an optimal solution (x∗, y∗, s∗) such that for each node i ∈ V,

if 0 < x∗i < µ, then x∗i + s∗i− = dik −mµ for some m

such that dik −mµ ≥ 0 and m < T ,

and x∗j = 0 or µ for each j ∈ P(i , k) \ {i}.

Proposition

For the stochastic constant capacitated lot-sizing problem with zero initial
inventory, we have s∗i = d1j − d1i + mµ with −T ≤ m ≤ t(i) in an optimal
solution.

Guan (OU) Algorithms for SLS MIP 2008 56 / 60

Complexity for SCCLS

Theorem: The general stochastic constant capacitated lot-sizing problem
with backlogging can be solved in O(n2T log n) time.

Algorithm sketch.

1 Breakpoints of
∑

`∈C(i)H(`, s): O(nT).

2 Store
∑

`∈C(i)H(`, s): O(nT).

3 Calculate and store HNP(i , s) and HµP (i , s): O(nT).

4 Calculate and store φ(k ,m): O(nT log n).

5 Calculate and store HP(i , s): O(nT log n).

6 Calculate and store H(i , s): O(nT).

Guan (OU) Algorithms for SLS MIP 2008 57 / 60

Stochastic Lot-Sizing with Inventory Bounds

Equivalence among four models (de Heuvel and Wagelmans 2007):
lot-sizing with inventory bounds, remanufacturing option, production
time-window constraints, and cumulative capacity constraints.

For the uncapacitated case, we have an O(n2) time algorithm, which
generalizes the deterministic case studied by Atamtürk and
Kücükyavuz 2007 and Liu 2007 to the stochastic setting with the
same computational complexity.

For the constant capacitated case, we have an O(n2T log n) time
algorithm, which generalizes the deterministic case studied by Wolsey
2007 with complexity O(T 4) to the stochastic setting with a better
computational complexity. (Joint work with Tieming Liu)

Guan (OU) Algorithms for SLS MIP 2008 58 / 60

Stochastic Lot-Sizing with Inventory Bounds

Equivalence among four models (de Heuvel and Wagelmans 2007):
lot-sizing with inventory bounds, remanufacturing option, production
time-window constraints, and cumulative capacity constraints.

For the uncapacitated case, we have an O(n2) time algorithm, which
generalizes the deterministic case studied by Atamtürk and
Kücükyavuz 2007 and Liu 2007 to the stochastic setting with the
same computational complexity.

For the constant capacitated case, we have an O(n2T log n) time
algorithm, which generalizes the deterministic case studied by Wolsey
2007 with complexity O(T 4) to the stochastic setting with a better
computational complexity. (Joint work with Tieming Liu)

Guan (OU) Algorithms for SLS MIP 2008 58 / 60

Stochastic Lot-Sizing with Inventory Bounds

Equivalence among four models (de Heuvel and Wagelmans 2007):
lot-sizing with inventory bounds, remanufacturing option, production
time-window constraints, and cumulative capacity constraints.

For the uncapacitated case, we have an O(n2) time algorithm, which
generalizes the deterministic case studied by Atamtürk and
Kücükyavuz 2007 and Liu 2007 to the stochastic setting with the
same computational complexity.

For the constant capacitated case, we have an O(n2T log n) time
algorithm, which generalizes the deterministic case studied by Wolsey
2007 with complexity O(T 4) to the stochastic setting with a better
computational complexity. (Joint work with Tieming Liu)

Guan (OU) Algorithms for SLS MIP 2008 58 / 60

Summary and Future Research

Generalized the work by Guan and Miller 2007 to include backlogging
and variant capacities.

Show that the value function for SCLS with backlogging can be
achieved in polynomial time O(n4) if each non-leaf node contains at
least two children.

More efficient algorithms found for SULS (i.e., O(n2)) and SCCLS
(i.e., O(n2T log n)), regardless of the scenario tree structure.

Guan (OU) Algorithms for SLS MIP 2008 59 / 60

Future Research

Study the cases with nonlinear objective value functions (joint work
with Andrew Miller).

How can these results help find the convex hull description of SULS
as well as SCLS polytopes? We are working on lifted valid inequalities
for stochastic dynamic knapsack problems (joint work with Bo Zeng).

Guan (OU) Algorithms for SLS MIP 2008 60 / 60

	Introduction
	Motivation
	Related Work

	Our Results/Contribution
	Stochastic Uncapacitated Lot-Sizing (SULS) with Backlogging
	Stochastic Capacitated Lot-Sizing (SCLS) with Backlogging
	Stochastic Constant Capacitated Lot-Sizing (SCCLS) with Backlogging

	Current Research
	Summary and Future Research

