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Introduction

Introduction

General cutting planes central for practical IP
performance.

Most important family are Gomory cuts (Bixby et al.
2006).

Much research on extensions, but little practical
impact.

Most attempts focused on cuts derived from
single-row systems.
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Introduction

Introduction

Recent work by Andersen et. al [2005], Cornuejols
and Borozan [2007], Gomory [2007], have extended
our understanding of multi-row relaxations.
From the theory side, multi-row relaxations are known
to be central in describing convex hull of sets:

Cook, Kannan and Schrijver example has infinite
CG-rank.
Single cut from two rows gives complete description.
Extensions show need for cuts derived from n rows.

Our goal is to test if these new ideas may have a
practical impact.
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Introduction

How we derive cuts from two row systems?

We consider
x , s ∈ Z2 × RJ

+. .
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f

We consider
x , s ∈ Z2 × RJ

+.

Assume f , r j ∈ Q2,
f /∈ Z2. .
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We consider
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Let C ⊂ R2 s.t.
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Let αj = max{α :
f + αr j ∈ C}

Let S = {s ∈ RJ
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How we derive cuts from two row systems?

f·
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r 4

r 5

r 6

We consider
x , s ∈ Z2 × RJ

+. .
∑

j∈J

sj

αj
≥ 1 is valid

How much better
can we make C ′?
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How we derive cuts from two row systems?

f·

r 1

r 2

r 3

r 4

r 5

r 6

We consider
x , s ∈ Z2 × RJ

+. .
∑

j∈J

sj

αj
≥ 1 is valid

For non-dominance,
every edge must
contain integer point
in relative interior
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possible sets
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Introduction

How we derive cuts from two row systems?

f·

r 1

r 2

r 3

r 4

r 5

r 6

We consider
x , s ∈ Z2 × RJ

+. .
∑

j∈J

sj

αj
≥ 1 is valid

Still, far too many
possible sets

All these ideas can
be extended to
x , f , r j ∈ Qq and to
|J| = ∞.
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The Problem:

How we apply this?

Basic Problem:
max cx
s.t . Ax = b

xi ∈ Z+ ∀i ∈ I, x ∈ Rn
+

(1)

where I ⊆ {1, . . . ,n}, A ∈ Qm×n is of full row rank, c ∈ Qn,
b ∈ Qm, and x ∈ Qn.

A first relaxation:

xB′ = f +
∑

j∈N
r jxj

xN ≥ 0, xi ∈ Z∀i ∈ B′

(2)

Where B is a basic solution, B′ = B ∩ I.
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The Problem:

The math behind it

Gomory-Johnson Infinite group relaxation:

Rf :
x = f +

∑

finite
rsr

x ∈ Zq s ∈ R
Qq

+

(3)

Theorem (Minimal valid inequalities for Rf (CB-2007))
If f /∈ Zq , any minimal valid inequality that cuts off (f ,0):

1 Is of the form
∑

finite ψ(r)sr ≥ 1.
2 If Bψ = {x ∈ Qp : ψ(x − f ) ≤ 1}, then Bψ is convex, with no

integral point in its interior. Furthermore f ∈ Bψ.
3 If ψ is finite, then ψ is a continuous nonegative homogeneous

convex piecewise linear function with at most 2q pieces.
4 If ψ is finite, then f is in the interior of Bψ and Bψ is a polyhedron

of at most 2q facets, and each of its facets contains an integral
point in its relative interior.
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Selecting a set Bψ

Selecting a set Bψ

Three kind of maximal convex lattice free sets:
Type 1 n-dimensional simplex:

T 1n :=
{

x ∈ Rn : xi ≥ 0,
∑n

i=1 xi ≤ n
}

Each facet has exactly one point in its relative interior.
2n possible orientations.

The n-dimensional hyper cube:
Gn := e 1

2 +
{

x ∈ Rn :
∑n

i=1 sixi ≤
n
2 ,∀s ∈ {−1,1}n

}

Each facet has exactly one point in its relative interior.
Completely symmetric.

Type-2 n-dimensional simplex:

T 2n :=
{

x ∈Rn : (Ri)
∑i−1

j=1 xj − xi ≤ i−1, ∀i ∈ N+1
}

Facet (Ri) has max{2n−i ,1} (interior) integer points.
Has 2nn! possible orientations

vol(T 1n) = vol(Gn) = vol(T 2n)Θ(2−
n(n−1)

2 ).
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How we separate:

Relaxation selection:
Sort fractional integer variables by pseudo cost.
Discard numerically ill tableau rows
(|a| ≤ 10−6 ⇒ a = 0).
Store tableau rows (in the previous order) that have a
ratio ≤ 212.
Up to n tableau rows are found, or no more available.

Orientation selection: Try all!
Cut selection:

Discard cuts with ratio ≥ 215.
Select at most N cuts minimizing 1/max abs.
Allow multiple rounds.
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What we compare:

What we compare:

We implement the cut-generation procedure as a
CPLEX cut-callback.

Use it under default CPLEX 11.0 settings (including
cut generation) and preprocessing.
We compare:

root LP value.
final running time for those that finish the run.
final B&B bound after time limit.

All runs with two hours time limit.

Base results will be CPLEX defaults with
pre-processing.

Cut generation done only at root node.
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What we compare:

Where we compare:

Instances from MIPLIB 3.0, MIPLIB 2003, and others.

Total of 173 problems.
Discarded the following problems:

Solved by all configurations in under 5 seconds: 48.
LP root gap less than 0.1% in all configurations: 26.
Two unstable problems discarded, roll3000, l152av.

Differences under 5% are not considered in the
averages.

Final test set has 96 problems.
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What we compare:

Tested settings

Will compare several configurations:
default: Cplex 11.0 defaults with pre-processing.
General naming scheme will be C-Tt-Nn:
C ∈ { Gomory (G), T 1, T 2}, indicate the type of
lattice-free set used.
t ∈ {2,5,10}, is an upper bound on the number of
tableau rows selected at each round of cuts at the
root node.
n ∈ {5,20,100}, is an upper bound on the number of
cuts to be added at the root node.
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The Results

Overall speed-up (49 instances) 6.8%, 8.3%,
11.8%
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Closed B&B GAPMIP (27 instances) 3.7%,
6.0%, 4.5%
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The Results

Closed Root GAPLP (44 instances) 7.2%,
8.3%, 5.7%
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Performance Profile
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The Results

Performance Profile II
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Conclusions

Conclusions

Of all tested configurations, only two had worst
results on Root LP gap and on B&B gap, and eight
had worst results on speed.

Although the improvements are not dramatic, they
still are important.

Lots of testing of parameters.

Numerical issues are important!

Could we do a full separation?
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