Computing with multi-row Gomory cuts

Daniel G. Espinoza

Universidad de Chile, FCFM, DII

MIP 2008, Columbia University, New York, USA, August 4, 2008

Outline

- Introduction and Theory
- The Experiment Settings
- The Results

- General cutting planes central for practical IP performance.
- Most important family are Gomory cuts (Bixby et al. 2006).
- Much research on extensions, but little practical impact.
- Most attempts focused on cuts derived from single-row systems.

- General cutting planes central for practical IP performance.
- Most important family are Gomory cuts (Bixby et al. 2006).
- Much research on extensions, but little practical impact.
- Most attempts focused on cuts derived from single-row systems.

- General cutting planes central for practical IP performance.
- Most important family are Gomory cuts (Bixby et al. 2006).
- Much research on extensions, but little practical impact.
- Most attempts focused on cuts derived from single-row systems.

- General cutting planes central for practical IP performance.
- Most important family are Gomory cuts (Bixby et al. 2006).
- Much research on extensions, but little practical impact.
- Most attempts focused on cuts derived from single-row systems.

- Recent work by Andersen et. al [2005], Cornuejols and Borozan [2007], Gomory [2007], have extended our understanding of multi-row relaxations.
- From the theory side, multi-row relaxations are known to be central in describing convex hull of sets:

 Our goal is to test if these new ideas may have a practical impact.

- Recent work by Andersen et. al [2005], Cornuejols and Borozan [2007], Gomory [2007], have extended our understanding of multi-row relaxations.
- From the theory side, multi-row relaxations are known to be central in describing convex hull of sets:
 - Cook, Kannan and Schrijver example has infinite CG-rank.
 - Single cut from two rows gives complete description
 - Extensions show need for cuts derived from n rows.
- Our goal is to test if these new ideas may have a practical impact.

- Recent work by Andersen et. al [2005], Cornuejols and Borozan [2007], Gomory [2007], have extended our understanding of multi-row relaxations.
- From the theory side, multi-row relaxations are known to be central in describing convex hull of sets:
 - Cook, Kannan and Schrijver example has infinite CG-rank.
 - Single cut from two rows gives complete description
 - Extensions show need for cuts derived from n rows.
- Our goal is to test if these new ideas may have a practical impact.

- Recent work by Andersen et. al [2005], Cornuejols and Borozan [2007], Gomory [2007], have extended our understanding of multi-row relaxations.
- From the theory side, multi-row relaxations are known to be central in describing convex hull of sets:
 - Cook, Kannan and Schrijver example has infinite CG-rank.
 - Single cut from two rows gives complete description.
 - Extensions show need for cuts derived from n rows.
- Our goal is to test if these new ideas may have a practical impact.

- Recent work by Andersen et. al [2005], Cornuejols and Borozan [2007], Gomory [2007], have extended our understanding of multi-row relaxations.
- From the theory side, multi-row relaxations are known to be central in describing convex hull of sets:
 - Cook, Kannan and Schrijver example has infinite CG-rank.
 - Single cut from two rows gives complete description.
 - Extensions show need for cuts derived from n rows.
- Our goal is to test if these new ideas may have a practical impact.

- Recent work by Andersen et. al [2005], Cornuejols and Borozan [2007], Gomory [2007], have extended our understanding of multi-row relaxations.
- From the theory side, multi-row relaxations are known to be central in describing convex hull of sets:
 - Cook, Kannan and Schrijver example has infinite CG-rank.
 - Single cut from two rows gives complete description.
 - Extensions show need for cuts derived from n rows.
- Our goal is to test if these new ideas may have a practical impact.

• We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.

- We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.
- Assume $f, r^j \in \mathbb{Q}^2$, $f \notin \mathbb{Z}^2$...

- We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.
- Assume

$$x = f + \sum_{j \in J} r^j s_j$$

.

- We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.
- Let $C \subset \mathbb{R}^2$ s.t. $f \in C$, convex and $\operatorname{int}(C) \cap \mathbb{Z}^2 = \emptyset$.

- We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.
- Let $C \subset \mathbb{R}^2$ s.t. $f \in C$, convex and $\operatorname{int}(C) \cap \mathbb{Z}^2 = \emptyset$
 - Let $\alpha_j = \max\{\alpha : f + \alpha r^j \in C\}$.

- We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.
- Let $C \subset \mathbb{R}^2$ s.t. $f \in C$, convex and $\operatorname{int}(C) \cap \mathbb{Z}^2 = \emptyset$
 - Let $\alpha_j = \max\{\alpha : f + \alpha r^j \in C\}$
- Let $S = \{s \in \mathbb{R}_+^J : \sum_{j \in J} \frac{s_j}{\alpha_j} \le 1\}.$

- We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.
- Let $C \subset \mathbb{R}^2$ s.t. $f \in C$, convex and $\operatorname{int}(C) \cap \mathbb{Z}^2 = \emptyset$
 - Let $\alpha_j = \max\{\alpha : f + \alpha r^j \in C\}$
- Let $S = \{s \in \mathbb{R}_+^J : \sum_{j \in J} \frac{s_j}{\alpha_j} \le 1\}.$
 - $\bullet \Rightarrow C' := f + r \cdot S \subseteq C.$

- We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.
- Let $C \subset \mathbb{R}^2$ s.t. $f \in C$, convex and $\operatorname{int}(C) \cap \mathbb{Z}^2 = \emptyset$
 - Let $\alpha_j = \max\{\alpha : f + \alpha r^j \in C\}$
- Let $S = \{s \in \mathbb{R}_+^J : \sum_{j \in J} \frac{s_j}{\alpha_j} \le 1\}.$
 - $\sum_{j \in J} \frac{s_j}{\alpha_j} \ge 1$ is valid

- We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.
- $\sum_{j \in J} \frac{s_j}{\alpha_j} \ge 1$ is valid
- How much better can we make C'?

Introduction and Theory

- We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.
- $\sum_{j \in J} \frac{s_j}{\alpha_j} \ge 1$ is valid
 - C' should be a maximal convex, lattice free set containing f

- We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.
- $\sum_{j \in J} \frac{s_j}{\alpha_j} \ge 1$ is valid
- C' should be a maximal convex, lattice free set containing f
- A quadrilateral or Gomory set
 - completely symmetric

- We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.
- $\sum\limits_{j\in J}rac{s_{j}}{lpha_{j}}\geq$ 1 is valid
- C' should be a maximal convex, lattice free set containing f
- A Type 1 triangle

Introduction and Theory

- We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.
- $\sum_{j \in J} \frac{s_j}{\alpha_j} \ge 1$ is valid
- C' should be a maximal convex, lattice free set containing f
- A Type 1 triangle
 - 2ⁿ possible configurations (n = number of rows)

- We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.
- $\sum\limits_{j\in J}rac{s_{j}}{lpha_{j}}\geq$ 1 is valid
- C' should be a maximal convex, lattice free set containing f
- A Type 2 triangle
- n!2ⁿ possible configurations

- We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.
- $\sum\limits_{j\in J}rac{s_{j}}{lpha_{j}}\geq$ 1 is valid
- For non-dominance, every edge must contain integer point in relative interior

- We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.
- $\sum\limits_{j\in J}rac{s_j}{lpha_j}\geq$ 1 is valid
- Still, far too many possible sets

- We consider $x, s \in \mathbb{Z}^2 \times \mathbb{R}^J_+$.
- $ullet \sum_{j\in J}rac{s_j}{lpha_j}\geq 1$ is valid
- Still, far too many possible sets
- All these ideas can be extended to $x, f, r^j \in \mathbb{Q}^q$ and to $|J| = \infty$.

How we apply this?

Basic Problem:

where $I \subseteq \{1, ..., n\}$, $A \in \mathbb{Q}^{m \times n}$ is of full row rank, $c \in \mathbb{Q}^n$, $b \in \mathbb{Q}^m$, and $x \in \mathbb{Q}^n$.

A first relaxation:

$$x_{B'} = f + \sum_{j \in N} r^j x_j$$

$$x_N \ge 0, x_i \in \mathbb{Z} \forall i \in B'$$
(2)

Where *B* is a basic solution, $B' = B \cap I$.

How we apply this?

Basic Problem:

where $I \subseteq \{1, ..., n\}$, $A \in \mathbb{Q}^{m \times n}$ is of full row rank, $c \in \mathbb{Q}^n$, $b \in \mathbb{Q}^m$, and $x \in \mathbb{Q}^n$.

A first relaxation:

$$x_{B'} = f + \sum_{j \in N} r^j x_j$$

$$x_N \geq 0, x_i \in \mathbb{Z} \forall i \in B'$$
(2)

Where *B* is a basic solution, $B' = B \cap I$.

Gomory-Johnson Infinite group relaxation:

$$egin{array}{lcl} m{X} &=& f + \sum\limits_{finite} r \mathbf{s}_r \ m{X} \in \mathbb{Z}^q & m{s} \in \mathbb{R}_+^{\mathbb{Q}^q} \end{array}$$

Theorem (Minimal valid inequalities for R_f (CB-2007)) If $f \notin \mathbb{Z}^q$, any minimal valid inequality that cuts off (f,0):

Gomory-Johnson Infinite group relaxation:

$$egin{array}{lcl} m{X} & = & f + \sum\limits_{m{finite}} r \mathbf{s}_r \ m{X} \in \mathbb{Z}^q & m{s} \in \mathbb{R}^{\mathbb{Q}^q}_+ \end{array}$$

Theorem (Minimal valid inequalities for R_f (CB-2007))

- 1 Is of the form $\sum_{\text{finite}} \psi(r) s_r \geq 1$.
- 2 If $B_{\psi} = \{x \in \mathbb{Q}^p : \psi(x f) \leq 1\}$, then B_{ψ} is convex, with no integral point in its interior. Furthermore $f \in B_{\psi}$.
- If ψ is finite, then ψ is a continuous nonegative homogeneous convex piecewise linear function with at most 2^q pieces.
- If ψ is finite, then f is in the interior of B_{ψ} and B_{ψ} is a polyhedron of at most 2^q facets, and each of its facets contains an integral point in its relative interior.

Gomory-Johnson Infinite group relaxation:

$$R_f: egin{array}{cccc} x & = & f + \sum\limits_{finite} r s_r \ x \in \mathbb{Z}^q & s \in \mathbb{R}_+^{\mathbb{Q}^q} \end{array}$$
 (3)

Theorem (Minimal valid inequalities for R_f (CB-2007))

- 1 Is of the form $\sum_{\text{finite}} \psi(r) s_r \ge 1$.
- If $B_{\psi} = \{x \in \mathbb{Q}^p : \psi(x f) \leq 1\}$, then B_{ψ} is convex, with no integral point in its interior. Furthermore $f \in B_{\psi}$.
- If ψ is finite, then ψ is a continuous nonegative homogeneous convex piecewise linear function with at most 2^q pieces.
- If ψ is finite, then f is in the interior of B_{ψ} and B_{ψ} is a polyhedron of at most 2^q facets, and each of its facets contains an integral point in its relative interior.

Gomory-Johnson Infinite group relaxation:

$$R_f: egin{array}{cccc} x & = & f + \sum\limits_{finite} r s_r \ x \in \mathbb{Z}^q & s \in \mathbb{R}_+^{\mathbb{Q}^q} \end{array}$$
 (3)

Theorem (Minimal valid inequalities for R_f (CB-2007))

- 1 Is of the form $\sum_{\text{finite}} \psi(r) s_r \ge 1$.
- If $B_{\psi} = \{x \in \mathbb{Q}^p : \psi(x f) \leq 1\}$, then B_{ψ} is convex, with no integral point in its interior. Furthermore $f \in B_{\psi}$.
- If ψ is finite, then ψ is a continuous nonegative homogeneous convex piecewise linear function with at most 2^q pieces.
- If ψ is finite, then f is in the interior of B_{ψ} and B_{ψ} is a polyhedron of at most 2^q facets, and each of its facets contains an integral point in its relative interior.

Gomory-Johnson Infinite group relaxation:

$$egin{array}{lcl} m{X} &=& f + \sum\limits_{finite} r \mathbf{s}_r \ m{X} \in \mathbb{Z}^q & m{s} \in \mathbb{R}_+^{\mathbb{Q}^q} \end{array}$$

Theorem (Minimal valid inequalities for R_f (CB-2007))

- 1 Is of the form $\sum_{\text{finite}} \psi(r) s_r \ge 1$.
- If $B_{\psi} = \{x \in \mathbb{Q}^p : \psi(x f) \leq 1\}$, then B_{ψ} is convex, with no integral point in its interior. Furthermore $f \in B_{\psi}$.
- If ψ is finite, then ψ is a continuous nonegative homogeneous convex piecewise linear function with at most 2^q pieces.
- If ψ is finite, then f is in the interior of B_{ψ} and B_{ψ} is a polyhedron of at most 2^q facets, and each of its facets contains an integral point in its relative interior.

The math behind it

Gomory-Johnson Infinite group relaxation:

$$R_f: egin{array}{cccc} x & = & f + \sum\limits_{finite} r s_r \ x \in \mathbb{Z}^q & s \in \mathbb{R}_+^{\mathbb{Q}^q} \end{array}$$
 (3)

Theorem (Minimal valid inequalities for R_f (CB-2007))

If $f \notin \mathbb{Z}^q$, any minimal valid inequality that cuts off (f,0):

- 1 Is of the form $\sum_{\text{finite}} \psi(r) s_r \ge 1$.
- If $B_{\psi} = \{x \in \mathbb{Q}^p : \psi(x f) \leq 1\}$, then B_{ψ} is convex, with no integral point in its interior. Furthermore $f \in B_{\psi}$.
- If ψ is finite, then ψ is a continuous nonegative homogeneous convex piecewise linear function with at most 2^q pieces.
- If ψ is finite, then f is in the interior of B_{ψ} and B_{ψ} is a polyhedron of at most 2^q facets, and each of its facets contains an integral point in its relative interior.

- Three kind of maximal convex lattice free sets:
 - Type 1 *n*-dimensional simplex:

The n-dimensional hyper cube

•
$$\operatorname{vol}(T1_n) = \operatorname{vol}(G_n) = \operatorname{vol}(T2_n) \Theta(2^{-\frac{n(n-1)}{2}})$$

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:
 - Type 1 *n*-dimensional simplex:
 - $T1_n := \{x \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i \le n\}$
 - Each facet has exactly one point in its relative interior.
 - 2ⁿ possible orientations.
 - The n-dimensional hyper cube

•
$$\operatorname{vol}(T1_n) = \operatorname{vol}(G_n) = \operatorname{vol}(T2_n)\Theta(2^{-\frac{n(n-1)}{2}}).$$

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:
 - Type 1 *n*-dimensional simplex:

•
$$T1_n := \{x \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i \le n\}$$

- Each facet has exactly one point in its relative interior.
- 2ⁿ possible orientations.
- The n-dimensional hyper cube

•
$$\operatorname{vol}(T1_n) = \operatorname{vol}(G_n) = \operatorname{vol}(T2_n)\Theta(2^{-\frac{n(n-1)}{2}}).$$

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:
 - Type 1 *n*-dimensional simplex:
 - $T1_n := \{x \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i \le n\}$
 - Each facet has exactly one point in its relative interior.
 - 2ⁿ possible orientations.
 - The n-dimensional hyper cube:

•
$$\operatorname{vol}(T1_n) = \operatorname{vol}(G_n) = \operatorname{vol}(T2_n) \Theta(2^{-\frac{n(n-1)}{2}})$$

- Three kind of maximal convex lattice free sets:
 - Type 1 *n*-dimensional simplex:
 - $T1_n := \{x \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i \le n\}$
 - Each facet has exactly one point in its relative interior.
 - 2ⁿ possible orientations.
 - The n-dimensional hyper cube:

•
$$\operatorname{vol}(T1_n) = \operatorname{vol}(G_n) = \operatorname{vol}(T2_n) \Theta(2^{-\frac{n(n-1)}{2}})$$

- Three kind of maximal convex lattice free sets:
 - Type 1 *n*-dimensional simplex:
 - $T1_n := \{x \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i \le n\}$
 - Each facet has exactly one point in its relative interior.
 - 2ⁿ possible orientations.
 - The *n*-dimensional hyper cube:
 - $G_n := e^{\frac{1}{2}} + \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n s_i x_i \le \frac{n}{2}, \forall s \in \{-1, 1\}^n \right\}$
 - Each facet has exactly one point in its relative interior.
 - Completely symmetric.
 - Type-2 n-dimensional simplex:

•
$$\operatorname{vol}(T1_n) = \operatorname{vol}(G_n) = \operatorname{vol}(T2_n)\Theta(2^{-\frac{n(n-1)}{2}}).$$

- Three kind of maximal convex lattice free sets:
 - Type 1 *n*-dimensional simplex:
 - $T1_n := \{x \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i \le n\}$
 - Each facet has exactly one point in its relative interior.
 - 2ⁿ possible orientations.
 - The n-dimensional hyper cube:
 - $G_n := e^{\frac{1}{2}} + \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n s_i x_i \le \frac{n}{2}, \forall s \in \{-1, 1\}^n \right\}$
 - Each facet has exactly one point in its relative interior.
 - vne-2 *n*-dimensional simplex
 - Type-2 *n*-dimensional simplex:

- Three kind of maximal convex lattice free sets:
 - Type 1 *n*-dimensional simplex:
 - $T1_n := \{x \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i \le n\}$
 - Each facet has exactly one point in its relative interior.
 - 2ⁿ possible orientations.
 - The *n*-dimensional hyper cube:
 - $G_n := e^{\frac{1}{2}} + \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n s_i x_i \le \frac{n}{2}, \forall s \in \{-1, 1\}^n \right\}$
 - Each facet has exactly one point in its relative interior.
 - Completely symmetric
 - Type-2 *n*-dimensional simplex:

•
$$\operatorname{vol}(T1_n) = \operatorname{vol}(G_n) = \operatorname{vol}(T2_n) \Theta(2^{-\frac{n(n-1)}{2}})$$

- Three kind of maximal convex lattice free sets:
 - Type 1 *n*-dimensional simplex:
 - $T1_n := \{x \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i \le n\}$
 - Each facet has exactly one point in its relative interior.
 - 2ⁿ possible *orientations*.
 - The *n*-dimensional hyper cube:
 - $G_n := e^{\frac{1}{2}} + \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n s_i x_i \le \frac{n}{2}, \forall s \in \{-1, 1\}^n \right\}$
 - Each facet has exactly one point in its relative interior.
 - Completely symmetric.
 - Type-2 n-dimensional simplex:

• $\operatorname{vol}(T1_n) = \operatorname{vol}(G_n) = \operatorname{vol}(T2_n)\Theta(2^{-\frac{n(n-1)}{2}})$

- Three kind of maximal convex lattice free sets:
 - Type 1 *n*-dimensional simplex:
 - $T1_n := \{x \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i \le n\}$
 - Each facet has exactly one point in its relative interior.
 - 2ⁿ possible orientations.
 - The *n*-dimensional hyper cube:
 - $G_n := e^{\frac{1}{2}} + \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n s_i x_i \le \frac{n}{2}, \forall s \in \{-1,1\}^n \right\}$
 - Each facet has exactly one point in its relative interior.
 - Completely symmetric.
 - Type-2 *n*-dimensional simplex:

•
$$T2_n := \left\{ x \in \mathbb{R}^n : (R_i) \sum_{j=1}^{i-1} x_j - x_i \le i-1, \ \forall i \in N+1 \right\}$$

- Facet (R_i) has max $\{2^{n-i}, 1\}$ (interior) integer points.
- Has 2ⁿn! possible *orientations*
- $\operatorname{vol}(T1_n) = \operatorname{vol}(G_n) = \operatorname{vol}(T2_n) \Theta(2^{-\frac{n(n-1)}{2}}).$

- Three kind of maximal convex lattice free sets:
 - Type 1 *n*-dimensional simplex:
 - $T1_n := \{x \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i \le n\}$
 - Each facet has exactly one point in its relative interior.
 - 2ⁿ possible orientations.
 - The n-dimensional hyper cube:
 - $G_n := e^{\frac{1}{2}} + \{x \in \mathbb{R}^n : \sum_{i=1}^n s_i x_i \le \frac{n}{2}, \forall s \in \{-1, 1\}^n\}$
 - Each facet has exactly one point in its relative interior.
 - Completely symmetric.
 - Type-2 *n*-dimensional simplex:

•
$$T2_n := \left\{ x \in \mathbb{R}^n : (R_i) \sum_{j=1}^{i-1} x_j - x_i \le i-1, \ \forall i \in N+1 \right\}$$

- Facet (R_i) has max $\{2^{n-i}, 1\}$ (interior) integer points.
- Has 2ⁿn! possible orientations
- $\operatorname{vol}(T1_n) = \operatorname{vol}(G_n) = \operatorname{vol}(T2_n) \Theta(2^{-\frac{n(n-1)}{2}})$

- Three kind of maximal convex lattice free sets:
 - Type 1 n-dimensional simplex:
 - $T1_n := \{x \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i \le n\}$
 - Each facet has exactly one point in its relative interior.
 - 2ⁿ possible *orientations*.
 - The *n*-dimensional hyper cube:
 - $G_n := e^{\frac{1}{2}} + \{x \in \mathbb{R}^n : \sum_{i=1}^n s_i x_i \le \frac{n}{2}, \forall s \in \{-1, 1\}^n\}$
 - Each facet has exactly one point in its relative interior.
 - Completely symmetric.
 - Type-2 *n*-dimensional simplex:

•
$$T2_n := \left\{ x \in \mathbb{R}^n : (R_i) \sum_{j=1}^{i-1} x_j - x_i \le i-1, \ \forall i \in N+1 \right\}$$

- Facet (R_i) has $\max\{2^{n-i},1\}$ (interior) integer points.
- Has 2ⁿn! possible orientations

•
$$\operatorname{vol}(T1_n) = \operatorname{vol}(G_n) = \operatorname{vol}(T2_n)\Theta(2^{-\frac{n(n-1)}{2}})$$

- Three kind of maximal convex lattice free sets:
 - Type 1 n-dimensional simplex:
 - $T1_n := \{x \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i \le n\}$
 - Each facet has exactly one point in its relative interior.
 - 2ⁿ possible orientations.
 - The n-dimensional hyper cube:
 - $G_n := e^{\frac{1}{2}} + \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n s_i x_i \le \frac{n}{2}, \forall s \in \{-1,1\}^n \right\}$
 - Each facet has exactly one point in its relative interior.
 - Completely symmetric.
 - Type-2 *n*-dimensional simplex:

•
$$T2_n := \left\{ x \in \mathbb{R}^n : (R_i) \sum_{j=1}^{i-1} x_j - x_i \le i-1, \ \forall i \in N+1 \right\}$$

- Facet (R_i) has max $\{2^{n-i}, 1\}$ (interior) integer points.
- Has 2ⁿn! possible orientations

•
$$\operatorname{vol}(T1_n) = \operatorname{vol}(G_n) = \operatorname{vol}(T2_n)\Theta(2^{-\frac{n(n-1)}{2}})$$

- Three kind of maximal convex lattice free sets:
 - Type 1 n-dimensional simplex:
 - $T1_n := \{x \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i \le n\}$
 - Each facet has exactly one point in its relative interior.
 - 2ⁿ possible orientations.
 - The *n*-dimensional hyper cube:
 - $G_n := e^{\frac{1}{2}} + \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n s_i x_i \le \frac{n}{2}, \forall s \in \{-1,1\}^n \right\}$
 - Each facet has exactly one point in its relative interior.
 - Completely symmetric.
 - Type-2 *n*-dimensional simplex:

•
$$T2_n := \left\{ x \in \mathbb{R}^n : (R_i) \sum_{j=1}^{i-1} x_j - x_i \le i-1, \ \forall i \in N+1 \right\}$$

- Facet (R_i) has max $\{2^{n-i},1\}$ (interior) integer points.
- Has 2ⁿn! possible *orientations*
- $\operatorname{vol}(T1_n) = \operatorname{vol}(G_n) = \operatorname{vol}(T2_n)\Theta(2^{-\frac{n(n-1)}{2}}).$

How we separate:

Relaxation selection:

- Relaxation selection:
 - Sort fractional integer variables by pseudo cost.

- Relaxation selection:
 - Sort fractional integer variables by pseudo cost.
 - Discard numerically ill tableau rows ($|a| \le 10^{-6} \Rightarrow a = 0$).

- Relaxation selection:
 - Sort fractional integer variables by pseudo cost.
 - Discard numerically ill tableau rows ($|a| \le 10^{-6} \Rightarrow a = 0$).
 - Store tableau rows (in the previous order) that have a ratio < 2¹².

- Relaxation selection:
 - Sort fractional integer variables by pseudo cost.
 - Discard numerically ill tableau rows $(|a| \le 10^{-6} \Rightarrow a = 0)$.
 - Store tableau rows (in the previous order) that have a ratio < 2¹².
 - Up to *n* tableau rows are found, or no more available.

- Relaxation selection:
 - Sort fractional integer variables by pseudo cost.
 - Discard numerically ill tableau rows ($|a| \le 10^{-6} \Rightarrow a = 0$).
 - Store tableau rows (in the previous order) that have a ratio < 2¹².
 - Up to *n* tableau rows are found, or no more available.
- Orientation selection:

- Relaxation selection:
 - Sort fractional integer variables by pseudo cost.
 - Discard numerically ill tableau rows $(|a| \le 10^{-6} \Rightarrow a = 0)$.
 - Store tableau rows (in the previous order) that have a ratio < 2¹².
 - Up to *n* tableau rows are found, or no more available.
- Orientation selection: Try all!

- Relaxation selection:
 - Sort fractional integer variables by pseudo cost.
 - Discard numerically ill tableau rows ($|a| \le 10^{-6} \Rightarrow a = 0$).
 - Store tableau rows (in the previous order) that have a ratio < 2¹².
 - Up to *n* tableau rows are found, or no more available.
- Orientation selection: Try all!
- Cut selection:

- Relaxation selection:
 - Sort fractional integer variables by pseudo cost.
 - Discard numerically ill tableau rows ($|a| \le 10^{-6} \Rightarrow a = 0$).
 - Store tableau rows (in the previous order) that have a ratio < 2¹².
 - Up to *n* tableau rows are found, or no more available.
- Orientation selection: Try all!
- Cut selection:
 - Discard cuts with ratio > 2¹⁵.

- Relaxation selection:
 - Sort fractional integer variables by pseudo cost.
 - Discard numerically ill tableau rows $(|a| \le 10^{-6} \Rightarrow a = 0)$.
 - Store tableau rows (in the previous order) that have a ratio < 2¹².
 - Up to *n* tableau rows are found, or no more available.
- Orientation selection: Try all!
- Cut selection:
 - Discard cuts with ratio > 2¹⁵.
 - Select at most N cuts minimizing 1/max_abs.

- Relaxation selection:
 - Sort fractional integer variables by pseudo cost.
 - Discard numerically ill tableau rows ($|a| \le 10^{-6} \Rightarrow a = 0$).
 - Store tableau rows (in the previous order) that have a ratio < 2¹².
 - Up to *n* tableau rows are found, or no more available.
- Orientation selection: Try all!
- Cut selection:
 - Discard cuts with ratio $> 2^{15}$.
 - Select at most N cuts minimizing 1/max_abs.
 - Allow multiple rounds.

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.
- We compare:

- All runs with two hours time limit.
- Base results will be CPLEX defaults with pre-processing.
- Cut generation done only at root node.

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.
- We compare:

- All runs with two hours time limit
- Base results will be CPLEX defaults with pre-processing.
- Cut generation done only at root node.

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.
- We compare:
 - root LP value
 - final running time for those that finish the run.
 - final B&B bound after time limit.
- All runs with two hours time limit
- Base results will be CPLEX defaults with pre-processing.
- Cut generation done only at root node.

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.
- We compare:
 - root LP value.
 - final running time for those that finish the run.
 - final B&B bound after time limit.
- All runs with two hours time limit.
- Base results will be CPLEX defaults with pre-processing.
- Cut generation done only at root node.

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.
- We compare:
 - root LP value.
 - final running time for those that finish the run.
 - final B&B bound after time limit.
- All runs with two hours time limit.
- Base results will be CPLEX defaults with pre-processing.
- Cut generation done only at root node.

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.
- We compare:
 - root LP value.
 - final running time for those that finish the run.
 - final B&B bound after time limit.
- All runs with two hours time limit.
- Base results will be CPLEX defaults with pre-processing.
- Cut generation done only at root node.

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.
- We compare:
 - root LP value.
 - final running time for those that finish the run.
 - final B&B bound after time limit.
- All runs with two hours time limit.
- Base results will be CPLEX defaults with pre-processing.
- Cut generation done only at root node

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.
- We compare:
 - root LP value.
 - final running time for those that finish the run.
 - final B&B bound after time limit.
- All runs with two hours time limit.
- Base results will be CPLEX defaults with pre-processing.
- Cut generation done only at root node

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.
- We compare:
 - root LP value.
 - final running time for those that finish the run.
 - final B&B bound after time limit.
- All runs with two hours time limit.
- Base results will be CPLEX defaults with pre-processing.
- Cut generation done only at root node.

Where we compare:

- Instances from MIPLIB 3.0, MIPLIB 2003, and others.
- Total of 173 problems
- Discarded the following problems:

- Differences under 5% are not considered in the averages.
- Final test set has 96 problems.

- Instances from MIPLIB 3.0, MIPLIB 2003, and others.
- Total of 173 problems.
- Discarded the following problems:

- Differences under 5% are not considered in the averages.
- Final test set has 96 problems.

- Instances from MIPLIB 3.0, MIPLIB 2003, and others.
- Total of 173 problems.
- Discarded the following problems:
 - Solved by all configurations in under 5 seconds: 48.
 - LP root gap less than 0.1% in all configurations: 26.
 - Two unstable problems discarded, roll3000, l152av.
- Differences under 5% are not considered in the averages.
- Final test set has 96 problems.

- Instances from MIPLIB 3.0, MIPLIB 2003, and others.
- Total of 173 problems.
- Discarded the following problems:
 - Solved by all configurations in under 5 seconds: 48.
 - LP root gap less than 0.1% in all configurations: 26.
 - Two unstable problems discarded, roll3000, l152av.
- Differences under 5% are not considered in the averages.
- Final test set has 96 problems

- Instances from MIPLIB 3.0, MIPLIB 2003, and others.
- Total of 173 problems.
- Discarded the following problems:
 - Solved by all configurations in under 5 seconds: 48.
 - LP root gap less than 0.1% in all configurations: 26.
 - Two unstable problems discarded, roll3000, l152av.
- Differences under 5% are not considered in the averages.
- Final test set has 96 problems

- Instances from MIPLIB 3.0, MIPLIB 2003, and others.
- Total of 173 problems.
- Discarded the following problems:
 - Solved by all configurations in under 5 seconds: 48.
 - LP root gap less than 0.1% in all configurations: 26.
 - Two unstable problems discarded, roll3000, I152av.
- Differences under 5% are not considered in the averages.
- Final test set has 96 problems.

- Instances from MIPLIB 3.0, MIPLIB 2003, and others.
- Total of 173 problems.
- Discarded the following problems:
 - Solved by all configurations in under 5 seconds: 48.
 - LP root gap less than 0.1% in all configurations: 26.
 - Two unstable problems discarded, roll3000, I152av.
- Differences under 5% are not considered in the averages.
- Final test set has 96 problems.

- Instances from MIPLIB 3.0, MIPLIB 2003, and others.
- Total of 173 problems.
- Discarded the following problems:
 - Solved by all configurations in under 5 seconds: 48.
 - LP root gap less than 0.1% in all configurations: 26.
 - Two unstable problems discarded, roll3000, I152av.
- Differences under 5% are not considered in the averages.
- Final test set has 96 problems.

What we compare:

Tested settings

Will compare several configurations:

- default: Cplex 11.0 defaults with pre-processing.
- General naming scheme will be C-Tt-Nn:
- C ∈ { Gomory (G), T1, T2}, indicate the type of lattice-free set used.
- t ∈ {2,5,10}, is an upper bound on the number of tableau rows selected at each round of cuts at the root node.
- n ∈ {5, 20, 100}, is an upper bound on the number of cuts to be added at the root node.

What we compare:

- Will compare several configurations:
 - default: Cplex 11.0 defaults with pre-processing.
 - General naming scheme will be C-Tt-Nn:
 - C ∈ { Gomory (G), T1, T2}, indicate the type of lattice-free set used.
 - t ∈ {2,5,10}, is an upper bound on the number of tableau rows selected at each round of cuts at the root node.
 - n ∈ {5,20,100}, is an upper bound on the number of cuts to be added at the root node.

What we compare:

- Will compare several configurations:
 - default: Cplex 11.0 defaults with pre-processing.
 - General naming scheme will be C-Tt-Nn:
 - C ∈ { Gomory (G), T1, T2}, indicate the type of lattice-free set used.
 - t ∈ {2,5,10}, is an upper bound on the number of tableau rows selected at each round of cuts at the root node.
 - n ∈ {5, 20, 100}, is an upper bound on the number of cuts to be added at the root node.

- Will compare several configurations:
 - default: Cplex 11.0 defaults with pre-processing.
 - General naming scheme will be C-Tt-Nn:
 - C ∈ { Gomory (G), T1, T2}, indicate the type of lattice-free set used.
 - t ∈ {2,5,10}, is an upper bound on the number of tableau rows selected at each round of cuts at the root node.
 - n ∈ {5,20,100}, is an upper bound on the number of cuts to be added at the root node.

- Will compare several configurations:
 - default: Cplex 11.0 defaults with pre-processing.
 - General naming scheme will be C-Tt-Nn:
 - C ∈ { Gomory (G), T1, T2}, indicate the type of lattice-free set used.
 - t ∈ {2,5,10}, is an upper bound on the number of tableau rows selected at each round of cuts at the root node.
 - n ∈ {5,20,100}, is an upper bound on the number of cuts to be added at the root node.

- Will compare several configurations:
 - default: Cplex 11.0 defaults with pre-processing.
 - General naming scheme will be C-Tt-Nn:
 - C ∈ { Gomory (G), T1, T2}, indicate the type of lattice-free set used.
 - t ∈ {2,5,10}, is an upper bound on the number of tableau rows selected at each round of cuts at the root node.
 - n ∈ {5,20,100}, is an upper bound on the number of cuts to be added at the root node.

Overall speed-up (49 instances) 6.8%, 8.3%, 11.8%

Closed B&B *GAP_{MIP}* (27 instances) 3.7%, 6.0%, 4.5%

Closed Root GAP_{LP} (44 instances) 7.2%, 8.3%, 5.7%

Performance Profile

Performance Profile II

Conclusions

- Of all tested configurations, only two had worst results on Root LP gap and on B&B gap, and eight had worst results on speed.
- Although the improvements are not dramatic, they still are important.
- Lots of testing of parameters.
- Numerical issues are important!
- Could we do a full separation?

Introduction and Theory

- Of all tested configurations, only two had worst results on Root LP gap and on B&B gap, and eight had worst results on speed.
- Although the improvements are not dramatic, they still are important.
- Lots of testing of parameters.
- Numerical issues are important!
- Could we do a full separation?

- Of all tested configurations, only two had worst results on Root LP gap and on B&B gap, and eight had worst results on speed.
- Although the improvements are not dramatic, they still are important.
- Lots of testing of parameters.
- Numerical issues are important!
- Could we do a full separation?

- Of all tested configurations, only two had worst results on Root LP gap and on B&B gap, and eight had worst results on speed.
- Although the improvements are not dramatic, they still are important.
- Lots of testing of parameters.
- Numerical issues are important!
- Could we do a full separation?

Introduction and Theory

- Of all tested configurations, only two had worst results on Root LP gap and on B&B gap, and eight had worst results on speed.
- Although the improvements are not dramatic, they still are important.
- Lots of testing of parameters.
- Numerical issues are important!
- Could we do a full separation?