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Introduction

@ General cutting planes central for practical IP
performance.

@ Most important family are Gomory cuts (Bixby et al.
2006).

@ Much research on extensions, but little practical
impact.

@ Most attempts focused on cuts derived from
single-row systems.
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@ Recent work by Andersen et. al [2005], Cornuejols
and Borozan [2007], Gomory [2007], have extended
our understanding of multi-row relaxations.

@ From the theory side, multi-row relaxations are known
to be central in describing convex hull of sets:

@ Cook, Kannan and Schrijver example has infinite
CG-rank.

@ Single cut from two rows gives complete description.

@ Extensions show need for cuts derived from n rows.

@ Our goal is to test if these new ideas may have a
practical impact.
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How we derive cuts from two row systems?

@ We consider
X,s € Z* x Ry
@ LetC C R?stt.
f € C, convex and
int(C)Nnz?=190
(3 6 @ Letqj = max{a :
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How we derive cuts from two row systems?
[ ] [ ] [ ]
@ We consider
. ) X,s € Z* x Ry
' g @ LetC C R?sit.
. . f € C, convex and
int(C)Nnz?=190
r3 i @ Let oy = max{a:
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How we derive cuts from two row systems?
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@ We consider
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4 2 X,S € 2= x Ry.
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o .ZEJ > 1 is valid
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How we derive cuts from two row systems?

@ We consider
X,s € Z* x RY.

o > I >1j i
J% 5 2 1 is valid

@ C’ should be a
maximal convex,
lattice free set
containing f

@ A quadrilateral or
Gomory set

@ completely
symmetric
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@ C’ should be a
maximal convex,
lattice free set
containing f
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How we derive cuts from two row systems?

@ We consider
X,s € Z* x RY.

o > I >1j i
J% % 2 1 is valid

@ For non-dominance,
every edge must
contain integer point
in relative interior
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How we derive cuts from two row systems?

@ We consider
X,s € Z* x RY.

Sj . .
o ,%Ej > 1is valid

¢ * o still, far too many
possible sets
@ All these ideas can
. . be ex_tended to
x,f,rl € Q9 and to
|J| = oc.
[ ] [ ] [ ] [ ]
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The Problem:

How we apply this?

Basic Problem:

max Ccx
st. AXx =D (1)
Xi €Zy Viel xeR}

where | C{1,...,n}, A€ Q™" is of full row rank, c € Q",
beQM and x € Q".
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The Problem:

How we apply this?

Basic Problem:
max cX
st. AX =D (1)
Xi €Zy Viel xeR}
where | C{1,...,n}, A€ Q™" is of full row rank, c € Q",
beQM and x € Q".

A first relaxation:
g = f+ > rix
JEN (2)
Xn > 0, X € ZvVi e B’

Where B is a basic solution, B’ =B nN|.

Daniel G. Espinoza Computing with multi-row Gomory cuts



Introduction and Theory
oe

The Problem:

The math behind it

Gomory-Johnson Infinite group relaxation:
X = f+ > rs
Ry : finite 3)
X € Z9 s €RY

Daniel G. Espinoza Computing with multi-row Gomory cuts



Introduction and Theory
oe

The Problem:

The math behind it

Gomory-Johnson Infinite group relaxation:
X = f+ > rs
Ry : finite 3)
X € Z9 s €RY

Theorem (Minimal valid inequalities for Rs (CB-2007))
If f ¢ Z9, any minimal valid inequality that cuts off (f, 0):

Daniel G. Espinoza Computing with multi-row Gomory cuts




Introduction and Theory
oe

The Problem:

The math behind it

Gomory-Johnson Infinite group relaxation:
X = f+ > rs
Ry : finite 3)
X € Z9 s €RY

Theorem (Minimal valid inequalities for Rs (CB-2007))
If f ¢ Z9, any minimal valid inequality that cuts off (f, 0):

@ Is of the form 3 g e ¥(r)sr > 1.

Daniel G. Espinoza Computing with multi-row Gomory cuts




Introduction and Theory
oe

The Problem:

The math behind it

Gomory-Johnson Infinite group relaxation:
X = f+ > rs
Ry : finite 3)
X € Z9 s €RY

Theorem (Minimal valid inequalities for Rs (CB-2007))
If f ¢ Z9, any minimal valid inequality that cuts off (f, 0):
@ Is of the form 3 g e ¥(r)sr > 1.

@ 1B, = {x € QP : ¢(x —f) < 1}, then B, is convex, with no
integral point in its interior. Furthermore f € By.

Daniel G. Espinoza Computing with multi-row Gomory cuts




Introduction and Theory
oe

The Problem:

The math behind it

Gomory-Johnson Infinite group relaxation:
X = f+ > rs
Ry : finite 3)
X € Z9 s €RY

Theorem (Minimal valid inequalities for Rs (CB-2007))
If f ¢ Z9, any minimal valid inequality that cuts off (f, 0):
@ Is of the form 3 g e ¥(r)sr > 1.

@ 1B, = {x € QP : ¢(x —f) < 1}, then B, is convex, with no
integral point in its interior. Furthermore f € By.

© If ¢ is finite, then v is a continuous nonegative homogeneous
convex piecewise linear function with at most 29 pieces.

Daniel G. Espinoza Computing with multi-row Gomory cuts




Introduction and Theory
oe

The Problem:

The math behind it

Gomory-Johnson Infinite group relaxation:
X = f+ > rs
Ry : finite 3)
X € Z9 s €RY

Theorem (Minimal valid inequalities for Rs (CB-2007))
If f ¢ Z9, any minimal valid inequality that cuts off (f, 0):

@ Is of the form 3 g e ¥(r)sr > 1.

@ 1B, = {x € QP : ¢(x —f) < 1}, then B, is convex, with no
integral point in its interior. Furthermore f € By.

© If ¢ is finite, then v is a continuous nonegative homogeneous
convex piecewise linear function with at most 29 pieces.

© If ¢ is finite, then f is in the interior of B, and By, is a polyhedron
of at most 29 facets, and each of its facets contains an integral
point in its relative interior.
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@ Three kind of maximal convex lattice free sets:

@ Type 1 n-dimensional simplex:
@ Tl :={xeR":x >0,>",x <n}
@ Each facet has exactly one point in its relative interior.
@ 2" possible orientations.
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@ Gh=el+{xeR": 3" sx <§,Vse{-1,1}"}
@ Each facet has exactly one point in its relative interior.
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@ Three kind of maximal convex lattice free sets:

@ Type 1 n-dimensional simplex:
@ Tl :={xeR":x >0,>",x <n}
@ Each facet has exactly one point in its relative interior.
@ 2" possible orientations.

@ The n-dimensional hyper cube:
@ Gh=el+{xeR": 3" sx <§,Vse{-1,1}"}
@ Each facet has exactly one point in its relative interior.
@ Completely symmetric.

@ Type-2 n-dimensional simplex:

° Tzn;:{x ER™: (R) Y% —x <i-1,Vie€ N+1}

@ Facet (R;) has max{2"~' 1} (interior) integer points.
@ Has 2"n! possible orientations

o vol(T1,) = vol (Gp) = vol(T2,)0(2 "2 ).
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@ Relaxation selection:

@ Sort fractional integer variables by pseudo cost.

@ Discard numerically ill tableau rows
(Ja] £ 107® = a=0).

@ Store tableau rows (in the previous order) that have a
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@ Cut selection:
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@ Relaxation selection:

@ Sort fractional integer variables by pseudo cost.
@ Discard numerically ill tableau rows
(Ja] £ 107® = a=0).
@ Store tableau rows (in the previous order) that have a
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The Experiment Settings
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How we separate:

How we separate:

@ Relaxation selection:
@ Sort fractional integer variables by pseudo cost.
@ Discard numerically ill tableau rows
(Ja] £ 107® = a=0).
@ Store tableau rows (in the previous order) that have a
ratio < 212,
@ Up to n tableau rows are found, or no more available.
@ Orientation selection: Try all!
@ Cut selection:
o Discard cuts with ratio > 21°.
@ Select at most N cuts minimizing 1/max_abs.
@ Allow multiple rounds.
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CPLEX cut-callback.
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What we compare:

What we compare:

@ We implement the cut-generation procedure as a
CPLEX cut-callback.

@ Use it under default CPLEX 11.0 settings (including
cut generation) and preprocessing.
@ We compare:

@ root LP value.
e final running time for those that finish the run.
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@ We implement the cut-generation procedure as a
CPLEX cut-callback.

@ Use it under default CPLEX 11.0 settings (including
cut generation) and preprocessing.
@ We compare:

@ root LP value.
e final running time for those that finish the run.
o final B&B bound after time limit.

@ All runs with two hours time limit.

@ Base results will be CPLEX defaults with
pre-processing.
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What we compare:

What we compare:

@ We implement the cut-generation procedure as a
CPLEX cut-callback.

@ Use it under default CPLEX 11.0 settings (including
cut generation) and preprocessing.
@ We compare:

@ root LP value.
e final running time for those that finish the run.
o final B&B bound after time limit.

@ All runs with two hours time limit.

@ Base results will be CPLEX defaults with
pre-processing.
@ Cut generation done only at root node.

Daniel G. Espinoza Computing with multi-row Gomory cuts




The Experiment Settings
[eX Jo)

What we compare:

Where we compare:

@ Instances from MIPLIB 3.0, MIPLIB 2003, and others.
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@ Instances from MIPLIB 3.0, MIPLIB 2003, and others.
@ Total of 173 problems.

@ Discarded the following problems:
@ Solved by all configurations in under 5 seconds: 48.
@ LP root gap less than 0.1% in all configurations: 26.
@ Two unstable problems discarded, roll3000, 1152av.
@ Differences under 5% are not considered in the
averages.
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What we compare:

Where we compare:

@ Instances from MIPLIB 3.0, MIPLIB 2003, and others.
@ Total of 173 problems.

@ Discarded the following problems:
@ Solved by all configurations in under 5 seconds: 48.
@ LP root gap less than 0.1% in all configurations: 26.
@ Two unstable problems discarded, roll3000, 1152av.
@ Differences under 5% are not considered in the
averages.

@ Final test set has 96 problems.
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What we compare:

Tested settings

@ Will compare several configurations:

o default: Cplex 11.0 defaults with pre-processing.

@ General naming scheme will be C-Tt-Nn:

@ C e { Gomory (G), T1, T2}, indicate the type of
lattice-free set used.

o te {2,5,10}, is an upper bound on the number of
tableau rows selected at each round of cuts at the
root node.
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What we compare:

Tested settings

@ Will compare several configurations:

o default: Cplex 11.0 defaults with pre-processing.

@ General naming scheme will be C-Tt-Nn:

@ C e { Gomory (G), T1, T2}, indicate the type of
lattice-free set used.

o te {2,5,10}, is an upper bound on the number of
tableau rows selected at each round of cuts at the
root node.

@ n € {5,20,100}, is an upper bound on the number of
cuts to be added at the root node.
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The Results

Overall speed-up (49 instances) 6.8%, 8.3%,
11.8%
T T T T I fG_TI_N 0IO T
4 o ~~T1-T5-N5
 T2-T5-N5 ——
g
£ 2r -
=
g 4l e |
Dc:, 05 : / .
5
@
0.25 [

5 10 15 20 25 30 3540 45

Daniel G. Espinoza Computing with multi-row Gomory cuts




The Results
[o] Jolelo)

The Results
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@ Of all tested configurations, only two had worst
results on Root LP gap and on B&B gap, and eight
had worst results on speed.

Daniel G. Espinoza Computing with multi-row Gomory cuts



The Results
.

Conclusions

Conclusions

@ Of all tested configurations, only two had worst
results on Root LP gap and on B&B gap, and eight
had worst results on speed.

@ Although the improvements are not dramatic, they
still are important.

Daniel G. Espinoza Computing with multi-row Gomory cuts



The Results
.

Conclusions

Conclusions

@ Of all tested configurations, only two had worst
results on Root LP gap and on B&B gap, and eight
had worst results on speed.

@ Although the improvements are not dramatic, they
still are important.

@ Lots of testing of parameters.

Daniel G. Espinoza Computing with multi-row Gomory cuts



The Results
.
Conclusions

Conclusions

@ Of all tested configurations, only two had worst
results on Root LP gap and on B&B gap, and eight
had worst results on speed.

@ Although the improvements are not dramatic, they
still are important.

@ Lots of testing of parameters.
@ Numerical issues are important!

Daniel G. Espinoza Computing with multi-row Gomory cuts



The Results
.

Conclusions

Conclusions

@ Of all tested configurations, only two had worst
results on Root LP gap and on B&B gap, and eight
had worst results on speed.

@ Although the improvements are not dramatic, they
still are important.

@ Lots of testing of parameters.
@ Numerical issues are important!
@ Could we do a full separation?
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