Computing with multi-row Gomory cuts

Daniel G. Espinoza

Universidad de Chile, FCFM, DII
MIP 2008, Columbia University, New York, USA, August 4, 2008

Outline

(1) Introduction and Theory
(2) The Experiment Settings
(3) The Results

Introduction

Introduction

- General cutting planes central for practical IP performance.

Introduction

- General cutting planes central for practical IP performance.
- Most important family are Gomory cuts (Bixby et al. 2006).

Introduction

- General cutting planes central for practical IP performance.
- Most important family are Gomory cuts (Bixby et al. 2006).
- Much research on extensions, but little practical impact.

Introduction

- General cutting planes central for practical IP performance.
- Most important family are Gomory cuts (Bixby et al. 2006).
- Much research on extensions, but little practical impact.
- Most attempts focused on cuts derived from single-row systems.

Introduction

Introduction

- Recent work by Andersen et. al [2005], Cornuejols and Borozan [2007], Gomory [2007], have extended our understanding of multi-row relaxations.

Introduction

- Recent work by Andersen et. al [2005], Cornuejols and Borozan [2007], Gomory [2007], have extended our understanding of multi-row relaxations.
- From the theory side, multi-row relaxations are known to be central in describing convex hull of sets:

Introduction

Introduction

- Recent work by Andersen et. al [2005], Cornuejols and Borozan [2007], Gomory [2007], have extended our understanding of multi-row relaxations.
- From the theory side, multi-row relaxations are known to be central in describing convex hull of sets:
- Cook, Kannan and Schrijver example has infinite CG-rank.

Introduction

- Recent work by Andersen et. al [2005], Cornuejols and Borozan [2007], Gomory [2007], have extended our understanding of multi-row relaxations.
- From the theory side, multi-row relaxations are known to be central in describing convex hull of sets:
- Cook, Kannan and Schrijver example has infinite CG-rank.
- Single cut from two rows gives complete description.

Introduction

- Recent work by Andersen et. al [2005], Cornuejols and Borozan [2007], Gomory [2007], have extended our understanding of multi-row relaxations.
- From the theory side, multi-row relaxations are known to be central in describing convex hull of sets:
- Cook, Kannan and Schrijver example has infinite CG-rank.
- Single cut from two rows gives complete description.
- Extensions show need for cuts derived from n rows.

Introduction

- Recent work by Andersen et. al [2005], Cornuejols and Borozan [2007], Gomory [2007], have extended our understanding of multi-row relaxations.
- From the theory side, multi-row relaxations are known to be central in describing convex hull of sets:
- Cook, Kannan and Schrijver example has infinite CG-rank.
- Single cut from two rows gives complete description.
- Extensions show need for cuts derived from n rows.
- Our goal is to test if these new ideas may have a practical impact.

Introduction

How we derive cuts from two row systems?

- We consider

$$
x, s \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{J}
$$

Introduction

How we derive cuts from two row systems?

- We consider
$x, s \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{J}$.
- Assume $f, r^{j} \in \mathbb{Q}^{2}$, $f \notin \mathbb{Z}^{2}$.

$$
f
$$

Introduction

How we derive cuts from two row systems?

- We consider
$x, s \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{J}$.
- Assume

$$
x=f+\sum_{j \in J} r^{j} s_{j}
$$

Introduction

How we derive cuts from two row systems?

- We consider
$x, s \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{J}$.
- Let $C \subset \mathbb{R}^{2}$ s.t. $f \in C$, convex and $\operatorname{int}(C) \cap \mathbb{Z}^{2}=\emptyset$.

Introduction

How we derive cuts from two row systems?

- We consider
$x, s \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{J}$.
- Let $C \subset \mathbb{R}^{2}$ s.t.
$f \in C$, convex and $\operatorname{int}(C) \cap \mathbb{Z}^{2}=\emptyset$
- Let $\alpha_{j}=\max \{\alpha$: $\left.f+\alpha r^{j} \in C\right\}$.

Introduction

How we derive cuts from two row systems?

- We consider
$x, s \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{J}$.
- Let $C \subset \mathbb{R}^{2}$ s.t.
$f \in C$, convex and $\operatorname{int}(C) \cap \mathbb{Z}^{2}=\emptyset$
- Let $\alpha_{j}=\max \{\alpha$: $\left.f+\alpha r^{j} \in C\right\}$
- - Let $S=\left\{s \in \mathbb{R}_{+}^{J}\right.$:

$$
\left.\sum_{j \in J} \frac{s_{j}}{\alpha_{j}} \leq 1\right\}
$$

Introduction

How we derive cuts from two row systems?

- We consider $x, s \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{J}$.
- Let $C \subset \mathbb{R}^{2}$ s.t.
$f \in C$, convex and $\operatorname{int}(C) \cap \mathbb{Z}^{2}=\emptyset$
- Let $\alpha_{j}=\max \{\alpha$: $\left.f+\alpha r^{j} \in C\right\}$
- - Let $S=\left\{s \in \mathbb{R}_{+}^{J}\right.$:
$\left.\sum_{j \in J} \frac{s_{j}}{\alpha_{j}} \leq 1\right\}$.
- $\Rightarrow C^{\prime}:=f+r \cdot S \subseteq C$.

Introduction

How we derive cuts from two row systems?

- We consider $x, s \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{J}$.
- Let $C \subset \mathbb{R}^{2}$ s.t.
$f \in C$, convex and $\operatorname{int}(C) \cap \mathbb{Z}^{2}=\emptyset$
- Let $\alpha_{j}=\max \{\alpha$: $\left.f+\alpha r^{j} \in C\right\}$
- - Let $S=\left\{s \in \mathbb{R}_{+}^{J}\right.$:

$$
\left.\sum_{j \in J} \frac{s_{j}}{\alpha_{j}} \leq 1\right\}
$$

- $\sum_{j \in J} \frac{s_{j}}{\alpha_{j}} \geq 1$ is valid

Introduction

How we derive cuts from two row systems?

- We consider
$x, s \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{J}$.
- $\sum_{j \in J} \frac{s_{j}}{\alpha_{j}} \geq 1$ is valid
- How much better can we make C^{\prime} ?

Introduction

How we derive cuts from two row systems?

- We consider
$x, s \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{J}$.
- $\sum_{j \in J} \frac{s_{j}}{\alpha_{j}} \geq 1$ is valid
- C^{\prime} should be a maximal convex, lattice free set containing f

How we derive cuts from two row systems?

- We consider
$x, s \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{J}$.
- $\sum_{j \in J} \frac{s_{j}}{\alpha_{j}} \geq 1$ is valid
- C^{\prime} should be a maximal convex, lattice free set containing f
- A quadrilateral or Gomory set
- completely symmetric

How we derive cuts from two row systems?

How we derive cuts from two row systems?

- We consider
$x, s \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{J}$.
- $\sum_{j \in J} \frac{s_{j}}{\alpha_{j}} \geq 1$ is valid
- C^{\prime} should be a maximal convex, lattice free set containing f
- A Type 1 triangle
- 2^{n} possible configurations ($n=$ number of rows)

How we derive cuts from two row systems?

- We consider
$x, s \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{J}$.
- $\sum_{j \in J} \frac{s_{j}}{\alpha_{j}} \geq 1$ is valid
- C^{\prime} should be a maximal convex, lattice free set containing f
- A Type 2 triangle
- n! 2^{n} possible configurations

How we derive cuts from two row systems?

- We consider
$x, s \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{J}$.
- $\sum_{j \in J} \frac{s_{j}}{\alpha_{j}} \geq 1$ is valid
- For non-dominance, every edge must contain integer point in relative interior

Introduction

How we derive cuts from two row systems?

- We consider
$x, s \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{J}$.
- $\sum_{j \in J} \frac{s_{j}}{\alpha_{j}} \geq 1$ is valid
- Still, far too many possible sets

How we derive cuts from two row systems?

- We consider

$$
x, s \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{J}
$$

- $\sum_{j \in J} \frac{s_{j}}{\alpha_{j}} \geq 1$ is valid
- Still, far too many possible sets
- All these ideas can be extended to $x, f, r^{j} \in \mathbb{Q}^{q}$ and to $|J|=\infty$.

The Problem:

How we apply this?

Basic Problem:

$$
\begin{array}{cl}
\max & c x \\
\text { s.t. } & A x=b \tag{1}\\
& x_{i} \in \mathbb{Z}_{+} \quad \forall i \in I, x \in \mathbb{R}_{+}^{n}
\end{array}
$$

where $I \subseteq\{1, \ldots, n\}, A \in \mathbb{Q}^{m \times n}$ is of full row rank, $c \in \mathbb{Q}^{n}$, $b \in \mathbb{Q}^{m}$, and $x \in \mathbb{Q}^{n}$.
\square

The Problem:

How we apply this?

Basic Problem:

$\max c x$

$$
\begin{array}{ll}
\text { s.t. } & A x=b \tag{1}\\
& x_{i} \in \mathbb{Z}_{+} \quad \forall i \in I, x \in \mathbb{R}_{+}^{n}
\end{array}
$$

where $I \subseteq\{1, \ldots, n\}, A \in \mathbb{Q}^{m \times n}$ is of full row rank, $c \in \mathbb{Q}^{n}$, $b \in \mathbb{Q}^{m}$, and $x \in \mathbb{Q}^{n}$.

A first relaxation:

$$
\begin{align*}
& x_{B^{\prime}}=f+\sum_{j \in N} r^{j} x_{j} \tag{2}\\
& x_{N} \geq 0, x_{i} \in \mathbb{Z} \forall i \in B^{\prime}
\end{align*}
$$

Where B is a basic solution, $B^{\prime}=B \cap I$.

The Problem:

The math behind it

Gomory-Johnson Infinite group relaxation:

$$
R_{f}: \begin{array}{rl}
x= & f+\sum_{\text {finite }} r s_{r} \\
x \in \mathbb{Z}^{q} & s \in \mathbb{R}_{+}^{Q_{+}^{q}} \tag{3}
\end{array}
$$

The Problem:

The math behind it

Gomory-Johnson Infinite group relaxation:

$$
\begin{align*}
& x= f+\sum_{\text {finite }} r s_{r} \tag{3}\\
& x \in \mathbb{Z}^{q} \quad s \in \mathbb{R}_{+}^{\mathbb{Q}_{+}^{q}}
\end{align*}
$$

Theorem (Minimal valid inequalities for R_{f} (CB-2007)) If $f \notin \mathbb{Z}^{q}$, any minimal valid inequality that cuts off ($f, 0$):

The Problem:

The math behind it

Gomory-Johnson Infinite group relaxation:

$$
\begin{align*}
& x= f+\sum_{\text {finite }} r s_{r} \tag{3}\\
& x \in \mathbb{Z}^{q} \quad s \in \mathbb{R}_{+}^{\mathbb{Q}_{+}^{q}}
\end{align*}
$$

Theorem (Minimal valid inequalities for R_{f} (CB-2007)) If $f \notin \mathbb{Z}^{q}$, any minimal valid inequality that cuts off ($f, 0$):
(1) Is of the form $\sum_{\text {finite }} \psi(r) s_{r} \geq 1$.

The math behind it

Gomory-Johnson Infinite group relaxation:

$$
\begin{array}{rl}
x= & f+\sum_{\text {finite }} r s_{r} \tag{3}\\
x \in \mathbb{Z}^{q} & s \in \mathbb{R}_{+}^{\mathbb{Q}^{q}}
\end{array}
$$

Theorem (Minimal valid inequalities for R_{f} (CB-2007)) If $f \notin \mathbb{Z}^{q}$, any minimal valid inequality that cuts off ($f, 0$):
(1) Is of the form $\sum_{\text {finite }} \psi(r) s_{r} \geq 1$.
(2) If $B_{\psi}=\left\{x \in \mathbb{Q}^{p}: \psi(x-f) \leq 1\right\}$, then B_{ψ} is convex, with no integral point in its interior. Furthermore $f \in B_{\psi}$.
convex piecewise linear function with at most 2^{q} pieces.
 of at most 2^{9} facets, and each of its facets contains an integral

The math behind it

Gomory-Johnson Infinite group relaxation:

$$
\begin{array}{rl}
x= & f+\sum_{\text {finite }} r s_{r} \tag{3}\\
x \in \mathbb{Z}^{q} & s \in \mathbb{R}_{+}^{\mathbb{Q}_{+}^{q}}
\end{array}
$$

Theorem (Minimal valid inequalities for $R_{f}(\mathrm{CB}-2007)$)
If $f \notin \mathbb{Z}^{q}$, any minimal valid inequality that cuts off ($f, 0$):
(1) Is of the form $\sum_{\text {finite }} \psi(r) s_{r} \geq 1$.
(2) If $B_{\psi}=\left\{x \in \mathbb{Q}^{p}: \psi(x-f) \leq 1\right\}$, then B_{ψ} is convex, with no integral point in its interior. Furthermore $f \in B_{\psi}$.
(3) If ψ is finite, then ψ is a continuous nonegative homogeneous convex piecewise linear function with at most 2^{q} pieces.

The math behind it

Gomory-Johnson Infinite group relaxation:

$$
\begin{array}{rl}
x= & f+\sum_{\text {finite }} r s_{r} \tag{3}\\
x \in \mathbb{Z}^{q} & s \in \mathbb{R}_{+}^{\mathbb{Q}_{+}^{q}}
\end{array}
$$

Theorem (Minimal valid inequalities for R_{f} (CB-2007))
If $f \notin \mathbb{Z}^{q}$, any minimal valid inequality that cuts off ($f, 0$):
(1) Is of the form $\sum_{\text {finite }} \psi(r) s_{r} \geq 1$.
(2) If $B_{\psi}=\left\{x \in \mathbb{Q}^{p}: \psi(x-f) \leq 1\right\}$, then B_{ψ} is convex, with no integral point in its interior. Furthermore $f \in B_{\psi}$.
(3) If ψ is finite, then ψ is a continuous nonegative homogeneous convex piecewise linear function with at most 2^{q} pieces.
(4) If ψ is finite, then f is in the interior of B_{ψ} and B_{ψ} is a polyhedron of at most 2^{q} facets, and each of its facets contains an integral point in its relative interior.

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:
- Type $1 n$-dimensional simplex:

Selecting a set B_{ψ}

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:
- Type $1 n$-dimensional simplex:

$$
\text { - } T 1_{n}:=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, \sum_{i=1}^{n} x_{i} \leq n\right\}
$$

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:
- Type $1 n$-dimensional simplex:
- $T 1_{n}:=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, \sum_{i=1}^{n} x_{i} \leq n\right\}$
- Each facet has exactly one point in its relative interior.

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:
- Type $1 n$-dimensional simplex:
- $T 1_{n}:=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, \sum_{i=1}^{n} x_{i} \leq n\right\}$
- Each facet has exactly one point in its relative interior.
- 2^{n} possible orientations.

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:
- Type $1 n$-dimensional simplex:
- $T 1_{n}:=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, \sum_{i=1}^{n} x_{i} \leq n\right\}$
- Each facet has exactly one point in its relative interior.
- 2^{n} possible orientations.
- The n-dimensional hyper cube:

Selecting a set B_{ψ}

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:
- Type $1 n$-dimensional simplex:
- $T 1_{n}:=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, \sum_{i=1}^{n} x_{i} \leq n\right\}$
- Each facet has exactly one point in its relative interior.
- 2^{n} possible orientations.
- The n-dimensional hyper cube:
- $G_{n}:=e \frac{1}{2}+\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} s_{i} x_{i} \leq \frac{n}{2}, \forall s \in\{-1,1\}^{n}\right\}$

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:
- Type $1 n$-dimensional simplex:
- $T 1_{n}:=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, \sum_{i=1}^{n} x_{i} \leq n\right\}$
- Each facet has exactly one point in its relative interior.
- 2^{n} possible orientations.
- The n-dimensional hyper cube:
- $G_{n}:=e \frac{1}{2}+\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} s_{i} x_{i} \leq \frac{n}{2}, \forall s \in\{-1,1\}^{n}\right\}$
- Each facet has exactly one point in its relative interior.

Selecting a set B_{ψ}

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:
- Type $1 n$-dimensional simplex:
- $T 1_{n}:=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, \sum_{i=1}^{n} x_{i} \leq n\right\}$
- Each facet has exactly one point in its relative interior.
- 2^{n} possible orientations.
- The n-dimensional hyper cube:
- $G_{n}:=e \frac{1}{2}+\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} s_{i} x_{i} \leq \frac{n}{2}, \forall s \in\{-1,1\}^{n}\right\}$
- Each facet has exactly one point in its relative interior.
- Completely symmetric.

Selecting a set B_{ψ}

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:
- Type $1 n$-dimensional simplex:
- $T 1_{n}:=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, \sum_{i=1}^{n} x_{i} \leq n\right\}$
- Each facet has exactly one point in its relative interior.
- 2^{n} possible orientations.
- The n-dimensional hyper cube:
- $G_{n}:=e \frac{1}{2}+\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} s_{i} x_{i} \leq \frac{n}{2}, \forall s \in\{-1,1\}^{n}\right\}$
- Each facet has exactly one point in its relative interior.
- Completely symmetric.
- Type-2 n-dimensional simplex:

Selecting a set B_{ψ}

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:
- Type $1 n$-dimensional simplex:
- $T 1_{n}:=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, \sum_{i=1}^{n} x_{i} \leq n\right\}$
- Each facet has exactly one point in its relative interior.
- 2^{n} possible orientations.
- The n-dimensional hyper cube:
- $G_{n}:=e \frac{1}{2}+\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} s_{i} x_{i} \leq \frac{n}{2}, \forall s \in\{-1,1\}^{n}\right\}$
- Each facet has exactly one point in its relative interior.
- Completely symmetric.
- Type-2 n-dimensional simplex:
- $T 2_{n}:=\left\{x \in \mathbb{R}^{n}:\left(R_{i}\right) \sum_{j=1}^{i-1} x_{j}-x_{i} \leq i-1, \forall i \in N+1\right\}$

Selecting a set B_{ψ}

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:
- Type $1 n$-dimensional simplex:
- $T 1_{n}:=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, \sum_{i=1}^{n} x_{i} \leq n\right\}$
- Each facet has exactly one point in its relative interior.
- 2^{n} possible orientations.
- The n-dimensional hyper cube:
- $G_{n}:=e \frac{1}{2}+\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} s_{i} x_{i} \leq \frac{n}{2}, \forall s \in\{-1,1\}^{n}\right\}$
- Each facet has exactly one point in its relative interior.
- Completely symmetric.
- Type-2 n-dimensional simplex:
- $T 2_{n}:=\left\{x \in \mathbb{R}^{n}:\left(R_{i}\right) \sum_{j=1}^{i-1} x_{j}-x_{i} \leq i-1, \forall i \in N+1\right\}$
- Facet $\left(R_{i}\right)$ has $\max \left\{2^{n-i}, 1\right\}$ (interior) integer points.

Selecting a set B_{ψ}

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:
- Type $1 n$-dimensional simplex:
- $T 1_{n}:=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, \sum_{i=1}^{n} x_{i} \leq n\right\}$
- Each facet has exactly one point in its relative interior.
- 2^{n} possible orientations.
- The n-dimensional hyper cube:
- $G_{n}:=e \frac{1}{2}+\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} s_{i} x_{i} \leq \frac{n}{2}, \forall s \in\{-1,1\}^{n}\right\}$
- Each facet has exactly one point in its relative interior.
- Completely symmetric.
- Type-2 n-dimensional simplex:
- $T 2_{n}:=\left\{x \in \mathbb{R}^{n}:\left(R_{i}\right) \sum_{j=1}^{i-1} x_{j}-x_{i} \leq i-1, \forall i \in N+1\right\}$
- Facet $\left(R_{i}\right)$ has $\max \left\{2^{n-i}, 1\right\}$ (interior) integer points.
- Has $2^{n} n$! possible orientations

Selecting a set B_{v}

Selecting a set B_{ψ}

- Three kind of maximal convex lattice free sets:
- Type $1 n$-dimensional simplex:
- $T 1_{n}:=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, \sum_{i=1}^{n} x_{i} \leq n\right\}$
- Each facet has exactly one point in its relative interior.
- 2^{n} possible orientations.
- The n-dimensional hyper cube:
- $G_{n}:=e \frac{1}{2}+\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} s_{i} x_{i} \leq \frac{n}{2}, \forall s \in\{-1,1\}^{n}\right\}$
- Each facet has exactly one point in its relative interior.
- Completely symmetric.
- Type-2 n-dimensional simplex:
- $T 2_{n}:=\left\{x \in \mathbb{R}^{n}:\left(R_{i}\right) \sum_{j=1}^{i-1} x_{j}-x_{i} \leq i-1, \forall i \in N+1\right\}$
- Facet $\left(R_{i}\right)$ has $\max \left\{2^{n-i}, 1\right\}$ (interior) integer points.
- Has $2^{n} n$! possible orientations
- $\operatorname{vol}\left(T 1_{n}\right)=\operatorname{vol}\left(G_{n}\right)=\operatorname{vol}\left(T 2_{n}\right) \Theta\left(2^{-\frac{n(n-1)}{2}}\right)$.

How we separate:

How we separate:

- Relaxation selection:

How we separate:

- Relaxation selection:
- Sort fractional integer variables by pseudo cost.

How we separate:

How we separate:

- Relaxation selection:
- Sort fractional integer variables by pseudo cost.
- Discard numerically ill tableau rows
(|a| $\leq 10^{-6} \Rightarrow a=0$).

How we separate:

- Relaxation selection:
- Sort fractional integer variables by pseudo cost.
- Discard numerically ill tableau rows
$\left(|a| \leq 10^{-6} \Rightarrow a=0\right)$.
- Store tableau rows (in the previous order) that have a ratio $\leq 2^{12}$.

How we separate:

- Relaxation selection:
- Sort fractional integer variables by pseudo cost.
- Discard numerically ill tableau rows $\left(|a| \leq 10^{-6} \Rightarrow a=0\right)$.
- Store tableau rows (in the previous order) that have a ratio $\leq 2^{12}$.
- Up to n tableau rows are found, or no more available.

How we separate:

- Relaxation selection:
- Sort fractional integer variables by pseudo cost.
- Discard numerically ill tableau rows $\left(|a| \leq 10^{-6} \Rightarrow a=0\right)$.
- Store tableau rows (in the previous order) that have a ratio $\leq 2^{12}$.
- Up to n tableau rows are found, or no more available.
- Orientation selection:

How we separate:

- Relaxation selection:
- Sort fractional integer variables by pseudo cost.
- Discard numerically ill tableau rows $\left(|a| \leq 10^{-6} \Rightarrow a=0\right)$.
- Store tableau rows (in the previous order) that have a ratio $\leq 2^{12}$.
- Up to n tableau rows are found, or no more available.
- Orientation selection: Try all!

How we separate:

- Relaxation selection:
- Sort fractional integer variables by pseudo cost.
- Discard numerically ill tableau rows $\left(|a| \leq 10^{-6} \Rightarrow a=0\right)$.
- Store tableau rows (in the previous order) that have a ratio $\leq 2^{12}$.
- Up to n tableau rows are found, or no more available.
- Orientation selection: Try all!
- Cut selection:

How we separate:

- Relaxation selection:
- Sort fractional integer variables by pseudo cost.
- Discard numerically ill tableau rows $\left(|a| \leq 10^{-6} \Rightarrow a=0\right)$.
- Store tableau rows (in the previous order) that have a ratio $\leq 2^{12}$.
- Up to n tableau rows are found, or no more available.
- Orientation selection: Try all!
- Cut selection:
- Discard cuts with ratio $\geq 2^{15}$.

How we separate:

- Relaxation selection:
- Sort fractional integer variables by pseudo cost.
- Discard numerically ill tableau rows $\left(|a| \leq 10^{-6} \Rightarrow a=0\right)$.
- Store tableau rows (in the previous order) that have a ratio $\leq 2^{12}$.
- Up to n tableau rows are found, or no more available.
- Orientation selection: Try all!
- Cut selection:
- Discard cuts with ratio $\geq 2^{15}$.
- Select at most N cuts minimizing $1 /$ max_abs.

How we separate:

- Relaxation selection:
- Sort fractional integer variables by pseudo cost.
- Discard numerically ill tableau rows $\left(|a| \leq 10^{-6} \Rightarrow a=0\right)$.
- Store tableau rows (in the previous order) that have a ratio $\leq 2^{12}$.
- Up to n tableau rows are found, or no more available.
- Orientation selection: Try all!
- Cut selection:
- Discard cuts with ratio $\geq 2^{15}$.
- Select at most N cuts minimizing $1 /$ max_abs.
- Allow multiple rounds.

What we compare:

- We implement the cut-generation procedure as a CPLEX cut-callback.

What we compare:

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.

What we compare:

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.
- We compare:

What we compare:

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.
- We compare:
- root LP value.

What we compare:

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.
- We compare:
- root LP value.
- final running time for those that finish the run.

What we compare:

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.
- We compare:
- root LP value.
- final running time for those that finish the run.
- final B\&B bound after time limit.
All runs with two hours time limit
Base results will be CPLEX defaults with
pre-processing.

What we compare:

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.
- We compare:
- root LP value.
- final running time for those that finish the run.
- final B\&B bound after time limit.
- All runs with two hours time limit.

pre-processing
Cut generation done only at root nodes

What we compare:

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.
- We compare:
- root LP value.
- final running time for those that finish the run.
- final B\&B bound after time limit.
- All runs with two hours time limit.
- Base results will be CPLEX defaults with pre-processing.

What we compare:

- We implement the cut-generation procedure as a CPLEX cut-callback.
- Use it under default CPLEX 11.0 settings (including cut generation) and preprocessing.
- We compare:
- root LP value.
- final running time for those that finish the run.
- final B\&B bound after time limit.
- All runs with two hours time limit.
- Base results will be CPLEX defaults with pre-processing.
- Cut generation done only at root node.

What we compare:

Where we compare:

- Instances from MIPLIB 3.0, MIPLIB 2003, and others.

Total of 173 problems
Discarded the following problems:

Where we compare:

- Instances from MIPLIB 3.0, MIPLIB 2003, and others.
- Total of 173 problems.

Where we compare:

- Instances from MIPLIB 3.0, MIPLIB 2003, and others.
- Total of 173 problems.
- Discarded the following problems:

Where we compare:

- Instances from MIPLIB 3.0, MIPLIB 2003, and others.
- Total of 173 problems.
- Discarded the following problems:
- Solved by all configurations in under 5 seconds: 48.

Where we compare:

- Instances from MIPLIB 3.0, MIPLIB 2003, and others.
- Total of 173 problems.
- Discarded the following problems:
- Solved by all configurations in under 5 seconds: 48.
- LP root gap less than 0.1\% in all configurations: 26.

Where we compare:

- Instances from MIPLIB 3.0, MIPLIB 2003, and others.
- Total of 173 problems.
- Discarded the following problems:
- Solved by all configurations in under 5 seconds: 48.
- LP root gap less than 0.1% in all configurations: 26.
- Two unstable problems discarded, roll3000, I152av.

Where we compare:

- Instances from MIPLIB 3.0, MIPLIB 2003, and others.
- Total of 173 problems.
- Discarded the following problems:
- Solved by all configurations in under 5 seconds: 48.
- LP root gap less than 0.1% in all configurations: 26.
- Two unstable problems discarded, roll3000, I152av.
- Differences under 5% are not considered in the averages.

Where we compare:

- Instances from MIPLIB 3.0, MIPLIB 2003, and others.
- Total of 173 problems.
- Discarded the following problems:
- Solved by all configurations in under 5 seconds: 48.
- LP root gap less than 0.1% in all configurations: 26.
- Two unstable problems discarded, roll3000, I152av.
- Differences under 5% are not considered in the averages.
- Final test set has 96 problems.

Tested settings

- Will compare several configurations:

Tested settings

- Will compare several configurations:
- default: Cplex 11.0 defaults with pre-processing.

Tested settings

- Will compare several configurations:
- default: Cplex 11.0 defaults with pre-processing.
- General naming scheme will be C-Tt-Nn:

Tested settings

- Will compare several configurations:
- default: Cplex 11.0 defaults with pre-processing.
- General naming scheme will be C-Tt-Nn:
- $C \in\{$ Gomory (G), T1, T2 $\}$, indicate the type of lattice-free set used.
tableau rows selected at each round of cuts at the
ront node

Tested settings

- Will compare several configurations:
- default: Cplex 11.0 defaults with pre-processing.
- General naming scheme will be C-Tt-Nn:
- $C \in\{$ Gomory (G), T1, T2 $\}$, indicate the type of lattice-free set used.
- $t \in\{2,5,10\}$, is an upper bound on the number of tableau rows selected at each round of cuts at the root node.

Tested settings

- Will compare several configurations:
- default: Cplex 11.0 defaults with pre-processing.
- General naming scheme will be C-Tt-Nn:
- $C \in\{$ Gomory (G), T1, T2 $\}$, indicate the type of lattice-free set used.
- $t \in\{2,5,10\}$, is an upper bound on the number of tableau rows selected at each round of cuts at the root node.
- $n \in\{5,20,100\}$, is an upper bound on the number of cuts to be added at the root node.

Overall speed-up (49 instances) 6.8\%, 8.3\%,
 11.8\%

The Results

Closed B\&B GAPMIP (27 instances) 3.7\%,
 6.0\%, 4.5\%

Closed Root GAP ${ }_{L P}$ (44 instances) 7.2\%, 8.3\%, 5.7\%

Daniel G. Espinoza
Computing with multi-row Gomory cuts

The Results
Performance Profile

The Results
Performance Profile II

Conclusions

- Of all tested configurations, only two had worst results on Root LP gap and on B\&B gap, and eight had worst results on speed.

Conclusions

- Of all tested configurations, only two had worst results on Root LP gap and on B\&B gap, and eight had worst results on speed.
- Although the improvements are not dramatic, they still are important.

Conclusions

- Of all tested configurations, only two had worst results on Root LP gap and on B\&B gap, and eight had worst results on speed.
- Although the improvements are not dramatic, they still are important.
- Lots of testing of parameters.

Conclusions

- Of all tested configurations, only two had worst results on Root LP gap and on B\&B gap, and eight had worst results on speed.
- Although the improvements are not dramatic, they still are important.
- Lots of testing of parameters.
- Numerical issues are important!

Conclusions

- Of all tested configurations, only two had worst results on Root LP gap and on B\&B gap, and eight had worst results on speed.
- Although the improvements are not dramatic, they still are important.
- Lots of testing of parameters.
- Numerical issues are important!
- Could we do a full separation?

