
Computational testing of exact separation for
mixed-integer knapsack problems

Pasquale Avella∗

(joint work with Maurizio Boccia∗ and Igor Vasiliev∗∗)

∗DING - Università del Sannio
∗∗Russian Academy of Sciences - Siberian Branch

MIP 2008 - Columbia University



MIP solvers & cutting planes

MIP solvers include cut generation routines looking at single-row
relaxations:

I Knapsack⇒ Lifted Cover Inequalities

I Mixed knapsack⇒ Mixed-Integer Rounding (MIR) inequalities

I Tableau rows⇒ Gomory Cuts



MIP solvers & cutting planes

MIP solvers include cut generation routines looking at single-row
relaxations:

I Knapsack⇒ Lifted Cover Inequalities

I Mixed knapsack⇒ Mixed-Integer Rounding (MIR) inequalities

I Tableau rows⇒ Gomory Cuts



MIP solvers & cutting planes

MIP solvers include cut generation routines looking at single-row
relaxations:

I Knapsack⇒ Lifted Cover Inequalities

I Mixed knapsack⇒ Mixed-Integer Rounding (MIR) inequalities

I Tableau rows⇒ Gomory Cuts



MIP solvers & cutting planes

MIP solvers include cut generation routines looking at single-row
relaxations:

I Knapsack⇒ Lifted Cover Inequalities

I Mixed knapsack⇒ Mixed-Integer Rounding (MIR) inequalities

I Tableau rows⇒ Gomory Cuts



“Cuts outside the template paradigm”

Can we do anything more to tighten MIP formulations by
looking at single-row relaxations?

I We can try to generate “cuts outside the template paradigm”
(local cuts: Applegate, Bixby, Chvátal and Cook, 2000)

I Local cuts proved to be successful for the TSP

I Based on exact separation.



“Cuts outside the template paradigm”

Can we do anything more to tighten MIP formulations by
looking at single-row relaxations?

I We can try to generate “cuts outside the template paradigm”
(local cuts: Applegate, Bixby, Chvátal and Cook, 2000)

I Local cuts proved to be successful for the TSP

I Based on exact separation.



“Cuts outside the template paradigm”

Can we do anything more to tighten MIP formulations by
looking at single-row relaxations?

I We can try to generate “cuts outside the template paradigm”
(local cuts: Applegate, Bixby, Chvátal and Cook, 2000)

I Local cuts proved to be successful for the TSP

I Based on exact separation.



“Cuts outside the template paradigm”

Can we do anything more to tighten MIP formulations by
looking at single-row relaxations?

I We can try to generate “cuts outside the template paradigm”
(local cuts: Applegate, Bixby, Chvátal and Cook, 2000)

I Local cuts proved to be successful for the TSP

I Based on exact separation.



Exact separation

I Given: a polyhedron P ⊂ Rn and a point x̄ ∈ Rn.

I A separation algorithm is said exact if it either guarantees to
provide a valid inequality for P cutting off x̄ or concludes that
x̄ ∈ P.



Exact separation

I Given: a polyhedron P ⊂ Rn and a point x̄ ∈ Rn.

I A separation algorithm is said exact if it either guarantees to
provide a valid inequality for P cutting off x̄ or concludes that
x̄ ∈ P.



Exact separation of valid inequalities for the knaspack
polytope

The knapsack set (Boyd, 1988)

X K = {y ∈ Zn
+ : ay ≤ b, y ≤ u}

The exact separation LP SEPLP(X K ):

max ȳπ − π0

wπ ≤ π0, w ∈ X K (1)
1π = 1 (2)
π, π0 ≥ 0



Exact separation of valid inequalities for the knaspack
polytope

The knapsack set (Boyd, 1988)

X K = {y ∈ Zn
+ : ay ≤ b, y ≤ u}

The exact separation LP SEPLP(X K ):

max ȳπ − π0

wπ ≤ π0, w ∈ X K (1)
1π = 1 (2)
π, π0 ≥ 0



Exact separation of valid inequalities for the knaspack
polytope

The knapsack set (Boyd, 1988)

X K = {y ∈ Zn
+ : ay ≤ b, y ≤ u}

The exact separation LP SEPLP(X K ):

max ȳπ − π0

wπ ≤ π0, w ∈ X K (1)
1π = 1 (2)
π, π0 ≥ 0

ȳ ∈ Rn is the fractional point to cut-off.



Exact separation of valid inequalities for the knaspack
polytope

The knapsack set (Boyd, 1988)

X K = {y ∈ Zn
+ : ay ≤ b, y ≤ u}

The exact separation LP SEPLP(X K ):

max ȳπ − π0

wπ ≤ π0, w ∈ X K (1)
1π = 1 (2)
π, π0 ≥ 0

Inequalities (1) ensure that the inequality is satisfied from every feasi-
ble solution in X K .



Exact separation of valid inequalities for the knaspack
polytope

The knapsack set (Boyd, 1988)

X K = {y ∈ Zn
+ : ay ≤ b, y ≤ u}

The exact separation LP SEPLP(X K ):

max ȳπ − π0

wπ ≤ π0, w ∈ X K (1)
1π = 1 (2)
π, π0 ≥ 0

(2) is a normalization constraint.



Exact separation of valid inequalities for the knaspack
polytope

The knapsack set (Boyd, 1988)

X K = {y ∈ Zn
+ : ay ≤ b, y ≤ u}

The exact separation LP SEPLP(X K ):

max ȳπ − π0

wπ ≤ π0, w ∈ X K (1)
1π = 1 (2)
π, π0 ≥ 0

Let π∗, π∗0 be the optimal solution of SEPLP(X K ).



Exact separation of valid inequalities for the knaspack
polytope

The knapsack set (Boyd, 1988)

X K = {y ∈ Zn
+ : ay ≤ b, y ≤ u}

The exact separation LP SEPLP(X K ):

max ȳπ − π0

wπ ≤ π0, w ∈ X K (1)
1π = 1 (2)
π, π0 ≥ 0

The inequality π∗y ≤ π∗0 is valid for conv(X K ).



Exact separation of valid inequalities for the knaspack
polytope

The knapsack set (Boyd, 1988)

X K = {y ∈ Zn
+ : ay ≤ b, y ≤ u}

The exact separation LP SEPLP(X K ):

max ȳπ − π0

wπ ≤ π0, w ∈ X K (1)
1π = 1 (2)
π, π0 ≥ 0

Extreme points of SEPLP(X K ) are in one-to-one correspondence with
the facets of conv(X K ).



Recent results

Extension of the “local cuts” technique to MIP problems
I Espinoza (2006)

MIPLIB instances
I Kaparis and Letchford (2007) yielded tighter lower bounds for

several MIPLIB instances

Generalized Assignment problem
I Medium-size Generalized Assignment instances d10200 and

d20200 solved to optimality for the first time.
I Integrality gap reduced on many larger benchmark instances (up

to 80x1600) (A., Boccia and Vasilyev, 2007).



Recent results

Extension of the “local cuts” technique to MIP problems
I Espinoza (2006)

MIPLIB instances
I Kaparis and Letchford (2007) yielded tighter lower bounds for

several MIPLIB instances

Generalized Assignment problem
I Medium-size Generalized Assignment instances d10200 and

d20200 solved to optimality for the first time.
I Integrality gap reduced on many larger benchmark instances (up

to 80x1600) (A., Boccia and Vasilyev, 2007).



Recent results

Extension of the “local cuts” technique to MIP problems
I Espinoza (2006)

MIPLIB instances
I Kaparis and Letchford (2007) yielded tighter lower bounds for

several MIPLIB instances

Generalized Assignment problem
I Medium-size Generalized Assignment instances d10200 and

d20200 solved to optimality for the first time.
I Integrality gap reduced on many larger benchmark instances (up

to 80x1600) (A., Boccia and Vasilyev, 2007).



Recent results (cont.)

Single Source Capacitated Facility Location Problems
I Reformulation based on dicut inequalities + exact separation

(Boccia, 2007).
I Many benchmark instances solved to optimality (MIP solvers

failed).

Set Covering
I Exact separation for subsets of formulation constraints (A.,

Boccia and Vasyliev, 2007).
I seymour solved to optimality on a single workstation.



Recent results (cont.)

Single Source Capacitated Facility Location Problems
I Reformulation based on dicut inequalities + exact separation

(Boccia, 2007).
I Many benchmark instances solved to optimality (MIP solvers

failed).

Set Covering
I Exact separation for subsets of formulation constraints (A.,

Boccia and Vasyliev, 2007).
I seymour solved to optimality on a single workstation.



A step further: the mixed-integer knapsack set X MI

We consider single-row mixed-integer knapsack relaxations of MIP
problems:

X MI = {(y ,x) ∈ Zn
+ × Rp

+ : ay + gx ≤ b, y ≤ u,x ≤ v}

I Atamturk (2002) studied the polyhedral structure of conv(X MI).

I Fukasawa and Goycoolea (2007) proposed an exact separation
routine for X MI . The core of their separation procedure is a
sophisticated Branch-and-Bound algorithm for the mixed-integer
knapsack problem.



A step further: the mixed-integer knapsack set X MI

We consider single-row mixed-integer knapsack relaxations of MIP
problems:

X MI = {(y ,x) ∈ Zn
+ × Rp

+ : ay + gx ≤ b, y ≤ u,x ≤ v}

I Atamturk (2002) studied the polyhedral structure of conv(X MI).

I Fukasawa and Goycoolea (2007) proposed an exact separation
routine for X MI . The core of their separation procedure is a
sophisticated Branch-and-Bound algorithm for the mixed-integer
knapsack problem.



A step further: the mixed-integer knapsack set X MI

We consider single-row mixed-integer knapsack relaxations of MIP
problems:

X MI = {(y ,x) ∈ Zn
+ × Rp

+ : ay + gx ≤ b, y ≤ u,x ≤ v}

I Atamturk (2002) studied the polyhedral structure of conv(X MI).

I Fukasawa and Goycoolea (2007) proposed an exact separation
routine for X MI . The core of their separation procedure is a
sophisticated Branch-and-Bound algorithm for the mixed-integer
knapsack problem.



The knapsack set with a single continuous variable
X MK

If in

X MI = {(y ,x) ∈ Zn
+ × Rp

+ : ay + gx ≤ b, y ≤ u,x ≤ v}

we remove bounds v and aggregate the continuous variables we get
the “weaker” knapsack set with a single continuous variable X MK :

X MK = {(y , s) ∈ Zn
+ × R+ : ay − s ≤ b, y ≤ u}

Why we focus on X MK

The set X MK is a better candidate for a “lightweight” exact separation
routine.



The knapsack set with a single continuous variable
X MK

If in

X MI = {(y ,x) ∈ Zn
+ × Rp

+ : ay + gx ≤ b, y ≤ u,x ≤ v}

we remove bounds v and aggregate the continuous variables we get
the “weaker” knapsack set with a single continuous variable X MK :

X MK = {(y , s) ∈ Zn
+ × R+ : ay − s ≤ b, y ≤ u}

Why we focus on X MK

The set X MK is a better candidate for a “lightweight” exact separation
routine.



A few remarks on conv(X MK )

I The polyhedron conv(X MK ) was investigated by Marchand and
Wolsey (1999)

I They showed that Mixed-Integer Rounding (MIR) inequalities

n∑
j=1

(
bajc+

(faj − fb)+

1− fb

)
xj ≤ bbc+

s
1− fb

(where fd = d − bdc) can be easily derived from X MK .

I They characterized several other classes of valid inequalities for
conv(X MK )



A few remarks on conv(X MK )

I The polyhedron conv(X MK ) was investigated by Marchand and
Wolsey (1999)

I They showed that Mixed-Integer Rounding (MIR) inequalities

n∑
j=1

(
bajc+

(faj − fb)+

1− fb

)
xj ≤ bbc+

s
1− fb

(where fd = d − bdc) can be easily derived from X MK .

I They characterized several other classes of valid inequalities for
conv(X MK )



A few remarks on conv(X MK )

I The polyhedron conv(X MK ) was investigated by Marchand and
Wolsey (1999)

I They showed that Mixed-Integer Rounding (MIR) inequalities

n∑
j=1

(
bajc+

(faj − fb)+

1− fb

)
xj ≤ bbc+

s
1− fb

(where fd = d − bdc) can be easily derived from X MK .

I They characterized several other classes of valid inequalities for
conv(X MK )



Exact separation for conv(X MK )

Any valid inequality for conv(X MK ) has the form:

πy − σs ≤ π0,

with π, σ and π0 nonnegative.

Solve SEPLP(X MK ):

max ȳπ − s̄σ − π0

wπ − tσ ≤ π0, (w , t) ∈ X MK (3)
1π + σ = 1 (4)
π, σ, π0 ≥ 0



Exact separation for conv(X MK )

Any valid inequality for conv(X MK ) has the form:

πy − σs ≤ π0,

with π, σ and π0 nonnegative.

Solve SEPLP(X MK ):

max ȳπ − s̄σ − π0

wπ − tσ ≤ π0, (w , t) ∈ X MK (3)
1π + σ = 1 (4)
π, σ, π0 ≥ 0



Exact separation for conv(X MK )

Any valid inequality for conv(X MK ) has the form:

πy − σs ≤ π0,

with π, σ and π0 nonnegative.

Solve SEPLP(X MK ):

max ȳπ − s̄σ − π0

wπ − tσ ≤ π0, (w , t) ∈ X MK (3)
1π + σ = 1 (4)
π, σ, π0 ≥ 0

(ȳ , s̄) ∈ Rn is the fractional point to cut-off.



Exact separation for conv(X MK )

Any valid inequality for conv(X MK ) has the form:

πy − σs ≤ π0,

with π, σ and π0 nonnegative.

Solve SEPLP(X MK ):

max ȳπ − s̄σ − π0

wπ − tσ ≤ π0, (w , t) ∈ X MK (3)
1π + σ = 1 (4)
π, σ, π0 ≥ 0

Inequalities (3) ensure that the inequality is satisfied from every feasi-
ble solution in X MK .



Exact separation for conv(X MK )

Any valid inequality for conv(X MK ) has the form:

πy − σs ≤ π0,

with π, σ and π0 nonnegative.

Solve SEPLP(X MK ):

max ȳπ − s̄σ − π0

wπ − tσ ≤ π0, (w , t) ∈ X MK (3)
1π + σ = 1 (4)
π, σ, π0 ≥ 0

(4) is a normalization constraint.



Exact separation for conv(X MK )

Any valid inequality for conv(X MK ) has the form:

πy − σs ≤ π0,

with π, σ and π0 nonnegative.

Solve SEPLP(X MK ):

max ȳπ − s̄σ − π0

wπ − tσ ≤ π0, (w , t) ∈ X MK (3)
1π + σ = 1 (4)
π, σ, π0 ≥ 0

Let π∗, σ∗, π∗0 be the optimal solution of SEPLP(X MK ).



Exact separation for conv(X MK )

Any valid inequality for conv(X MK ) has the form:

πy − σs ≤ π0,

with π, σ and π0 nonnegative.

Solve SEPLP(X MK ):

max ȳπ − s̄σ − π0

wπ − tσ ≤ π0, (w , t) ∈ X MK (3)
1π + σ = 1 (4)
π, σ, π0 ≥ 0

The inequality π∗y − σ∗s ≤ π∗0 is valid for conv(X MK ).



Exact separation for conv(X MK )

Any valid inequality for conv(X MK ) has the form:

πy − σs ≤ π0,

with π, σ and π0 nonnegative.

Solve SEPLP(X MK ):

max ȳπ − s̄σ − π0

wπ − tσ ≤ π0, (w , t) ∈ X MK (3)
1π + σ = 1 (4)
π, σ, π0 ≥ 0

Extreme points of SEPLP(X MK ) are in one-to-one correspondence
with the facets of conv(X MK ).



Solving SEPLP(X MK ) by row generation
Step 1 Let S ⊂ X MK be a subset of the feasible solutions.

Step 2 Solve the partial separation problem SEPLP(S):

max ȳπ − s̄σ − π0

wπ − tσ ≤ π0, (w , t) ∈ S
π + σ = 1
π, π0 ≥ 0

Let (π∗, σ∗, π̄∗0) be the optimal solution of SEPLP(S).
Step 3 Solve the mixed-integer knapsack problem MKNAP

max π∗w − σ̄∗t
(w , t) ∈ X MK

to check whether the “candidate inequality”
π∗y − σ∗s ≤ π∗0 is valid for conv(X MK ).



Solving SEPLP(X MK ) by row generation
Step 1 Let S ⊂ X MK be a subset of the feasible solutions.
Step 2 Solve the partial separation problem SEPLP(S):

max ȳπ − s̄σ − π0

wπ − tσ ≤ π0, (w , t) ∈ S
π + σ = 1
π, π0 ≥ 0

Let (π∗, σ∗, π̄∗0) be the optimal solution of SEPLP(S).

Step 3 Solve the mixed-integer knapsack problem MKNAP

max π∗w − σ̄∗t
(w , t) ∈ X MK

to check whether the “candidate inequality”
π∗y − σ∗s ≤ π∗0 is valid for conv(X MK ).



Solving SEPLP(X MK ) by row generation
Step 1 Let S ⊂ X MK be a subset of the feasible solutions.
Step 2 Solve the partial separation problem SEPLP(S):

max ȳπ − s̄σ − π0

wπ − tσ ≤ π0, (w , t) ∈ S
π + σ = 1
π, π0 ≥ 0

Let (π∗, σ∗, π̄∗0) be the optimal solution of SEPLP(S).
Step 3 Solve the mixed-integer knapsack problem MKNAP

max π∗w − σ̄∗t
(w , t) ∈ X MK

to check whether the “candidate inequality”
π∗y − σ∗s ≤ π∗0 is valid for conv(X MK ).



Solving SEPLP(X MK ) by row generation (cont.)

Step 4 Let (ŵ , t̂) be the optimal solution of MKNAP. If
π∗ŵ − σ∗ t̂ > π∗0 then set S = S ∪ {(ŵ , t̂)} and goto
Step 1.

Step 5 (π∗, σ∗, π∗0) is the optimal solution of SEPLP(X MK ) and
the inequality π∗y − σ∗s ≤ π∗0 is valid for conv(X MK ).



Solving SEPLP(X MK ) by row generation (cont.)

Step 4 Let (ŵ , t̂) be the optimal solution of MKNAP. If
π∗ŵ − σ∗ t̂ > π∗0 then set S = S ∪ {(ŵ , t̂)} and goto
Step 1.

Step 5 (π∗, σ∗, π∗0) is the optimal solution of SEPLP(X MK ) and
the inequality π∗y − σ∗s ≤ π∗0 is valid for conv(X MK ).



Solving MKNAP efficiently

I The mixed-integer knapsack problem MKNAP:

max π∗w − σ∗t
aw − t ≤ b
w ∈ Zn

t ≥ 0

must be solved repeatedly.
I We need a very efficient algorithm.

Proposition
For any optimal solution (ŵ , t̂) of MKNAP we have
t̂ = max(0,aŵ − b).

It follows that:
(̂t = 0) ∨ (̂t = aŵ − b > 0)



Solving MKNAP efficiently

I The mixed-integer knapsack problem MKNAP:

max π∗w − σ∗t
aw − t ≤ b
w ∈ Zn

t ≥ 0

must be solved repeatedly.

I We need a very efficient algorithm.

Proposition
For any optimal solution (ŵ , t̂) of MKNAP we have
t̂ = max(0,aŵ − b).

It follows that:
(̂t = 0) ∨ (̂t = aŵ − b > 0)



Solving MKNAP efficiently

I The mixed-integer knapsack problem MKNAP:

max π∗w − σ∗t
aw − t ≤ b
w ∈ Zn

t ≥ 0

must be solved repeatedly.
I We need a very efficient algorithm.

Proposition
For any optimal solution (ŵ , t̂) of MKNAP we have
t̂ = max(0,aŵ − b).

It follows that:
(̂t = 0) ∨ (̂t = aŵ − b > 0)



Solving MKNAP efficiently

I The mixed-integer knapsack problem MKNAP:

max π∗w − σ∗t
aw − t ≤ b
w ∈ Zn

t ≥ 0

must be solved repeatedly.
I We need a very efficient algorithm.

Proposition
For any optimal solution (ŵ , t̂) of MKNAP we have
t̂ = max(0,aŵ − b).

It follows that:
(̂t = 0) ∨ (̂t = aŵ − b > 0)



Solving MKNAP efficiently

I The mixed-integer knapsack problem MKNAP:

max π∗w − σ∗t
aw − t ≤ b
w ∈ Zn

t ≥ 0

must be solved repeatedly.
I We need a very efficient algorithm.

Proposition
For any optimal solution (ŵ , t̂) of MKNAP we have
t̂ = max(0,aŵ − b).

It follows that:
(̂t = 0) ∨ (̂t = aŵ − b > 0)



Solving MKNAP efficiently (cont.)
Proposition
The optimal solution of MKNAP is the best between the optimal
solutions of the two following knapsack problems:

KNAP1 (t = 0):

max π∗w
aw ≤ b
w ∈ Zn

KNAP2 (t = aw − b):

min (σ̄∗a − π∗)w
aw ≥ b + 1
w ∈ Zn

!!
Both the knapsack problems can be solved very fast by dynamic
programming (Pisinger, 2004).



Solving MKNAP efficiently (cont.)
Proposition
The optimal solution of MKNAP is the best between the optimal
solutions of the two following knapsack problems:

KNAP1 (t = 0):

max π∗w
aw ≤ b
w ∈ Zn

KNAP2 (t = aw − b):

min (σ̄∗a − π∗)w
aw ≥ b + 1
w ∈ Zn

!!
Both the knapsack problems can be solved very fast by dynamic
programming (Pisinger, 2004).



Solving MKNAP efficiently (cont.)
Proposition
The optimal solution of MKNAP is the best between the optimal
solutions of the two following knapsack problems:

KNAP1 (t = 0):

max π∗w
aw ≤ b
w ∈ Zn

KNAP2 (t = aw − b):

min (σ̄∗a − π∗)w
aw ≥ b + 1
w ∈ Zn

!!
Both the knapsack problems can be solved very fast by dynamic
programming (Pisinger, 2004).



Solving MKNAP efficiently (cont.)
Proposition
The optimal solution of MKNAP is the best between the optimal
solutions of the two following knapsack problems:

KNAP1 (t = 0):

max π∗w
aw ≤ b
w ∈ Zn

KNAP2 (t = aw − b):

min (σ̄∗a − π∗)w
aw ≥ b + 1
w ∈ Zn

!!
Both the knapsack problems can be solved very fast by dynamic
programming (Pisinger, 2004).



Implementation details

When embedded into a cutting plane algorithm, SEPLP(X MK ) is
applied to each row defining a mixed-integer knapsack set:

X MI = {(y ,x) ∈ Zn
+ × Rp

+ : ay + gx ≤ b, y ≤ u,x ≤ v}.

Some operations are required to put the row in the “right” form:

Bound substitution: replace a subset of continuous variable by their
simple or variable bounds.

Preprocessing: transform the mixed integer set X MI into the
mixed-integer knapsack set X MK .

Convert coefficients into integers (required to use dynamic
programming)



Implementation details

When embedded into a cutting plane algorithm, SEPLP(X MK ) is
applied to each row defining a mixed-integer knapsack set:

X MI = {(y ,x) ∈ Zn
+ × Rp

+ : ay + gx ≤ b, y ≤ u,x ≤ v}.

Some operations are required to put the row in the “right” form:

Bound substitution: replace a subset of continuous variable by their
simple or variable bounds.

Preprocessing: transform the mixed integer set X MI into the
mixed-integer knapsack set X MK .

Convert coefficients into integers (required to use dynamic
programming)



Implementation details

When embedded into a cutting plane algorithm, SEPLP(X MK ) is
applied to each row defining a mixed-integer knapsack set:

X MI = {(y ,x) ∈ Zn
+ × Rp

+ : ay + gx ≤ b, y ≤ u,x ≤ v}.

Some operations are required to put the row in the “right” form:

Bound substitution: replace a subset of continuous variable by their
simple or variable bounds.

Preprocessing: transform the mixed integer set X MI into the
mixed-integer knapsack set X MK .

Convert coefficients into integers (required to use dynamic
programming)



Implementation details

When embedded into a cutting plane algorithm, SEPLP(X MK ) is
applied to each row defining a mixed-integer knapsack set:

X MI = {(y ,x) ∈ Zn
+ × Rp

+ : ay + gx ≤ b, y ≤ u,x ≤ v}.

Some operations are required to put the row in the “right” form:

Bound substitution: replace a subset of continuous variable by their
simple or variable bounds.

Preprocessing: transform the mixed integer set X MI into the
mixed-integer knapsack set X MK .

Convert coefficients into integers (required to use dynamic
programming)



Bound substitution
I Consider the mixed-integer set

X MI = {(y ,x) ∈ Zn
+ × Rp

+ : ay + gx ≤ b, y ≤ u, lx ≤ v}.

I The MIP formulation can also include some additional variable
bounds on the continuous variables.

I Bound substitution consists of replacing some continuous
variables by their respective simple/variable bounds. It is done
heuristically by performing one of the following substitutions:

xj = lj + x ′j ; xj = vj − x ′j ; xj = l̃jyi + x ′j ; wj = ṽjyk − x ′j
I Let (ȳ , x̄) be the current fractional solution. The bound with

smallest slack is selected for substitution. That is, let

µ = min{x̄j − lj , vj − x̄j , x̄j − l̃j ȳi , ṽj ȳk − x̄j}.

I Let:

xj =


lj + x ′j if µ = xj − lj
vj − x ′j if µ = vj − x̄j

l̃jyi + x ′j if µ = x̄j − l̃j
ṽjyk − x ′j if µ = ṽj ȳk − x̄j



Bound substitution
I Consider the mixed-integer set

X MI = {(y ,x) ∈ Zn
+ × Rp

+ : ay + gx ≤ b, y ≤ u, lx ≤ v}.

I The MIP formulation can also include some additional variable
bounds on the continuous variables.

I Bound substitution consists of replacing some continuous
variables by their respective simple/variable bounds. It is done
heuristically by performing one of the following substitutions:

xj = lj + x ′j ; xj = vj − x ′j ; xj = l̃jyi + x ′j ; wj = ṽjyk − x ′j
I Let (ȳ , x̄) be the current fractional solution. The bound with

smallest slack is selected for substitution. That is, let

µ = min{x̄j − lj , vj − x̄j , x̄j − l̃j ȳi , ṽj ȳk − x̄j}.

I Let:

xj =


lj + x ′j if µ = xj − lj
vj − x ′j if µ = vj − x̄j

l̃jyi + x ′j if µ = x̄j − l̃j
ṽjyk − x ′j if µ = ṽj ȳk − x̄j



Bound substitution
I Consider the mixed-integer set

X MI = {(y ,x) ∈ Zn
+ × Rp

+ : ay + gx ≤ b, y ≤ u, lx ≤ v}.

I The MIP formulation can also include some additional variable
bounds on the continuous variables.

I Bound substitution consists of replacing some continuous
variables by their respective simple/variable bounds. It is done
heuristically by performing one of the following substitutions:

xj = lj + x ′j ; xj = vj − x ′j ; xj = l̃jyi + x ′j ; wj = ṽjyk − x ′j

I Let (ȳ , x̄) be the current fractional solution. The bound with
smallest slack is selected for substitution. That is, let

µ = min{x̄j − lj , vj − x̄j , x̄j − l̃j ȳi , ṽj ȳk − x̄j}.

I Let:

xj =


lj + x ′j if µ = xj − lj
vj − x ′j if µ = vj − x̄j

l̃jyi + x ′j if µ = x̄j − l̃j
ṽjyk − x ′j if µ = ṽj ȳk − x̄j



Bound substitution
I Consider the mixed-integer set

X MI = {(y ,x) ∈ Zn
+ × Rp

+ : ay + gx ≤ b, y ≤ u, lx ≤ v}.

I The MIP formulation can also include some additional variable
bounds on the continuous variables.

I Bound substitution consists of replacing some continuous
variables by their respective simple/variable bounds. It is done
heuristically by performing one of the following substitutions:

xj = lj + x ′j ; xj = vj − x ′j ; xj = l̃jyi + x ′j ; wj = ṽjyk − x ′j
I Let (ȳ , x̄) be the current fractional solution. The bound with

smallest slack is selected for substitution. That is, let

µ = min{x̄j − lj , vj − x̄j , x̄j − l̃j ȳi , ṽj ȳk − x̄j}.

I Let:

xj =


lj + x ′j if µ = xj − lj
vj − x ′j if µ = vj − x̄j

l̃jyi + x ′j if µ = x̄j − l̃j
ṽjyk − x ′j if µ = ṽj ȳk − x̄j



Bound substitution
I Consider the mixed-integer set

X MI = {(y ,x) ∈ Zn
+ × Rp

+ : ay + gx ≤ b, y ≤ u, lx ≤ v}.

I The MIP formulation can also include some additional variable
bounds on the continuous variables.

I Bound substitution consists of replacing some continuous
variables by their respective simple/variable bounds. It is done
heuristically by performing one of the following substitutions:

xj = lj + x ′j ; xj = vj − x ′j ; xj = l̃jyi + x ′j ; wj = ṽjyk − x ′j
I Let (ȳ , x̄) be the current fractional solution. The bound with

smallest slack is selected for substitution. That is, let

µ = min{x̄j − lj , vj − x̄j , x̄j − l̃j ȳi , ṽj ȳk − x̄j}.

I Let:

xj =


lj + x ′j if µ = xj − lj
vj − x ′j if µ = vj − x̄j

l̃jyi + x ′j if µ = x̄j − l̃j
ṽjyk − x ′j if µ = ṽj ȳk − x̄j



Preprocessing

Let ∑
i∈I

a′i yi +
∑
j∈P

g′j x
′
j ≤ b′,

with 0 ≤ yi ≤ ui ∀j ∈ I and x ′j ≥ 0 ∀j ∈ P, be the mixed-integer
inequality after bound substitution.

I All the continuous variables with positive coefficients can be
discarded (Atamturk, 2000).

I All the continuous variables with negative coefficients are
aggregated into the same variable s:

s = −
∑

j∈P−
g′j x
′
j ,

where P− = {j ∈ P : g′j < 0}.
I All the integer variables with negative coefficients are

complemented:

yj =

{
uj − y ′j if a′j < 0
y ′j otherwise



Preprocessing

Let ∑
i∈I

a′i yi +
∑
j∈P

g′j x
′
j ≤ b′,

with 0 ≤ yi ≤ ui ∀j ∈ I and x ′j ≥ 0 ∀j ∈ P, be the mixed-integer
inequality after bound substitution.

I All the continuous variables with positive coefficients can be
discarded (Atamturk, 2000).

I All the continuous variables with negative coefficients are
aggregated into the same variable s:

s = −
∑

j∈P−
g′j x
′
j ,

where P− = {j ∈ P : g′j < 0}.
I All the integer variables with negative coefficients are

complemented:

yj =

{
uj − y ′j if a′j < 0
y ′j otherwise



Preprocessing

Let ∑
i∈I

a′i yi +
∑
j∈P

g′j x
′
j ≤ b′,

with 0 ≤ yi ≤ ui ∀j ∈ I and x ′j ≥ 0 ∀j ∈ P, be the mixed-integer
inequality after bound substitution.

I All the continuous variables with positive coefficients can be
discarded (Atamturk, 2000).

I All the continuous variables with negative coefficients are
aggregated into the same variable s:

s = −
∑

j∈P−
g′j x
′
j ,

where P− = {j ∈ P : g′j < 0}.

I All the integer variables with negative coefficients are
complemented:

yj =

{
uj − y ′j if a′j < 0
y ′j otherwise



Preprocessing

Let ∑
i∈I

a′i yi +
∑
j∈P

g′j x
′
j ≤ b′,

with 0 ≤ yi ≤ ui ∀j ∈ I and x ′j ≥ 0 ∀j ∈ P, be the mixed-integer
inequality after bound substitution.

I All the continuous variables with positive coefficients can be
discarded (Atamturk, 2000).

I All the continuous variables with negative coefficients are
aggregated into the same variable s:

s = −
∑

j∈P−
g′j x
′
j ,

where P− = {j ∈ P : g′j < 0}.
I All the integer variables with negative coefficients are

complemented:

yj =

{
uj − y ′j if a′j < 0
y ′j otherwise



Convert all the coefficients into integers

I The integer knapsack problems of MKNAP are solved by the
dynamic programming algorithm of Pisinger (2001).

I Dynamic programming is fast, but there is a price to pay: it
requires that all the knapsack coefficients are integers.

I The coefficients of the integer variables must be converted into
suitably small integers before running exact separation.

I We adopt a brute-force approach: enumerate all the q ∈ N in the
interval [1,104], stopping when qb′′ − bqb′′c ≤ ε and
qa′′j − bqa′′j c ≤ ε for each j ∈ I. In our experiments we set
ε = 10−5.

I If the procedure fails, we discard the inequality since too large
coefficients may cause numerical problems.



Convert all the coefficients into integers

I The integer knapsack problems of MKNAP are solved by the
dynamic programming algorithm of Pisinger (2001).

I Dynamic programming is fast, but there is a price to pay: it
requires that all the knapsack coefficients are integers.

I The coefficients of the integer variables must be converted into
suitably small integers before running exact separation.

I We adopt a brute-force approach: enumerate all the q ∈ N in the
interval [1,104], stopping when qb′′ − bqb′′c ≤ ε and
qa′′j − bqa′′j c ≤ ε for each j ∈ I. In our experiments we set
ε = 10−5.

I If the procedure fails, we discard the inequality since too large
coefficients may cause numerical problems.



Convert all the coefficients into integers

I The integer knapsack problems of MKNAP are solved by the
dynamic programming algorithm of Pisinger (2001).

I Dynamic programming is fast, but there is a price to pay: it
requires that all the knapsack coefficients are integers.

I The coefficients of the integer variables must be converted into
suitably small integers before running exact separation.

I We adopt a brute-force approach: enumerate all the q ∈ N in the
interval [1,104], stopping when qb′′ − bqb′′c ≤ ε and
qa′′j − bqa′′j c ≤ ε for each j ∈ I. In our experiments we set
ε = 10−5.

I If the procedure fails, we discard the inequality since too large
coefficients may cause numerical problems.



Convert all the coefficients into integers

I The integer knapsack problems of MKNAP are solved by the
dynamic programming algorithm of Pisinger (2001).

I Dynamic programming is fast, but there is a price to pay: it
requires that all the knapsack coefficients are integers.

I The coefficients of the integer variables must be converted into
suitably small integers before running exact separation.

I We adopt a brute-force approach: enumerate all the q ∈ N in the
interval [1,104], stopping when qb′′ − bqb′′c ≤ ε and
qa′′j − bqa′′j c ≤ ε for each j ∈ I. In our experiments we set
ε = 10−5.

I If the procedure fails, we discard the inequality since too large
coefficients may cause numerical problems.



Convert all the coefficients into integers

I The integer knapsack problems of MKNAP are solved by the
dynamic programming algorithm of Pisinger (2001).

I Dynamic programming is fast, but there is a price to pay: it
requires that all the knapsack coefficients are integers.

I The coefficients of the integer variables must be converted into
suitably small integers before running exact separation.

I We adopt a brute-force approach: enumerate all the q ∈ N in the
interval [1,104], stopping when qb′′ − bqb′′c ≤ ε and
qa′′j − bqa′′j c ≤ ε for each j ∈ I. In our experiments we set
ε = 10−5.

I If the procedure fails, we discard the inequality since too large
coefficients may cause numerical problems.



Lifting

I Exact separation runs over the fractional support.

I Then standard sequential lifting is used to get globally valid
inequalities.

I Computing a lifting coefficient amounts to solve a knapsack
problem with a single continuous variable. The problem can be
solved by splitting into two integer knapsack problems.



Lifting

I Exact separation runs over the fractional support.

I Then standard sequential lifting is used to get globally valid
inequalities.

I Computing a lifting coefficient amounts to solve a knapsack
problem with a single continuous variable. The problem can be
solved by splitting into two integer knapsack problems.



Lifting

I Exact separation runs over the fractional support.

I Then standard sequential lifting is used to get globally valid
inequalities.

I Computing a lifting coefficient amounts to solve a knapsack
problem with a single continuous variable. The problem can be
solved by splitting into two integer knapsack problems.



Computational results

I Computational experiments were carried out on a 64bit Pentium
Quad-core 2.6 GHz processor with 4 Gb RAM. The LP solver
was Xpress 2007B.

I The test bed consists of all the MIPLIB 2003 mixed-integer
instances and of the “Mittleman” instances bc1, bienst1, bienst2,
binkar10 1, dano3-4, dano3-5. We set a limit of 300 CPU secs
for the time spent in separation.



Computational results

I Computational experiments were carried out on a 64bit Pentium
Quad-core 2.6 GHz processor with 4 Gb RAM. The LP solver
was Xpress 2007B.

I The test bed consists of all the MIPLIB 2003 mixed-integer
instances and of the “Mittleman” instances bc1, bienst1, bienst2,
binkar10 1, dano3-4, dano3-5. We set a limit of 300 CPU secs
for the time spent in separation.



Computational results (cont.)

I We compare the lower bounds returned by exact separation with
those provided by Mixed-Integer Rounding (MIR) inequalities

I We compare with the MIR separation procedure of K. Wolter
(2007), embedded into SCIP version 1.00, linked to SoPlex 1.3.2
and ZIMPL 2.07 (Achterberg, 2007).

I We set SCIP parameters to perfom Wolter’s procedure on single
rows, i.e. to forbid constraint aggregation. Separation of Lifted
Cover inequalities is enabled too.

I For simplicity of comparison, separation routines run on the
original (i.e. not preprocessed) instances.



Computational results (cont.)

I We compare the lower bounds returned by exact separation with
those provided by Mixed-Integer Rounding (MIR) inequalities

I We compare with the MIR separation procedure of K. Wolter
(2007), embedded into SCIP version 1.00, linked to SoPlex 1.3.2
and ZIMPL 2.07 (Achterberg, 2007).

I We set SCIP parameters to perfom Wolter’s procedure on single
rows, i.e. to forbid constraint aggregation. Separation of Lifted
Cover inequalities is enabled too.

I For simplicity of comparison, separation routines run on the
original (i.e. not preprocessed) instances.



Computational results (cont.)

I We compare the lower bounds returned by exact separation with
those provided by Mixed-Integer Rounding (MIR) inequalities

I We compare with the MIR separation procedure of K. Wolter
(2007), embedded into SCIP version 1.00, linked to SoPlex 1.3.2
and ZIMPL 2.07 (Achterberg, 2007).

I We set SCIP parameters to perfom Wolter’s procedure on single
rows, i.e. to forbid constraint aggregation. Separation of Lifted
Cover inequalities is enabled too.

I For simplicity of comparison, separation routines run on the
original (i.e. not preprocessed) instances.



Computational results (cont.)

I We compare the lower bounds returned by exact separation with
those provided by Mixed-Integer Rounding (MIR) inequalities

I We compare with the MIR separation procedure of K. Wolter
(2007), embedded into SCIP version 1.00, linked to SoPlex 1.3.2
and ZIMPL 2.07 (Achterberg, 2007).

I We set SCIP parameters to perfom Wolter’s procedure on single
rows, i.e. to forbid constraint aggregation. Separation of Lifted
Cover inequalities is enabled too.

I For simplicity of comparison, separation routines run on the
original (i.e. not preprocessed) instances.



Computational results
Name SCIP SCIP SCIP MK -SEP MK -SEP MK -SEP

LB %Gap Time LB % Gap Time
10teams 917.00 0.00 0.08 917 0.00 0.96
a1c1s1 997.53 0.00 0.14 997.53 0.00 2.20
aflow30a 983.16 0.00 0.00 1053.29 40.11 10.07
aflow40b 1005.50 0.00 0.03 1058.32 32.50 10.67
arki001 7579599.81 0.00 0.46 7579599.81 0.00 0.89
atlanta-ip 81.25 0.11 11.14 82.46 13.91 300.00
dano3mip 576.23 0.00 0.56 576.23 0.00 7.40
danoint 62.63 0.00 0.01 62.66 0.88 3.59
fiber 385094.10 91.66 0.27 390493.82 93.82 9.26
fixnet6 3192.04 71.57 0.09 3442.60 80.58 196.21
gesa2 25691081 71.28 0.44 25701859 74.86 4.29
gesa2-o 25476489 0.0 0.06 25588105 37.02 7.79
glass4 800002400 0.00 0.01 800002400 0.00 0.23
liu 385.00 4.92 0.64 385.00 4.92 8.76
markshare1 0.00 0.00 0.00 0.00 0.00 43.79
markshare2 0.00 0.00 0.00 0.00 0.00 26.82
mas74 10482.79 0.00 0.00 10482.79 0.00 0.25
mas76 38901.02 0.64 0.00 38901.02 0.64 0.16
misc07 1415.00 0.00 0.00 1415 0.00 0.54
mkc -607.18 9.73 4.62 -605.83 12.54 56.40
modglob 20430947.60 0.00 0.02 20431515.90 0.18 9.20
msc98-ip 19538746.75 5.58 16.65 19559084.16 11.97 169.54
net12 31.55 7.27 7.97 32.08 7.54 106.53
nsrand-ipx 49851.43 41.87 4.92 49877.59 43.00 80.75
roll3000 12072.71 54.41 2.13 12073.49 54.46 23.06
swath 334.50 0.00 0.53 334.5 0.00 9.18
timtab1 195605.34 22.68 0.07 229628.78 27.30 3.23
timtab2 250004.21 16.43 0.16 270295.07 18.43 6.84
tr12-30 18124.17 3.36 0.01 84403.46 60.27 8.23
vpm2 10.40 13.21 0.02 11.21 33.94 1.59
binkar10 1 6701.56 61.42 1.33 6720.55 79.54 9.06
bienst1 11.72 0.00 0.01 14.01 6.54 2.15
bienst2 11.72 0.00 0.00 14.88 7.41 3.18
dano3-4 576.23 0.00 0.41 576.23 0.00 2.76
dano3-5 576.23 0.00 0.52 576.23 0.00 3.15
rgn 68.00 57.49 0.00 68.00 57.49 1.14



The overall effect

Some preliminary tests on non-trivial instances (Cplex
11.1)

timtab1 After 30000 B&B nodes: the original formulation returned a
relative gap of 12.30%. Using exact separation the relative gap is
10.23%.

timtab2 After 20000 B&B nodes: with the original formulation the gap is
37.6%. Using exact separation the relative gap is 34.5%.

aflow40 Solved in 46826 nodes by Cplex 11.1 after exact separation.
Solved in 96400 nodes on the original formulation.

tr12-30 After 20000 B&B nodes: with the original formulation the relative
gap is 2.76%. Using exact separation the relative gap is 0.29%.

nsrand-ip After 5000 B&B nodes: with the original formulation the gap is
1.5%. Using exact separation the relative gap is 0.37%.



The overall effect

Some preliminary tests on non-trivial instances (Cplex
11.1)

timtab1 After 30000 B&B nodes: the original formulation returned a
relative gap of 12.30%. Using exact separation the relative gap is
10.23%.

timtab2 After 20000 B&B nodes: with the original formulation the gap is
37.6%. Using exact separation the relative gap is 34.5%.

aflow40 Solved in 46826 nodes by Cplex 11.1 after exact separation.
Solved in 96400 nodes on the original formulation.

tr12-30 After 20000 B&B nodes: with the original formulation the relative
gap is 2.76%. Using exact separation the relative gap is 0.29%.

nsrand-ip After 5000 B&B nodes: with the original formulation the gap is
1.5%. Using exact separation the relative gap is 0.37%.



The overall effect

Some preliminary tests on non-trivial instances (Cplex
11.1)

timtab1 After 30000 B&B nodes: the original formulation returned a
relative gap of 12.30%. Using exact separation the relative gap is
10.23%.

timtab2 After 20000 B&B nodes: with the original formulation the gap is
37.6%. Using exact separation the relative gap is 34.5%.

aflow40 Solved in 46826 nodes by Cplex 11.1 after exact separation.
Solved in 96400 nodes on the original formulation.

tr12-30 After 20000 B&B nodes: with the original formulation the relative
gap is 2.76%. Using exact separation the relative gap is 0.29%.

nsrand-ip After 5000 B&B nodes: with the original formulation the gap is
1.5%. Using exact separation the relative gap is 0.37%.



The overall effect

Some preliminary tests on non-trivial instances (Cplex
11.1)

timtab1 After 30000 B&B nodes: the original formulation returned a
relative gap of 12.30%. Using exact separation the relative gap is
10.23%.

timtab2 After 20000 B&B nodes: with the original formulation the gap is
37.6%. Using exact separation the relative gap is 34.5%.

aflow40 Solved in 46826 nodes by Cplex 11.1 after exact separation.
Solved in 96400 nodes on the original formulation.

tr12-30 After 20000 B&B nodes: with the original formulation the relative
gap is 2.76%. Using exact separation the relative gap is 0.29%.

nsrand-ip After 5000 B&B nodes: with the original formulation the gap is
1.5%. Using exact separation the relative gap is 0.37%.



The overall effect

Some preliminary tests on non-trivial instances (Cplex
11.1)

timtab1 After 30000 B&B nodes: the original formulation returned a
relative gap of 12.30%. Using exact separation the relative gap is
10.23%.

timtab2 After 20000 B&B nodes: with the original formulation the gap is
37.6%. Using exact separation the relative gap is 34.5%.

aflow40 Solved in 46826 nodes by Cplex 11.1 after exact separation.
Solved in 96400 nodes on the original formulation.

tr12-30 After 20000 B&B nodes: with the original formulation the relative
gap is 2.76%. Using exact separation the relative gap is 0.29%.

nsrand-ip After 5000 B&B nodes: with the original formulation the gap is
1.5%. Using exact separation the relative gap is 0.37%.



Some considerations

I Computational experience shows that exact separation for
conv(X MK ) is effective in tightening MIP formulations.

I Computation time is much larger than for MIR separation, but still
reasonable when dealing with hard instances.

I Exact separation not applicable to large and dense rows.



Some considerations

I Computational experience shows that exact separation for
conv(X MK ) is effective in tightening MIP formulations.

I Computation time is much larger than for MIR separation, but still
reasonable when dealing with hard instances.

I Exact separation not applicable to large and dense rows.



Some considerations

I Computational experience shows that exact separation for
conv(X MK ) is effective in tightening MIP formulations.

I Computation time is much larger than for MIR separation, but still
reasonable when dealing with hard instances.

I Exact separation not applicable to large and dense rows.



Back to the template paradigm: Mixed Knapsack
Inequalities

We focus on mixed knapsack inequalities (Marchand and Wolsey,
2002), which can described by the following procedure.
Given:

X BMK = {(y , s) ∈ Bn
+ × R+ : ay − s ≤ b, y ≤ u}

i) Set the s = s̄;
ii) Find a valid inequality αy ≤ β for the resulting binary knapsack

polytope;

X BMK
s̄ = {y ∈ Bn

+ : ay ≤ b + s̄, y ≤ u}

iii) lift the s to get a valid inequality for XBMK of the form
αy − γs ≤ β.



Back to the template paradigm: Mixed Knapsack
Inequalities

We focus on mixed knapsack inequalities (Marchand and Wolsey,
2002), which can described by the following procedure.
Given:

X BMK = {(y , s) ∈ Bn
+ × R+ : ay − s ≤ b, y ≤ u}

i) Set the s = s̄;

ii) Find a valid inequality αy ≤ β for the resulting binary knapsack
polytope;

X BMK
s̄ = {y ∈ Bn

+ : ay ≤ b + s̄, y ≤ u}

iii) lift the s to get a valid inequality for XBMK of the form
αy − γs ≤ β.



Back to the template paradigm: Mixed Knapsack
Inequalities

We focus on mixed knapsack inequalities (Marchand and Wolsey,
2002), which can described by the following procedure.
Given:

X BMK = {(y , s) ∈ Bn
+ × R+ : ay − s ≤ b, y ≤ u}

i) Set the s = s̄;
ii) Find a valid inequality αy ≤ β for the resulting binary knapsack

polytope;

X BMK
s̄ = {y ∈ Bn

+ : ay ≤ b + s̄, y ≤ u}

iii) lift the s to get a valid inequality for XBMK of the form
αy − γs ≤ β.



Back to the template paradigm: Mixed Knapsack
Inequalities

We focus on mixed knapsack inequalities (Marchand and Wolsey,
2002), which can described by the following procedure.
Given:

X BMK = {(y , s) ∈ Bn
+ × R+ : ay − s ≤ b, y ≤ u}

i) Set the s = s̄;
ii) Find a valid inequality αy ≤ β for the resulting binary knapsack

polytope;

X BMK
s̄ = {y ∈ Bn

+ : ay ≤ b + s̄, y ≤ u}

iii) lift the s to get a valid inequality for XBMK of the form
αy − γs ≤ β.



Mixed Knapsack Inequalities: lifting the s

Let

η(s) = max αy (5)
ay ≤ b + s (6)
y ∈ {0,1}n (7)

Proposition
The inequality

αy ≤ β + γs

is valid for conv(X BMK ) if η(s) ≤ β + γs for each s ∈ R+.



Mixed Knapsack Inequalities: lifting the s

Let

η(s) = max αy (5)
ay ≤ b + s (6)
y ∈ {0,1}n (7)

Proposition
The inequality

αy ≤ β + γs

is valid for conv(X BMK ) if η(s) ≤ β + γs for each s ∈ R+.



Mixed Knapsack Inequalities: lifting the s (cont.)

A geometrical interpretation

I η(s) is a step function

I the line β + γs is a “valid” rhs if it defines an upper bound on the
η(s), for each s ∈ R+.



Mixed Knapsack Inequalities: lifting the s (cont.)

A geometrical interpretation

I η(s) is a step function

I the line β + γs is a “valid” rhs if it defines an upper bound on the
η(s), for each s ∈ R+.



Mixed Knapsack Inequalities: lifting the s (cont.)

A geometrical interpretation

I η(s) is a step function

I the line β + γs is a “valid” rhs if it defines an upper bound on the
η(s), for each s ∈ R+.



Mixed Knapsack Inequalities: lifting the s (cont.)

The lifting algorithm

Step 0 Inizialize γ.

Step 1 Solve the problem:

ζ = max αy − γs
αy ≤ b + s
y ∈ {0,1}N

s ≥ 0

Step 2 If ζ ≤ β then the inequality αy ≤ β + γs is valid for
conv(X BMK ). STOP.

Step 3 Increase γ and Go to Step 1.



Mixed Knapsack Inequalities: lifting the s (cont.)

The lifting algorithm

Step 0 Inizialize γ.

Step 1 Solve the problem:

ζ = max αy − γs
αy ≤ b + s
y ∈ {0,1}N

s ≥ 0

Step 2 If ζ ≤ β then the inequality αy ≤ β + γs is valid for
conv(X BMK ). STOP.

Step 3 Increase γ and Go to Step 1.



Mixed Knapsack Inequalities: lifting the s (cont.)

The lifting algorithm

Step 0 Inizialize γ.

Step 1 Solve the problem:

ζ = max αy − γs
αy ≤ b + s
y ∈ {0,1}N

s ≥ 0

Step 2 If ζ ≤ β then the inequality αy ≤ β + γs is valid for
conv(X BMK ). STOP.

Step 3 Increase γ and Go to Step 1.



Mixed Knapsack Inequalities: lifting the s (cont.)

The lifting algorithm

Step 0 Inizialize γ.

Step 1 Solve the problem:

ζ = max αy − γs
αy ≤ b + s
y ∈ {0,1}N

s ≥ 0

Step 2 If ζ ≤ β then the inequality αy ≤ β + γs is valid for
conv(X BMK ). STOP.

Step 3 Increase γ and Go to Step 1.



Mixed Knapsack Inequalities: lifting the s (cont.)

The lifting algorithm

Step 0 Inizialize γ.

Step 1 Solve the problem:

ζ = max αy − γs
αy ≤ b + s
y ∈ {0,1}N

s ≥ 0

Step 2 If ζ ≤ β then the inequality αy ≤ β + γs is valid for
conv(X BMK ). STOP.

Step 3 Increase γ and Go to Step 1.



Mixed Knapsack Inequalities: lifting the s (cont.)

The lifting algorithm

Step 0 Inizialize γ.

Step 1 Solve the problem:

ζ = max αy − γs
αy ≤ b + s
y ∈ {0,1}N

s ≥ 0

Step 2 If ζ ≤ β then the inequality αy ≤ β + γs is valid for
conv(X BMK ). STOP.

Step 3 Increase γ and Go to Step 1.



Mixed Knapsack Inequalities: lifting the s (cont.)
A numerical example

I Consider the set X BMK = {7y1 + 6y2 + 5y3 + 3y4 + 2y5 − s ≤ 6}.
I Let X BMK

1 {x ∈ X BMK : s = 1}.
I The inequality y1 + y2 + y3 + y4 ≤ 1 is valid for conv(X BMK

1 ).



Mixed Knapsack Inequalities: lifting the s (cont.)
A numerical example

I Consider the set X BMK = {7y1 + 6y2 + 5y3 + 3y4 + 2y5 − s ≤ 6}.

I Let X BMK
1 {x ∈ X BMK : s = 1}.

I The inequality y1 + y2 + y3 + y4 ≤ 1 is valid for conv(X BMK
1 ).



Mixed Knapsack Inequalities: lifting the s (cont.)
A numerical example

I Consider the set X BMK = {7y1 + 6y2 + 5y3 + 3y4 + 2y5 − s ≤ 6}.
I Let X BMK

1 {x ∈ X BMK : s = 1}.

I The inequality y1 + y2 + y3 + y4 ≤ 1 is valid for conv(X BMK
1 ).



Mixed Knapsack Inequalities: lifting the s (cont.)
A numerical example

I Consider the set X BMK = {7y1 + 6y2 + 5y3 + 3y4 + 2y5 − s ≤ 6}.
I Let X BMK

1 {x ∈ X BMK : s = 1}.
I The inequality y1 + y2 + y3 + y4 ≤ 1 is valid for conv(X BMK

1 ).



Mixed Knapsack Inequalities: lifting the s (cont.)
A numerical example

I Consider the set X BMK = {7y1 + 6y2 + 5y3 + 3y4 + 2y5 − s ≤ 6}.
I Let X BMK

1 {x ∈ X BMK : s = 1}.
I The inequality y1 + y2 + y3 + y4 ≤ 1 is valid for conv(X BMK

1 ).

I η(s) step function.



Mixed Knapsack Inequalities: lifting the s (cont.)
A numerical example

I Consider the set X BMK = {7y1 + 6y2 + 5y3 + 3y4 + 2y5 − s ≤ 6}.
I Let X BMK

1 {x ∈ X BMK : s = 1}.
I The inequality y1 + y2 + y3 + y4 ≤ 1 is valid for conv(X BMK

1 ).

I Initialization: γ = 3/15.



Mixed Knapsack Inequalities: lifting the s (cont.)
A numerical example

I Consider the set X BMK = {7y1 + 6y2 + 5y3 + 3y4 + 2y5 − s ≤ 6}.
I Let X BMK

1 {x ∈ X BMK : s = 1}.
I The inequality y1 + y2 + y3 + y4 ≤ 1 is valid for conv(X BMK

1 ).

I Iteration 1: update γ = 1; y1 + y2 + y3 + y4 − s ≤ 1 is valid.



Computational results for Mixed Knapsack Inequalities
Name SCIP SCIP SCIP LCI LCI LCI

LB %Gap Time LB % Gap Time
10teams 917.00 0.00 0.08 917 0.00 0.03
a1c1s1 997.53 0.00 0.14 997.53 0.00 0.66
aflow30a 983.16 0.00 0.00 1013.92 17.59 0.62
aflow40b 1005.50 0.00 0.03 1017.39 7.32 1.29
arki001 7579599.81 0.00 0.46 7579599.81 0.00 0.78
atlanta-ip 81.25 0.11 11.14 82.33 12.43 135.31
dano3mip 576.23 0.00 0.56 576.23 0.00 11.33
danoint 62.63 0.00 0.01 62.65 0.66 0.09
fiber 385094.10 91.66 0.27 385094.10 91.66 0.31
fixnet6 3192.04 71.57 0.09 3441.08 80.52 4.15
gesa2 25691081 71.28 0.44 25691081 71.28 0.11
gesa2-o 25476489 0.0 0.06 25476489 0.00 0.06
glass4 800002400 0.00 0.01 800002400 0.00 0.03
liu 385.00 4.92 0.64 385.00 4.92 0.64
markshare1 0.00 0.00 0.00 0.00 0.00 0.03
markshare2 0.00 0.00 0.00 0.00 0.00 0.01
mas74 10482.79 0.00 0.00 10482.79 0.00 0.02
mas76 38901.02 0.64 0.00 38901.02 0.64 0.08
misc07 1415.00 0.00 0.00 1415 0.00 0.01
mkc -607.18 9.73 4.62 -611.48 0.77 1.61
modglob 20430947.60 0.00 0.02 20431458.13 0.16 0.05
msc98-ip 19538746.75 5.58 16.65 19557387.00 11.43 57.76
net12 31.55 7.27 7.97 31.91 7.45 37.92
nsrand-ipx 49851.43 41.87 4.92 49851.67 41,88 13.64
roll3000 12072.71 54.41 2.13 12072.71 54.41 0.17
swath 334.50 0.00 0.53 334.5 0.00 0.61
timtab1 195605.34 22.68 0.07 213136.28 25.06 0.03
timtab2 250004.21 16.43 0.16 250086.12 16.44 0.08
tr12-30 18124.17 3.36 0.01 84363.73 60.24 0.26
vpm2 10.40 13.21 0.02 11.31 36,79 0.08
binkar10 1 6701.56 61.42 1.33 6637.18 0.00 0.14
bienst1 11.72 0.00 0.01 14.03 6.59 0.22
bienst2 11.72 0.00 0.00 14.88 7.41 0.27
dano3-4 576.23 0.00 0.41 576.23 0.00 11.67
dano3-5 576.23 0.00 0.52 576.23 0.00 12.45
rgn 68.00 57.49 0.00 68.00 57.49 0.01



Research directions

I More efficient ways of solving the exact separation LP

I How to generate new rows by constraint aggregation?

I Looking at more complex MIP substructures than the single row.

I How to select MIP substructures to ensure that exact separation
leads to violated cuts?



Research directions

I More efficient ways of solving the exact separation LP

I How to generate new rows by constraint aggregation?

I Looking at more complex MIP substructures than the single row.

I How to select MIP substructures to ensure that exact separation
leads to violated cuts?



Research directions

I More efficient ways of solving the exact separation LP

I How to generate new rows by constraint aggregation?

I Looking at more complex MIP substructures than the single row.

I How to select MIP substructures to ensure that exact separation
leads to violated cuts?



Research directions

I More efficient ways of solving the exact separation LP

I How to generate new rows by constraint aggregation?

I Looking at more complex MIP substructures than the single row.

I How to select MIP substructures to ensure that exact separation
leads to violated cuts?


