Higher dimensional split closures

Kent Andersen (Joint work with Q. Louveaux and R. Weismantel)

Institute for Mathematical Sciences,

Copenhagen University, Denmark,

email: kha@math.ku.dk

Lattice point free convex sets

- Lattice point free convex sets
- Split bodies and cutting planes

- Lattice point free convex sets
- Split bodies and cutting planes
- Structure of relaxations from split sets

- Lattice point free convex sets
- Split bodies and cutting planes
- Structure of relaxations from split sets
- Width measures and split rank

- Lattice point free convex sets
- Split bodies and cutting planes
- Structure of relaxations from split sets
- Width measures and split rank
- Higher dimensional split closures

- Lattice point free convex sets
- Split bodies and cutting planes
- Structure of relaxations from split sets
- Width measures and split rank
- Higher dimensional split closures
- Polyhedrality of higher dimensional split closures

 \Diamond A convex set L is lattice point free, iff L has no integer points in its interior.

- \Diamond A convex set L is lattice point free, iff L has no integer points in its interior.
- \diamondsuit If L is maximal wrt. inclusion, then L is a full dimensional rational polyhedron

- \Diamond A convex set L is lattice point free, iff L has no integer points in its interior.
- \Diamond If L is maximal wrt. inclusion, then L is a full dimensional rational polyhedron
- We call maximal lattice point free sets for split bodies.

- \diamondsuit A convex set L is lattice point free, iff L has no integer points in its interior.
- \diamondsuit If L is maximal wrt. inclusion, then L is a full dimensional rational polyhedron
- We call maximal lattice point free sets for split bodies.
- \diamondsuit The "standard" split set: $\{x \in \mathbb{R}^n : \pi_0 \le \pi^T x \le \pi_0 + 1\}$, where $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$.

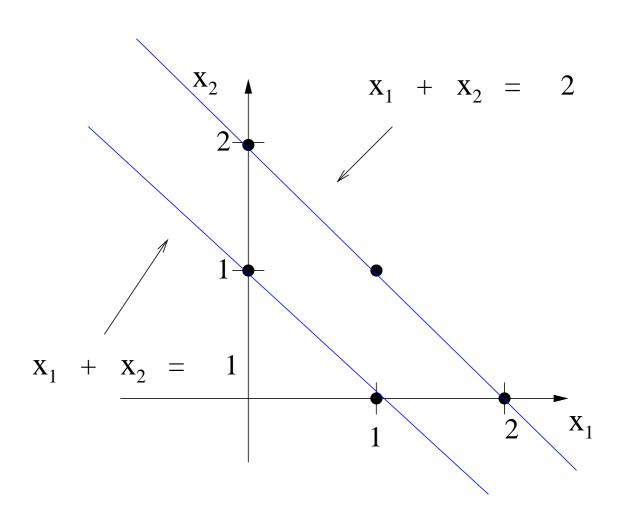
- \diamondsuit A convex set L is lattice point free, iff L has no integer points in its interior.
- \diamondsuit If L is maximal wrt. inclusion, then L is a full dimensional rational polyhedron
- We call maximal lattice point free sets for split bodies.
- \diamondsuit The "standard" split set: $\{x \in \mathbb{R}^n : \pi_0 \leq \pi^T x \leq \pi_0 + 1\}$, where $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$.
- The "standard" split set can be used for deriving:

- \Diamond A convex set L is lattice point free, iff L has no integer points in its interior.
- \diamondsuit If L is maximal wrt. inclusion, then L is a full dimensional rational polyhedron
- We call maximal lattice point free sets for split bodies.
- \diamondsuit The "standard" split set: $\{x \in \mathbb{R}^n : \pi_0 \leq \pi^T x \leq \pi_0 + 1\}$, where $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$.
- ♦ The "standard" split set can be used for deriving:
 ⇒ Split cuts (Cook, Kannan and Schrijver).

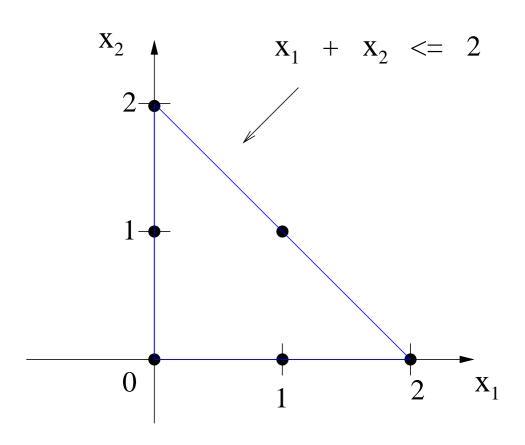
- \diamondsuit A convex set L is lattice point free, iff L has no integer points in its interior.
- \Diamond If L is maximal wrt. inclusion, then L is a full dimensional rational polyhedron
- We call maximal lattice point free sets for split bodies.
- \diamondsuit The "standard" split set: $\{x \in \mathbb{R}^n : \pi_0 \le \pi^T x \le \pi_0 + 1\}$, where $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$.
- The "standard" split set can be used for deriving:
 - ⇒ Split cuts (Cook, Kannan and Schrijver).
 - → Mixed integer Gomory cuts (Gomory).

- \Diamond A convex set L is lattice point free, iff L has no integer points in its interior.
- \Diamond If L is maximal wrt. inclusion, then L is a full dimensional rational polyhedron
- We call maximal lattice point free sets for split bodies.
- \diamondsuit The "standard" split set: $\{x \in \mathbb{R}^n : \pi_0 \leq \pi^T x \leq \pi_0 + 1\}$, where $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$.
- The "standard" split set can be used for deriving:
 - ⇒ Split cuts (Cook, Kannan and Schrijver).
 - → Mixed integer Gomory cuts (Gomory).
 - Mixed integer rounding cuts (Nemhauser and Wolsey).

Split bodies: Examples



Split bodies: Examples



Suppose P is an LP relaxation of an integer set P_I .

- \Diamond Suppose P is an LP relaxation of an integer set P_I .
- \diamondsuit A split body L gives a stronger relaxation of P_I $R(L,P) := \operatorname{conv}(\{x \in P : x \notin \operatorname{int}(L)\}).$

- \Diamond Suppose P is an LP relaxation of an integer set P_I .
- \diamondsuit A split body L gives a stronger relaxation of P_I $R(L,P) := \operatorname{conv}(\{x \in P : x \notin \operatorname{int}(L)\}).$
- \diamondsuit If P is mixed with $(x,y) \in \mathbb{Z}^p \times \mathbb{R}^q$, we extend L to $\tilde{L} := \{(x,y) \in \mathbb{R}^{p+q} : x \in L\}$

- \Diamond Suppose P is an LP relaxation of an integer set P_I .
- \diamondsuit A split body L gives a stronger relaxation of P_I $R(L,P) := \operatorname{conv}(\{x \in P : x \notin \operatorname{int}(L)\}).$
- \diamondsuit If P is mixed with $(x,y) \in \mathbb{Z}^p \times \mathbb{R}^q$, we extend L to $\tilde{L} := \{(x,y) \in \mathbb{R}^{p+q} : x \in L\}$
- \diamondsuit If L is a "standard" split set, then valid inequalities for R(L,P) are called split cuts.

- \Diamond Suppose P is an LP relaxation of an integer set P_I .
- \diamondsuit A split body L gives a stronger relaxation of P_I $R(L,P) := \operatorname{conv}(\{x \in P : x \notin \operatorname{int}(L)\}).$
- \diamondsuit If P is mixed with $(x,y) \in \mathbb{Z}^p \times \mathbb{R}^q$, we extend L to $\tilde{L} := \{(x,y) \in \mathbb{R}^{p+q} : x \in L\}$
- \Diamond If L is a "standard" split set, then valid inequalities for R(L,P) are called split cuts.
- \Diamond We show (for a general split body L):

- \Diamond Suppose P is an LP relaxation of an integer set P_I .
- \diamondsuit A split body L gives a stronger relaxation of P_I $R(L,P) := \operatorname{conv}(\{x \in P : x \notin \operatorname{int}(L)\}).$
- \diamondsuit If P is mixed with $(x,y) \in \mathbb{Z}^p \times \mathbb{R}^q$, we extend L to $\tilde{L} := \{(x,y) \in \mathbb{R}^{p+q} : x \in L\}$
- \diamondsuit If L is a "standard" split set, then valid inequalities for R(L,P) are called split cuts.
- \Diamond We show (for a general split body L):
 - \Rightarrow R(L,P) is a rational polyhedron.

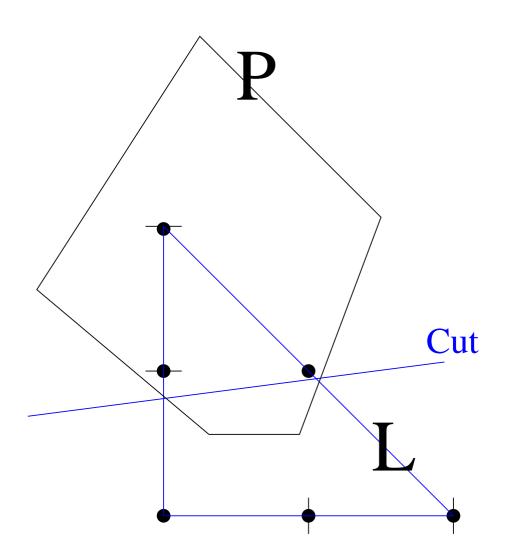
- \Diamond Suppose P is an LP relaxation of an integer set P_I .
- \diamondsuit A split body L gives a stronger relaxation of P_I $R(L,P) := \operatorname{conv}(\{x \in P : x \notin \operatorname{int}(L)\}).$
- \diamondsuit If P is mixed with $(x,y) \in \mathbb{Z}^p \times \mathbb{R}^q$, we extend L to $\tilde{L} := \{(x,y) \in \mathbb{R}^{p+q} : x \in L\}$
- \Diamond If L is a "standard" split set, then valid inequalities for R(L,P) are called split cuts.
- \Diamond We show (for a general split body L):
 - \Rightarrow R(L,P) is a rational polyhedron.
 - \Rightarrow $R(L,P) \neq P$ iff $v \in int(L)$ for some vertex v of P.

- \Diamond Suppose P is an LP relaxation of an integer set P_I .
- \diamondsuit A split body L gives a stronger relaxation of P_I $R(L,P) := \operatorname{conv}(\{x \in P : x \notin \operatorname{int}(L)\}).$
- \diamondsuit If P is mixed with $(x,y) \in \mathbb{Z}^p \times \mathbb{R}^q$, we extend L to $\tilde{L} := \{(x,y) \in \mathbb{R}^{p+q} : x \in L\}$
- \diamondsuit If L is a "standard" split set, then valid inequalities for R(L,P) are called split cuts.
- \Diamond We show (for a general split body L):
 - \Rightarrow R(L,P) is a rational polyhedron.
 - \Rightarrow $R(L,P) \neq P$ iff $v \in int(L)$ for some vertex v of P.
- \diamondsuit We call valid inequalities for R(L,P) higher rank split cuts.

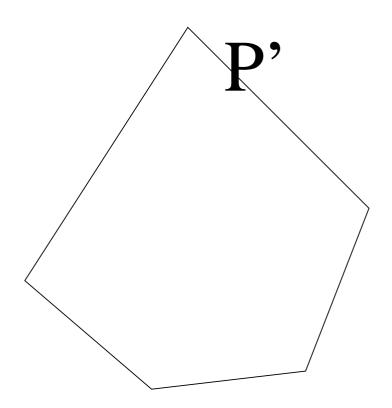
A split body and an LP relaxation



A split body and an LP relaxation



A split body and an LP relaxation



 $\diamondsuit \qquad \text{Assume P is a polytope for simplicity:} \\ P = \operatorname{conv}(\{v^i\}_{i \in V}).$

 \diamondsuit Assume P is a polytope for simplicity:

$$P = \operatorname{conv}(\{v^i\}_{i \in V}).$$

Notation:

 $V^{\text{in}} \sim \text{vertices } i \in V \text{ of } P \text{ such that } v^i \in \text{int}(L)$

 $V^{\text{out}} \sim \text{vertices } i \in V \text{ of } P \text{ such that } v^i \notin \text{int}(L)$

- \diamondsuit Assume P is a polytope for simplicity: $P = \operatorname{conv}(\{v^i\}_{i \in V})$.
- \lozenge Notation: $V^{\mathsf{in}} \sim \mathsf{vertices} \ i \in V \ \mathsf{of} \ P \ \mathsf{such that} \ v^i \in \mathsf{int}(L)$ $V^{\mathsf{out}} \sim \mathsf{vertices} \ i \in V \ \mathsf{of} \ P \ \mathsf{such that} \ v^i \notin \mathsf{int}(L)$
- \diamondsuit It seems every vertex of R(L,P) is on a line between vertices v^{i_1} and v^{i_2} , where $i_1 \in V^{\text{in}}$ and $i_2 \in V^{\text{out}}$.

- \diamondsuit Assume P is a polytope for simplicity: $P = \operatorname{conv}(\{v^i\}_{i \in V})$.
- \lozenge Notation: $V^{\mathsf{in}} \sim \mathsf{vertices} \ i \in V \ \mathsf{of} \ P \ \mathsf{such that} \ v^i \in \mathsf{int}(L)$ $V^{\mathsf{out}} \sim \mathsf{vertices} \ i \in V \ \mathsf{of} \ P \ \mathsf{such that} \ v^i \notin \mathsf{int}(L)$
- \diamondsuit It seems every vertex of R(L,P) is on a line between vertices v^{i_1} and v^{i_2} , where $i_1 \in V^{\text{in}}$ and $i_2 \in V^{\text{out}}$.
- \diamondsuit For $i \in V^{\text{in}}$ and $k \in V^{\text{out}}$, let $\beta_{i,k} \in]0,1]$ be such that $\beta_{i,k}v^k + (1-\beta_{i,k})v^i$ is on the boundary of L.

- \diamondsuit Assume P is a polytope for simplicity: $P = \operatorname{conv}(\{v^i\}_{i \in V})$.
- \lozenge Notation: $V^{\mathsf{in}} \sim \mathsf{vertices} \ i \in V \ \mathsf{of} \ P \ \mathsf{such that} \ v^i \in \mathsf{int}(L)$ $V^{\mathsf{out}} \sim \mathsf{vertices} \ i \in V \ \mathsf{of} \ P \ \mathsf{such that} \ v^i \notin \mathsf{int}(L)$
- \diamondsuit It seems every vertex of R(L,P) is on a line between vertices v^{i_1} and v^{i_2} , where $i_1 \in V^{\text{in}}$ and $i_2 \in V^{\text{out}}$.
- \diamondsuit For $i \in V^{\text{in}}$ and $k \in V^{\text{out}}$, let $\beta_{i,k} \in]0,1]$ be such that $\beta_{i,k}v^k + (1-\beta_{i,k})v^i$ is on the boundary of L.
- \diamondsuit We call $\beta_{i,k}v^k + (1-\beta_{i,k})v^i$ an intersection point

 $\diamondsuit \qquad \text{For every } i \in V^{\text{in}} \text{, we have a subset of } P$ $P^i := \operatorname{conv}(\{v^i \cup \{v^k\}_{k \in V^{\text{out}}})\text{.}$

 $\diamondsuit \qquad \text{For every } i \in V^{\text{in}} \text{, we have a subset of } P$ $P^i := \operatorname{conv}(\{v^i \cup \{v^k\}_{k \in V^{\text{out}}})\text{.}$

 \diamondsuit Trivially $P = \operatorname{conv}(\bigcup_{i \in V^{\text{in}}} P^i)$.

- $\diamondsuit \qquad \text{For every } i \in V^{\text{in}} \text{, we have a subset of } P$ $P^i := \operatorname{conv}(\{v^i \cup \{v^k\}_{k \in V^{\text{out}}})\text{.}$
- \diamondsuit Trivially $P = \operatorname{conv}(\cup_{i \in V^{\mathsf{in}}} P^i)$.
- \diamondsuit Any $x \in P^i$ can be written as:

$$\begin{split} x &= (1 - \sum_{k \in V^{\text{out}}} \lambda_k) v^i + \sum_{k \in V^{\text{out}}} \lambda_k v^k, \\ &= v^i + \sum_{k \in V^{\text{out}}} \lambda_k (v^k - v^i), \\ \text{where } \lambda \in \Lambda := \{\lambda \geq 0 : \sum_{k \in V^{\text{out}}} \lambda_k \leq 1\}. \end{split}$$

- $\diamondsuit \qquad \text{For every } i \in V^{\text{in}} \text{, we have a subset of } P$ $P^i := \operatorname{conv}(\{v^i \cup \{v^k\}_{k \in V^{\text{out}}})\text{.}$
- \diamondsuit Trivially $P = \operatorname{conv}(\cup_{i \in V^{\mathsf{in}}} P^i)$.
- \diamondsuit Any $x \in P^i$ can be written as:

$$\begin{split} x &= (1 - \sum_{k \in V^{\text{out}}} \lambda_k) v^i + \sum_{k \in V^{\text{out}}} \lambda_k v^k, \\ &= v^i + \sum_{k \in V^{\text{out}}} \lambda_k (v^k - v^i), \\ \text{where } \lambda \in \Lambda := \{\lambda \geq 0 : \sum_{k \in V^{\text{out}}} \lambda_k \leq 1\}. \end{split}$$

 \diamondsuit Hence P^i is the projection of the set: $Q^i := \{(x,\lambda): x = v^i + \sum_{k \in V^{\mathsf{out}}} \lambda_k (v^k - v^i), \lambda \in \Lambda \}$

onto the space of x-variables.

- For every $i \in V^{\text{in}}$, we have a subset of P
 - $P^i := \operatorname{conv}(\{v^i \cup \{v^k\}_{k \in V^{\mathsf{out}}}).$
- Trivially $P = \operatorname{conv}(\bigcup_{i \in V^{\text{in}}} P^i)$.
- Any $x \in P^i$ can be written as:

$$\begin{split} x &= (1 - \sum_{k \in V^{\text{out}}} \lambda_k) v^i + \sum_{k \in V^{\text{out}}} \lambda_k v^k, \\ &= v^i + \sum_{k \in V^{\text{out}}} \lambda_k (v^k - v^i), \end{split}$$

where $\lambda \in \Lambda := \{\lambda \geq 0 : \sum_{k \in V^{\text{out}}} \lambda_k \leq 1\}$.

Hence P^i is the projection of the set:

$$Q^i := \{(x,\lambda) : x = v^i + \sum_{k \in V^{\text{out}}} \lambda_k (v^k - v^i), \lambda \in \Lambda\}$$

- onto the space of x-variables.
- Theorem.

$$R(L,Q^i)=\{(x,\lambda)\in Q^i:\sum_{k\in V^{\mathrm{out}}} \frac{\lambda_k}{\beta_{i,k}}\geq 1\}$$
 .

 \diamondsuit There is only one inequality needed to describe $R(L,Q^i)$.

- \diamondsuit There is only one inequality needed to describe $R(L,Q^i)$.
- \diamondsuit The inequality $\sum_{k \in V^{\text{out}}} \frac{\lambda_k}{\beta_{i,k}} \ge 1$ is called the intersection cut (Balas).

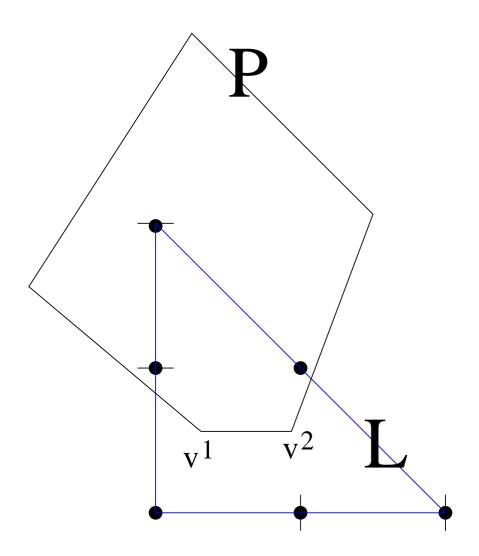
- \diamondsuit There is only one inequality needed to describe $R(L,Q^i)$.
- \diamondsuit The inequality $\sum_{k \in V^{\text{out}}} \frac{\lambda_k}{\beta_{i,k}} \ge 1$ is called the intersection cut (Balas).
- ♦ Consequences...

- \diamondsuit There is only one inequality needed to describe $R(L,Q^i)$.
- \diamondsuit The inequality $\sum_{k \in V^{\text{out}}} \frac{\lambda_k}{\beta_{i,k}} \ge 1$ is called the intersection cut (Balas).
- ♦ Consequences...
- \diamondsuit Every vertex of R(L,P) is of the form $v^i(1-\beta_{i,k})+\beta_{i,k}v^k$, where $i\in V^{\text{in}}$ and $k\in V^{\text{out}}$.

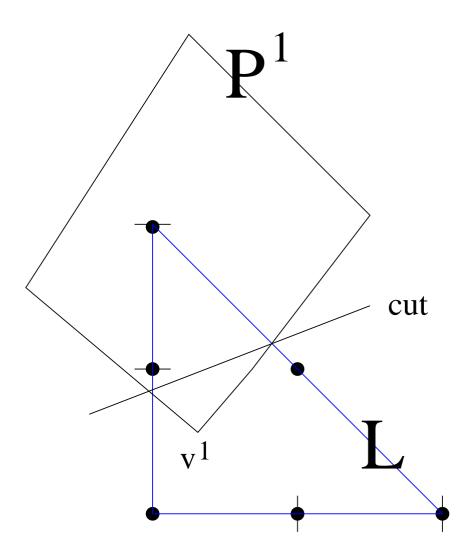
- \diamondsuit There is only one inequality needed to describe $R(L,Q^i)$.
- \diamondsuit The inequality $\sum_{k \in V^{\text{out}}} \frac{\lambda_k}{\beta_{i,k}} \ge 1$ is called the intersection cut (Balas).
- ♦ Consequences...
- \diamondsuit Every vertex of R(L,P) is of the form $v^i(1-\beta_{i,k})+\beta_{i,k}v^k$, where $i\in V^{\text{in}}$ and $k\in V^{\text{out}}$.
- \diamondsuit We can write $R(L,P) = \operatorname{conv}(\bigcup_{i \in V^{\text{in}}} R(L,P^i))$.

- \diamondsuit There is only one inequality needed to describe $R(L,Q^i)$.
- \diamondsuit The inequality $\sum_{k \in V^{\text{out}}} \frac{\lambda_k}{\beta_{i,k}} \ge 1$ is called the intersection cut (Balas).
- ♦ Consequences...
- \diamondsuit Every vertex of R(L,P) is of the form $v^i(1-\beta_{i,k})+\beta_{i,k}v^k$, where $i\in V^{\text{in}}$ and $k\in V^{\text{out}}$.
- \diamondsuit We can write $R(L,P) = \operatorname{conv}(\bigcup_{i \in V^{\text{in}}} R(L,P^i))$.
- \Diamond R(L,P) is completely characterized by the intersection points.

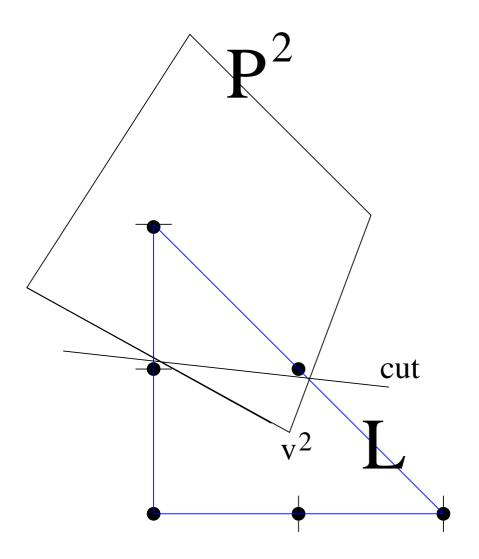
The example continued



The example continued



The example continued



$$\Diamond$$

Let $(\pi^k)^T x \ge \pi_0^k$ with $(\pi^k, \pi_0^k) \in \mathbb{Z}^{n+1}$ for $k = 1, 2, \dots, nf$ be the facets of L.

- \diamondsuit Let $(\pi^k)^T x \ge \pi_0^k$ with $(\pi^k, \pi_0^k) \in \mathbb{Z}^{n+1}$ for $k = 1, 2, \ldots, nf$ be the facets of L.
- \diamondsuit The width of L along a vector v is the number (Lovász): $w(L,v):=\max_{x\in L}v^Tx-\min_{x\in L}v^Tx$.

- \diamondsuit Let $(\pi^k)^T x \ge \pi_0^k$ with $(\pi^k, \pi_0^k) \in \mathbb{Z}^{n+1}$ for $k = 1, 2, \ldots, nf$ be the facets of L.
- \diamondsuit The width of L along a vector v is the number (Lovász): $w(L,v):=\max_{x\in L}v^Tx-\min_{x\in L}v^Tx$.
- $\diamondsuit \qquad \text{The max-facet-width of L is the number:} \\ w(L) := \max_k w(L, \pi^k).$

- \diamondsuit Let $(\pi^k)^T x \ge \pi_0^k$ with $(\pi^k, \pi_0^k) \in \mathbb{Z}^{n+1}$ for $k = 1, 2, \ldots, nf$ be the facets of L.
- \diamondsuit The width of L along a vector v is the number (Lovász): $w(L,v):=\max_{x\in L}v^Tx-\min_{x\in L}v^Tx$.
- $\diamondsuit \qquad \text{The max-facet-width of L is the number:} \\ w(L) := \max_k w(L, \pi^k).$
- \Diamond Observe: any split set $\{x: \pi_0 \leq \pi^T x \leq \pi_0 + 1\}$ has max-facet-width equal to one.

- \diamondsuit Let $(\pi^k)^T x \ge \pi_0^k$ with $(\pi^k, \pi_0^k) \in \mathbb{Z}^{n+1}$ for $k = 1, 2, \dots, nf$ be the facets of L.
- \diamondsuit The width of L along a vector v is the number (Lovász): $w(L,v):=\max_{x\in L}v^Tx-\min_{x\in L}v^Tx$.
- \diamondsuit The max-facet-width of L is the number: $w(L) := \max_k w(L, \pi^k)$.
- \Diamond Observe: any split set $\{x: \pi_0 \leq \pi^T x \leq \pi_0 + 1\}$ has max-facet-width equal to one.
- \Diamond Our example: The set $\{x \in \mathbb{R}^2 : x \geq 0 \text{ and } x_1 + x_2 \leq 2\}$ has max-facet-width equal to two.

 \diamondsuit The minimum $w \ge 1$ for which $\delta^T x \ge \delta_0$ is valid for R(L,P) for some split body L with max-facet-width w is called the split rank of $\delta^T x \ge \delta_0$.

- \diamondsuit The minimum $w \ge 1$ for which $\delta^T x \ge \delta_0$ is valid for R(L,P) for some split body L with max-facet-width w is called the split rank of $\delta^T x \ge \delta_0$.
- \Diamond For a set $P_I \subseteq \mathbb{Z}^p \times \mathbb{R}^q$, the split rank of $\delta^T x \geq \delta_0$ depends on structure of the set:

$$P^x(\delta, \delta_0) := \{x : \exists y \text{ s.t. } (x, y) \in P \text{ and } (\delta^x)^T x + (\delta^y)^T y \leq \delta_0 \}.$$

- \diamondsuit The minimum $w \ge 1$ for which $\delta^T x \ge \delta_0$ is valid for R(L,P) for some split body L with max-facet-width w is called the split rank of $\delta^T x \ge \delta_0$.
- \diamondsuit For a set $P_I \subseteq \mathbb{Z}^p \times \mathbb{R}^q$, the split rank of $\delta^T x \geq \delta_0$ depends on structure of the set:

$$P^x(\delta, \delta_0) := \{x : \exists y \text{ s.t. } (x,y) \in P \text{ and } (\delta^x)^T x + (\delta^y)^T y \leq \delta_0 \}.$$

Consider the mixed integer program:

Max y

Subject to

$$-x_i + y \le 0$$
 for $i = 1, 2, ..., p$, $\sum_{i=1}^p x_i + y \le p$, $y \ge 0$ and x_i integer for $i = 1, 2, ..., p$.

- \diamondsuit The minimum $w \ge 1$ for which $\delta^T x \ge \delta_0$ is valid for R(L,P) for some split body L with max-facet-width w is called the split rank of $\delta^T x \ge \delta_0$.
- \diamondsuit For a set $P_I \subseteq \mathbb{Z}^p \times \mathbb{R}^q$, the split rank of $\delta^T x \geq \delta_0$ depends on structure of the set:

$$P^x(\delta, \delta_0) := \{x : \exists y \text{ s.t. } (x,y) \in P \text{ and } (\delta^x)^T x + (\delta^y)^T y \leq \delta_0 \}.$$

Consider the mixed integer program:

Max y

Subject to

$$-x_i + y \le 0$$
 for $i = 1, 2, \dots, p$, $\sum_{i=1}^p x_i + y \le p$, $y \ge 0$ and x_i integer for $i = 1, 2, \dots, p$.

The valid inequality $y \leq 0$ has split rank p.

 \Diamond

Given a number $w \geq 1$, define:

 $\mathcal{L}^w := \{L : L \text{ is a split body satisfying } w(L) \leq w\}$ of split bodies with max-facet-width at most w.

- \diamondsuit Given a number $w \ge 1$, define:
 - $\mathcal{L}^w := \{L: L \text{ is a split body satisfying } w(L) \leq w \}$ of split bodies with max-facet-width at most w.
- \diamondsuit When w=1, \mathcal{L}^w consists of the (usual) split bodies $L_{\pi,\pi_0}=\{x:\pi_0\leq\pi^Tx\leq\pi_0+1\}$, where $(\pi,\pi_0)\in\mathbb{Z}^{n+1}$.

- \diamondsuit Given a number $w \ge 1$, define: $\mathcal{L}^w := \{L : L \text{ is a split body satisfying } w(L) \le w\}$ of split bodies with max-facet-width at most w.
- \diamondsuit When w=1, \mathcal{L}^w consists of the (usual) split bodies $L_{\pi,\pi_0}=\{x:\pi_0\leq\pi^Tx\leq\pi_0+1\}$, where $(\pi,\pi_0)\in\mathbb{Z}^{n+1}$.
- \diamondsuit For any $w \geq 1$, the w^{th} split closure is defined to be: $\mathsf{Cl}_{w}(P) := \cap_{L \in \mathcal{L}^{w}} R(L,P)$.

- \diamondsuit Given a number $w \ge 1$, define: $\mathcal{L}^w := \{L : L \text{ is a split body satisfying } w(L) \le w\}$ of split bodies with max-facet-width at most w.
- \diamondsuit When w=1, \mathcal{L}^w consists of the (usual) split bodies $L_{\pi,\pi_0}=\{x:\pi_0\leq\pi^Tx\leq\pi_0+1\}$, where $(\pi,\pi_0)\in\mathbb{Z}^{n+1}$.
- \diamondsuit For any $w \geq 1$, the $w^{\sf th}$ split closure is defined to be: ${\sf Cl}_{\pmb w}(P) := \cap_{L \in \mathcal{L}^w} R(L,P)$.
- \diamondsuit For w = 1, $Cl_1(P)$ is known to be a polyhedron.

- \diamondsuit Given a number $w \ge 1$, define: $\mathcal{L}^w := \{L : L \text{ is a split body satisfying } w(L) \le w\}$ of split bodies with max-facet-width at most w.
- \diamondsuit When w = 1, \mathcal{L}^w consists of the (usual) split bodies $L_{\pi,\pi_0} = \{x : \pi_0 \leq \pi^T x \leq \pi_0 + 1\}$, where $(\pi,\pi_0) \in \mathbb{Z}^{n+1}$.
- \diamondsuit For any $w \geq 1$, the w^{th} split closure is defined to be: $\mathsf{Cl}_{w}(P) := \cap_{L \in \mathcal{L}^{w}} R(L, P)$.
- \diamondsuit For w = 1, $Cl_1(P)$ is known to be a polyhedron.
- \diamondsuit We show: for a fixed value $w \ge 1$, $\operatorname{Cl}_w(P)$ is a polyhedron.

- \Diamond Given a number $w \geq 1$, define:
 - $\mathcal{L}^w := \{L: L \text{ is a split body satisfying } w(L) \leq w \}$ of split bodies with max-facet-width at most w.
- \diamondsuit When w = 1, \mathcal{L}^w consists of the (usual) split bodies $L_{\pi,\pi_0} = \{x : \pi_0 \leq \pi^T x \leq \pi_0 + 1\}$, where $(\pi,\pi_0) \in \mathbb{Z}^{n+1}$.
- \diamondsuit For any $w \ge 1$, the w^{th} split closure is defined to be: $\mathsf{Cl}_{w}(P) := \cap_{L \in \mathcal{L}^{w}} R(L, P)$.
- \diamondsuit For w = 1, $Cl_1(P)$ is known to be a polyhedron.
- \diamondsuit We show: for a fixed value $w \ge 1$, $\operatorname{Cl}_w(P)$ is a polyhedron.
- \Diamond Our proof is based on a characterization of the facets of R(L,P).

 \diamondsuit To every facet $\delta^T x \geq \delta_0$, sets can be associated.

- \diamondsuit To every facet $\delta^T x \geq \delta_0$, sets can be associated.
- \diamondsuit A set $V^c \subseteq V^{\text{in}}$ of vertices of P that are cut off by $\delta^T x > \delta_0$.

- \diamondsuit To every facet $\delta^T x \geq \delta_0$, sets can be associated.
- \diamondsuit A set $V^c \subseteq V^{\text{in}}$ of vertices of P that are cut off by $\delta^T x > \delta_0$.
- \diamondsuit For every $i \in V^c$, a set $V^i \subseteq V^{\text{out}}$ such that:

- \diamondsuit To every facet $\delta^T x \geq \delta_0$, sets can be associated.
- \diamondsuit A set $V^c \subseteq V^{\text{in}}$ of vertices of P that are cut off by $\delta^T x > \delta_0$.
- \diamondsuit For every $i \in V^c$, a set $V^i \subseteq V^{\text{out}}$ such that:
 - The intersection point $(1 \beta_{i,k})v^i + \beta_{i,k}v^k$ for $k \in V^i$ satisfies $\delta^T x \geq \delta_0$ with equality.

- \diamondsuit To every facet $\delta^T x \geq \delta_0$, sets can be associated.
- \diamondsuit A set $V^c \subseteq V^{\text{in}}$ of vertices of P that are cut off by $\delta^T x > \delta_0$.
- \diamondsuit For every $i \in V^c$, a set $V^i \subseteq V^{\text{out}}$ such that:
 - The intersection point $(1 \beta_{i,k})v^i + \beta_{i,k}v^k$ for $k \in V^i$ satisfies $\delta^T x \geq \delta_0$ with equality.
 - \Rightarrow $P^i(V^i) := \operatorname{conv}(\{v^i\} \cup \{v^k\}_{k \in V^i})$ is a simplex.

- \diamondsuit To every facet $\delta^T x \geq \delta_0$, sets can be associated.
- \diamondsuit A set $V^c \subseteq V^{\text{in}}$ of vertices of P that are cut off by $\delta^T x > \delta_0$.
- \diamondsuit For every $i \in V^c$, a set $V^i \subseteq V^{\text{out}}$ such that:
 - The intersection point $(1 \beta_{i,k})v^i + \beta_{i,k}v^k$ for $k \in V^i$ satisfies $\delta^T x \geq \delta_0$ with equality.
 - \Rightarrow $P^i(V^i) := \operatorname{conv}(\{v^i\} \cup \{v^k\}_{k \in V^i})$ is a simplex.
 - \Rightarrow $R(L, P^i(V^i)) = \{x \in P^i(V^i) : \delta^T x \ge \delta_0\}.$

- \diamondsuit To every facet $\delta^T x \geq \delta_0$, sets can be associated.
- \diamondsuit A set $V^c \subseteq V^{\text{in}}$ of vertices of P that are cut off by $\delta^T x > \delta_0$.
- \diamondsuit For every $i \in V^c$, a set $V^i \subseteq V^{\text{out}}$ such that:
 - The intersection point $(1 \beta_{i,k})v^i + \beta_{i,k}v^k$ for $k \in V^i$ satisfies $\delta^T x \geq \delta_0$ with equality.
 - \Rightarrow $P^i(V^i) := \operatorname{conv}(\{v^i\} \cup \{v^k\}_{k \in V^i})$ is a simplex.
 - $\Rightarrow R(L, P^i(V^i)) = \{x \in P^i(V^i) : \delta^T x \ge \delta_0\}.$
- \diamondsuit If we let $ar{V}:=V^c\cup(\cup_{i\in V^c}V^i)$ (all vertices above) and $P(ar{V}):=\mathrm{conv}(\{v^k\}_{k\inar{V}})$, then $R(L,P(ar{V}))=\mathrm{conv}(\cup_{i\in V^c}R(L,P^i(V^i)))$

 $= \{x \in P(\bar{V}) : \delta^T x > \delta_0 \}.$

 \Diamond

There is a one-to-one correspondence between sets $B:=(V^{\rm in},V^c,\{V^i\}_{i\in V^c})$ and facets of R(L,P).

- \diamondsuit There is a one-to-one correspondence between sets $B:=(V^{\rm in},V^c,\{V^i\}_{i\in V^c})$ and facets of R(L,P).
- \diamondsuit Given B, consider all split bodies L for which B gives a facet:

 $\mathcal{L}^{w}(B) := \{L : B \text{ defines a facet for } R(L, P)\}.$

- \diamondsuit There is a one-to-one correspondence between sets $B:=(V^{\rm in},V^c,\{V^i\}_{i\in V^c})$ and facets of R(L,P).
- \diamondsuit Given B, consider all split bodies L for which B gives a facet:

$$\mathcal{L}^w(B) := \{L : B \text{ defines a facet for } R(L, P)\}.$$

 \diamondsuit We can denote every inequality derived from a split body $L \in \mathcal{L}^w$ and a set B by $(\delta(L, B))^T x \ge \delta_0(L, B)$.

- \diamondsuit There is a one-to-one correspondence between sets $B:=(V^{\rm in},V^c,\{V^i\}_{i\in V^c})$ and facets of R(L,P).
- \diamondsuit Given B, consider all split bodies L for which B gives a facet:

$$\mathcal{L}^{w}(B) := \{L : B \text{ defines a facet for } R(L, P)\}.$$

- \diamondsuit We can denote every inequality derived from a split body $L \in \mathcal{L}^w$ and a set B by $(\delta(L, B))^T x \ge \delta_0(L, B)$.
- \diamondsuit We show: For a fixed B, only a finite number of non-dominated inequalities $(\delta(L,B))^Tx \geq \delta_0(L,B)$ with $L \in \mathcal{L}^w(B)$ are needed.

- \diamondsuit There is a one-to-one correspondence between sets $B:=(V^{\rm in},V^c,\{V^i\}_{i\in V^c})$ and facets of R(L,P).
- \diamondsuit Given B, consider all split bodies L for which B gives a facet:
 - $\mathcal{L}^{w}(B) := \{L : B \text{ defines a facet for } R(L, P)\}.$
- \diamondsuit We can denote every inequality derived from a split body $L \in \mathcal{L}^w$ and a set B by $(\delta(L, B))^T x \ge \delta_0(L, B)$.
- We show: For a fixed B, only a finite number of non-dominated inequalities $(\delta(L,B))^Tx \geq \delta_0(L,B)$ with $L \in \mathcal{L}^w(B)$ are needed.
- \diamondsuit Since there is only a finite number of configurations B, this shows $\operatorname{Cl}_w(P)$ is a polyhedron.