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Lattice point free sets

♦ A convex set L is lattice point free, iff L has
no integer points in its interior.

♦ If L is maximal wrt. inclusion, then L is a
full dimensional rational polyhedron

♦ We call maximal lattice point free sets for split bodies.

♦ The “standard” split set: {x ∈ R
n : π0 ≤ πT x ≤ π0 + 1},

where (π, π0) ∈ Z
n+1.

♦ The “standard” split set can be used for deriving:
⇒ Split cuts (Cook, Kannan and Schrijver).
⇒ Mixed integer Gomory cuts (Gomory).
⇒ Mixed integer rounding cuts

(Nemhauser and Wolsey).
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Split bodies and cutting planes

♦ Suppose P is an LP relaxation of an integer set PI .

♦ A split body L gives a stronger relaxation of PI

R(L,P ) := conv({x ∈ P : x /∈ int(L)}).

♦ If P is mixed with (x, y) ∈ Z
p × R

q, we extend L to
L̃ := {(x, y) ∈ R

p+q : x ∈ L}

♦ If L is a “standard” split set, then valid inequalities for
R(L,P ) are called split cuts.

♦ We show (for a general split body L):
⇒ R(L,P ) is a rational polyhedron.
⇒ R(L,P ) 6= P iff v ∈ int(L) for some vertex v of P .

♦ We call valid inequalities for R(L,P ) higher rank split
cuts.
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Structure of relaxations from split bodies

♦ Assume P is a polytope for simplicity:
P = conv({vi}i∈V ).
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♦ It seems every vertex of R(L,P ) is on a line between
vertices vi1 and vi2, where i1 ∈ V in and i2 ∈ V out.

♦ For i ∈ V in and k ∈ V out, let βi,k ∈]0, 1] be such that
βi,kv

k + (1 − βi,k)v
i is on the boundary of L.

♦ We call βi,kv
k + (1 − βi,k)v

i an intersection point
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P i := conv({vi ∪ {vk}k∈V out).

♦ Trivially P = conv(∪i∈V inP i).

♦ Any x ∈ P i can be written as:
x = (1 −

∑
k∈V out λk)v

i +
∑

k∈V out λkv
k,

= vi +
∑

k∈V out λk(v
k − vi),

where λ ∈ Λ := {λ ≥ 0 :
∑

k∈V out λk ≤ 1}.

♦ Hence P i is the projection of the set:
Qi := {(x, λ) : x = vi +

∑
k∈V out λk(v

k − vi), λ ∈ Λ}

onto the space of x-variables.

♦ Theorem:
R(L,Qi) = {(x, λ) ∈ Qi :

∑
k∈V out

λk

βi,k
≥ 1}.
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Structure of relaxations from split bodies

♦ There is only one inequality needed to describe
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Structure of relaxations from split bodies

♦ There is only one inequality needed to describe
R(L,Qi).

♦ The inequality
∑

k∈V out
λk

βi,k
≥ 1 is called the intersection

cut (Balas).

♦ Consequences...

♦ Every vertex of R(L,P ) is of the form
vi(1 − βi,k) + βi,kv

k, where i ∈ V in and k ∈ V out.

♦ We can write R(L,P ) = conv(∪i∈V inR(L,P i)).

♦ R(L,P ) is completely characterized by the intersection
points.
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The example continued
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Width measures and split rank

♦ Let (πk)Tx ≥ πk
0 with (πk, πk

0 ) ∈ Z
n+1 for k = 1, 2, . . . , nf

be the facets of L.
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♦ Let (πk)Tx ≥ πk
0 with (πk, πk

0 ) ∈ Z
n+1 for k = 1, 2, . . . , nf

be the facets of L.

♦ The width of L along a vector v is the number (Lovász):
w(L, v) := max

x∈L
vT x − min

x∈L
vT x.

♦ The max-facet-width of L is the number:
w(L) := max

k
w(L, πk).

♦ Observe : any split set {x : π0 ≤ πT x ≤ π0 + 1} has
max-facet-width equal to one.

♦ Our example : The set {x ∈ R
2 : x ≥ 0 and x1 + x2 ≤ 2}

has max-facet-width equal to two.
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♦ Consider the mixed integer program:
Max y
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♦ The minimum w ≥ 1 for which δTx ≥ δ0 is valid for
R(L,P ) for some split body L with max-facet-width w is
called the split rank of δTx ≥ δ0.

♦ For a set PI ⊆ Z
p × R

q, the split rank of δTx ≥ δ0

depends on structure of the set:
P x(δ, δ0) := {x : ∃y s.t. (x, y) ∈ P and (δx)T x+(δy)T y ≤ δ0}.

♦ Consider the mixed integer program:
Max y
Subject to

−xi + y ≤ 0 for i = 1, 2, . . . , p,∑p
i=1

xi + y ≤ p,
y ≥ 0 and xi integer for i = 1, 2, . . . , p.

♦ The valid inequality y ≤ 0 has split rank p.
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Higher dimensional split closures

♦ Given a number w ≥ 1, define:
Lw := {L : L is a split body satisfying w(L) ≤ w}

of split bodies with max-facet-width at most w.
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♦ Given a number w ≥ 1, define:
Lw := {L : L is a split body satisfying w(L) ≤ w}

of split bodies with max-facet-width at most w.

♦ When w = 1, Lw consists of the (usual) split bodies
Lπ,π0

= {x : π0 ≤ πT x ≤ π0 + 1}, where (π, π0) ∈ Z
n+1.

♦ For any w ≥ 1, the wth split closure is defined to be:
Clw(P ) := ∩L∈LwR(L,P ).

♦ For w = 1, Cl1(P ) is known to be a polyhedron.

♦ We show: for a fixed value w ≥ 1, Clw(P ) is a
polyhedron.

♦ Our proof is based on a characterization of the facets
of R(L,P ).
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Polyhedrality of split closures

♦ To every facet δTx ≥ δ0, sets can be associated.
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satisfies δTx ≥ δ0 with equality.
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♦ A set V c ⊆ V in of vertices of P that are cut off by
δTx ≥ δ0.

♦ For every i ∈ V c, a set V i ⊆ V out such that:

⇒ The intersection point (1 − βi,k)v
i + βi,kv

k for k ∈ V i

satisfies δTx ≥ δ0 with equality.

⇒ P i(V i) := conv({vi} ∪ {vk}k∈V i) is a simplex.

⇒ R(L,P i(V i)) = {x ∈ P i(V i) : δTx ≥ δ0}.

♦ If we let V̄ := V c ∪ (∪i∈V cV i) (all vertices above) and
P (V̄ ) := conv({vk}k∈V̄ ), then

R(L,P (V̄ )) = conv(∪i∈V cR(L,P i(V i)))

= {x ∈ P (V̄ ) : δTx ≥ δ0}.
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Polyhedrality of split closures

♦ There is a one-to-one correspondence between sets
B := (V in, V c, {V i}i∈V c) and facets of R(L,P ).
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Polyhedrality of split closures

♦ There is a one-to-one correspondence between sets
B := (V in, V c, {V i}i∈V c) and facets of R(L,P ).

♦ Given B, consider all split bodies L for which B gives a
facet:

Lw(B) := {L : B defines a facet for R(L,P )}.

♦ We can denote every inequality derived from a split
body L ∈ Lw and a set B by (δ(L,B))Tx ≥ δ0(L,B).

♦ We show: For a fixed B, only a finite number of
non-dominated inequalities (δ(L,B))Tx ≥ δ0(L,B) with
L ∈ Lw(B) are needed.

♦ Since there is only a finite number of configurations B,
this shows Clw(P ) is a polyhedron.
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