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O A convex set L is lattice point free, iff L has
no integer points Iin its interior.

O If L is maximal wrt. inclusion, then L is a
full dimensional rational polyhedron

O We call maximal lattice point free sets for split bodies.
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where (r, 1) € 2"+,
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If L iIs maximal wrt. inclusion, then L is a
full dimensional rational polyhedron

We call maximal lattice point free sets for split bodies.

The “standard” split set: {z ¢ R" : 79 < 7wlaz < my + 1},
where (r, 1) € 2"+,

The “standard” split set can be used for deriving:
Split cuts (Cook, Kannan and Schrijver).
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A convex set L is lattice point free, iff L has
no integer points Iin its interior.

If L iIs maximal wrt. inclusion, then L is a
full dimensional rational polyhedron

We call maximal lattice point free sets for split bodies.
The “standard” split set: {z ¢ R" : 79 < 7wlaz < my + 1},
where (r, 1) € 2"+,

The “standard” split set can be used for deriving:
Split cuts (Cook, Kannan and Schrijver).
Mixed integer Gomory cuts (Gomory).
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L attice point free sets

A convex set L is lattice point free, iff L has
no integer points Iin its interior.

If L iIs maximal wrt. inclusion, then L is a
full dimensional rational polyhedron

We call maximal lattice point free sets for split bodies.

The “standard” split set: {z ¢ R" : 79 < 7wlaz < my + 1},
where (7, m) € 2",
The “standard” split set can be used for deriving:
Split cuts (Cook, Kannan and Schrijver).
Mixed integer Gomory cuts (Gomory).
Mixed integer rounding cuts

-

(Nemhauser and Wolsey). J
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Split bodies: Examples

X2 A X, + X, <= 2
2 /
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® + >
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Suppose P is an LP relaxation of an integer set ;.
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If P is mixed with (x,y) € Z” x RY, we extend L to
L:={(z,y) e RPY .1z € L}

If L Is a “standard” split set, then valid inequalities for
R(L, P) are called split cuts.

We show (for a general split body L):
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Split bodies and cutting planes

Suppose P is an LP relaxation of an integer set ;.

A split body L gives a stronger relaxation of P;
R(L,P) :=conv({z € P:x ¢ int(L)}).
If P is mixed with (x,y) € Z” x RY, we extend L to
L:={(z,y) e RPY .1z € L}
If L Is a “standard” split set, then valid inequalities for
R(L, P) are called split cuts.
We show (for a general split body L):

R(L, P) is a rational polyhedron.

R(L, P) # P iff v € int(L) for some vertex v of P.

Higher dimensional split closures —

p.5



Split bodies and cutting planes
-

Suppose P is an LP relaxation of an integer set ;.

R
O A split body L gives a stronger relaxation of P;
R(L,P):=conv({x € P:x & int(L)}).
% If P is mixed with (x,y) € Z” x RY, we extend L to
L:={(z,y) e RPY .1z € L}

O If L Is a “standard” split set, then valid inequalities for
R(L, P) are called split cuts.

O We show (for a general split body L):
= R(L, P) Is a rational polyhedron.
= R(L, P) # P iff v € int(L) for some vertex v of P.

O We call valid inequalities for R(L, P) higher rank split

L cuts. J
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O It seems every vertex of R(L, P) is on a line between
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Structure of relaxations from split bodies

=

O Assume P is a polytope for simplicity:
P = conv({v'};cy).

$  Notation: .
Vin ~ vertices i € V of P such that v’ € int(L)

Vou ~ vertices i € V of P such that v* ¢ int(L)

O It seems every vertex of R(L, P) is on a line between
vertices v** and v2, where iy € V" and iy € Vou,

$  ForieV™and ke Vo, let ;1 €]0, 1] be such that
Bi xv* 4+ (1 — B x)v is on the boundary of L.

& We call @-,kv’“ + (1 — B;x)v" an intersection point

o |

Higher dimensional split closures — p.7



Structure of relaxations from split bodies

R N

O For every : ¢ V", we have a subset of P
Pt = conv({vt U {vF},pou)-

Higher dimensional split closures — p.8



Structure of relaxations from split bodies

R N

O For every : ¢ V", we have a subset of P
Pt = conv({vt U {vF},pou)-

O Trivially P = conv(U;cyn PY).

Higher dimensional split closures — p.8



Structure of relaxations from split bodies

R N

O For every i € V" we have a subset of P
Pt = conv({vt U {vF},pou)-

O Trivially P = conv(U;cyn PY).

O Any z € P! can be written as:
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O For every i € V" we have a subset of P
Pt = conv({vt U {vF},pou)-

O Trivially P = conv(U;cyn PY).

O Any z € P! can be written as:
r = (1 _ Zke‘/out )\k‘)vz _|_ Zke‘/out )\kvki
= 0"+ 3 ey AR (V7 — 07,
Whel‘e )\ & A .= {)\ 2 O . ZkEVout )\k S 1}

& Hence P! is the projection of the set:

Qi — {(SE, )\) U= vi -+ Zke‘/out )\k(vk — Ui), P & A}
onto the space of xz-variables.
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Structure of relaxations from split bodies

R N

O For every i € V" we have a subset of P
Pt = conv({vt U {vF},pou)-
O Trivially P = conv(U;cynP?).
O Any z € P! can be written as:
r = (1 _ Zke‘/out )\k‘)vz _|_ Zke‘/out )\kvki
= 0"+ 3 ey AR (V7 — 07,
Whel‘e )\ & A .= {)\ 2 O . ZkEVout )\k S 1}

& Hence P! is the projection of the set:

Qi — {(SE, )\) U= vi -+ Zke‘/out )\k(vk — Ui), P & A}
onto the space of xz-variables.

Theorem:

R(L.Q) = {(2.0) € Q' Theym 4 > 1}. J

Higher dimensional split closures — p.8

SRS



Structure of relaxations from split bodies
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O There is only one inequality needed to describe

R(L, Q).
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R(L,Q").

O The inequality > ..y tﬁ—k > 1 Is called the intersection

cut (Balas).
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& There is only one inequality needed to describe

R(L,Q").

O The inequality > ;o % > 1 is called the intersection
cut (Balas).

& Consequences...

O Every vertex of R(L, P) Is of the form

v (1 — Bix) + Bigv™, where i € V" and k € Vou
$  We can write R(L, P) = conv(U;eynR(L, P)).
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Structure of relaxations from split bodies

N N

& There is only one inequality needed to describe

R(L,Q").

O The inequality > ;o % > 1 is called the intersection
cut (Balas).

& Consequences...

O Every vertex of R(L, P) Is of the form
v (1 — Bix) + Bigv™, where i € V" and k € Vou

$  We can write R(L, P) = conv(U;eynR(L, P)).

O R(L, P) i1s completely characterized by the intersection

points.
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Width measures and split rank
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O Let (7*)1'z > #f with (7% #f) € Z" for k= 1,2,
be the facets of L.
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O Let (7*)1'z > #k with (7% #f) € Z" for k =1,2,... nf
be the facets of L.

O The width of L along a vector v is the number (Lovasz):

. max_T min 7T
w(L,v) = Svie— v
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The width of L along a vector v is the number (Lovasz):

w(L,v) = T ole — ml%vTx

The max-facet-width of L is the number:

w(L) := "X w(L, 7%).

Observe : any split set {z : 79 < 7'z < 7y + 1} has

max-facet-width equal to one.
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Width measures and split rank
-

Let (7*)1'z > #k with (7% #f) € Z" for k =1,2,... nf
be the facets of L.

The width of L along a vector v is the number (Lovasz):
w(L,v) = ole — Moty

The max-facet-width of L is the number:

w(L) := "X w(L, 7%).

Observe : any split set {z : 79 < 7'z < 7y + 1} has
max-facet-width equal to one.

Our example : The set {x € R? : 2 > 0 and 1 + 22 < 2}
has max-facet-width equal to two.
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& The minimum w > 1 for which 61z > § is valid for
R(L, P) for some split body L with max-facet-width w Is

called the split rank of 67z > d.
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& The minimum w > 1 for which 61z > § is valid for
R(L, P) for some split body L with max-facet-width w Is

called the split rank of 67z > d.

$  Foraset P; C ZP x RY, the split rank of 57z > d
depends on structure of the set:

P?(6,80) == {z : Iy st (z,y) € Pand (6°) 2+ (6Y)1y < dp}.
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Width measures and split rank

-

& The minimum w > 1 for which 61z > § is valid for
R(L, P) for some split body L with max-facet-width w Is

called the split rank of 67z > d.

$  Foraset P; C ZP x RY, the split rank of 57z > d
depends on structure of the set:

P?(6,80) == {z : Iy st (z,y) € Pand (6°) 2+ (6Y)1y < dp}.

O Consider the mixed integer program:
Max y
Subject to
—x; +y<0fore=1,2,...,p,
le r; +y < p,
y > 0and x; integerfori =1,2,...,p.
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Width measures and split rank

-

& The minimum w > 1 for which 61z > § is valid for
R(L, P) for some split body L with max-facet-width w Is

called the split rank of 67z > d.

$  Foraset P; C ZP x RY, the split rank of 57z > d
depends on structure of the set:

P?(6,80) == {z : Iy st (z,y) € Pand (6°) 2+ (6Y)1y < dp}.

O Consider the mixed integer program:
Max y
Subject to
—x;+y <0fort=1,2,...,p,
le T, +yY < p,
y > 0and x; integerfori =1,2,...,p.

L<> The valid inequality y < 0 has split rank p. J
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Given a number w > 1, define:
LY :={L : Lis asplit body satisfying w(L) < w}
of split bodies with max-facet-width at most w.
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& When w = 1, £ consists of the (usual) split bodies
L, ={x:m < nlw < 7o+ 1}, where (r,m) € Z" L,

O For any w > 1, the w™ split closure is defined to be:
Clw(P> = mLELwR(L,P).

& For w = 1, CIy(P) Is known to be a polyhedron.
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Given a number w > 1, define:
LY :={L : Lis asplit body satisfying w(L) < w}
of split bodies with max-facet-width at most w.

When w = 1, £ consists of the (usual) split bodies
L, ={x:m < nlw < 7o+ 1}, where (r,m) € Z" L,

For any w > 1, the w™ split closure is defined to be:
Cly(P) := NpeswR(L, P).

For w = 1, CIy(P) Is known to be a polyhedron.

We show: for a fixed value w > 1, Cl,,(P) Is a
polyhedron.
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Higher dimensional split closures

Given a number w > 1, define:
LY :={L : Lis asplit body satisfying w(L) < w}
of split bodies with max-facet-width at most w.

When w = 1, £ consists of the (usual) split bodies
L, ={x:m < nlw < 7o+ 1}, where (r,m) € Z" L,

For any w > 1, the w™ split closure is defined to be:
Cly(P) := NpeswR(L, P).

For w = 1, CIy(P) Is known to be a polyhedron.

We show: for a fixed value w > 1, Cl,,(P) Is a
polyhedron.

Our proof is based on a characterization of the facets
of R(L, P).
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Polyhedrality of split closures
-

O To every facet 67« > §y, sets can be associated.
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O For every i € V¢, a set V* C V° such that:
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Polyhedrality of split closures
-

O To every facet 67« > §y, sets can be associated.

& A set V¢ C V" of vertices of P that are cut off by
5T£E 2 50.

O For every i € V¢, a set V* C V° such that:

= The intersection point (1 — 3; ;)v’ + B; v for k € V*
satisfies 7z > ¢y with equality.
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Polyhedrality of split closures
-

O To every facet 67« > §y, sets can be associated.

& A set V¢ C V" of vertices of P that are cut off by
5T£E 2 50.

O For every i € V¢, a set V* C V° such that:

= The intersection point (1 — @-,k)vi + @-,kvk for k € V*
satisfies 67« > §y with equality.

= PV = conv({v'} U {vF}, ) is a simplex.

=  R(L,PY (V") ={z € P(V"): 6tz > §p}.

o |
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Polyhedrality of split closures
-

O To every facet 67« > §y, sets can be associated.

& A set V¢ C V" of vertices of P that are cut off by
5T£E 2 50.

O For every i € V¢, a set V* C V° such that:
= The intersection point (1 — 3; ;)v’ + B; v for k € V*
satisfies 6/ = > §; with equality.
= PV = conv({v'} U {vF}, ) is a simplex.
=  R(L,PY (V") ={z € P(V"): 6tz > §p}.
O Ifwelet V= VU (Uiey- V) (all vertices above) and
P(V) = Conv({vk}ke‘—/), then

R(L,P(V)) = conv(UjeyeR(L, P* (V"))
\_ = {x € P(‘l//) 61 > 6o} J
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Polyhedrality of split closures

A N

There Is a one-to-one correspondence between sets
B:= (V" Ve {V'}..,.) and facets of R(L, P).

O Given B, consider all split bodies L for which B gives a
facet:
LY(B) :={L : B defines a facet for R(L, P)}.
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There Is a one-to-one correspondence between sets
B:= (V" Ve {V'}..,.) and facets of R(L, P).

O Given B, consider all split bodies L for which B gives a
facet:
LY(B) :={L : B defines a facet for R(L, P)}.

O We can denote every inequality derived from a split
body L € £ and a set B by (§(L, B)) 'z > §y(L, B).
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Polyhedrality of split closures

A N

There Is a one-to-one correspondence between sets
B:= (V" Ve {V'}..,.) and facets of R(L, P).

O Given B, consider all split bodies L for which B gives a
facet:
LY(B) :={L : B defines a facet for R(L, P)}.
O We can denote every inequality derived from a split
body L € £¥ and a set B by (§(L, B))' = > do(L, B).

& We show: For a fixed B, only a finite number of
non-dominated inequalities (6(L, B))'z > §y(L, B) with
L € L%(B) are needed.

o |
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Polyhedrality of split closures

A N

There Is a one-to-one correspondence between sets
B:= (V" Ve {V'}..,.) and facets of R(L, P).

O Given B, consider all split bodies L for which B gives a
facet:
LY(B) :={L : B defines a facet for R(L, P)}.

O We can denote every inequality derived from a split
body L € £ and a set B by (§(L, B)) 'z > §y(L, B).

O We show: For a fixed B, only a finite number of
non-dominated inequalities (6(L, B))!z > do(L, B) with
L € L%(B) are needed.

Since there is only a finite number of configurations B,
this shows cli,,(P) is a polyhedron.
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