
An Integrated Solver for Optimization Problems

Ionuţ D. Aron1 John N. Hooker2 Tallys H. Yunes3

1Department of Computer Science, Brown University

2Tepper School of Business, Carnegie Mellon University

3Department of Management Science, University of Miami

June 6 2006

I’d Like To Thank the Program Committee for...

Inviting me to be here

Placing my talk right after Jon Lee’s

I A “foolish” model depends on your vocabulary
I Larger vocabulary ⇒ more natural models
I Some things we once worried about are now automatic

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 2

I’d Like To Thank the Program Committee for...

Inviting me to be here

Placing my talk right after Jon Lee’s

I A “foolish” model depends on your vocabulary
I Larger vocabulary ⇒ more natural models
I Some things we once worried about are now automatic

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 2

I’d Like To Thank the Program Committee for...

Inviting me to be here

Placing my talk right after Jon Lee’s

I A “foolish” model depends on your vocabulary
I Larger vocabulary ⇒ more natural models
I Some things we once worried about are now automatic

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 2

I’d Like To Thank the Program Committee for...

Inviting me to be here

Placing my talk right after Jon Lee’s
I A “foolish” model depends on your vocabulary

I Larger vocabulary ⇒ more natural models
I Some things we once worried about are now automatic

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 2

I’d Like To Thank the Program Committee for...

Inviting me to be here

Placing my talk right after Jon Lee’s
I A “foolish” model depends on your vocabulary
I Larger vocabulary ⇒ more natural models

I Some things we once worried about are now automatic

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 2

I’d Like To Thank the Program Committee for...

Inviting me to be here

Placing my talk right after Jon Lee’s
I A “foolish” model depends on your vocabulary
I Larger vocabulary ⇒ more natural models
I Some things we once worried about are now automatic

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 2

Outline

Introduction and Motivation

SIMPL Concepts

3 Modeling Examples

Computational Experiments

Future Work and Conclusion

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 3

Why Integrate?

Integration: combination of two or more solution techniques
into a well-coordinated optimization algorithm

Recent research shows integration can sometimes significantly
outperform traditional methods in

I Planning and scheduling (jobs, crews, sports, etc.)
I Routing and transportation
I Engineering and network design
I Manufacturing
I Inventory management
I Etc.

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 4

Why Integrate?

Integration: combination of two or more solution techniques
into a well-coordinated optimization algorithm

Recent research shows integration can sometimes significantly
outperform traditional methods in

I Planning and scheduling (jobs, crews, sports, etc.)
I Routing and transportation
I Engineering and network design
I Manufacturing
I Inventory management
I Etc.

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 4

Why Integrate?

Integration: combination of two or more solution techniques
into a well-coordinated optimization algorithm

Recent research shows integration can sometimes significantly
outperform traditional methods in

I Planning and scheduling (jobs, crews, sports, etc.)
I Routing and transportation
I Engineering and network design
I Manufacturing
I Inventory management
I Etc.

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 4

Why Integrate?

Integration: combination of two or more solution techniques
into a well-coordinated optimization algorithm

Recent research shows integration can sometimes significantly
outperform traditional methods in

I Planning and scheduling (jobs, crews, sports, etc.)
I Routing and transportation
I Engineering and network design
I Manufacturing
I Inventory management
I Etc.

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 4

Integration Continued

We are mostly interested in combining traditional OR techniques
(LP, MILP) with Constraint Programming

Some benefits of integration:

Models are simpler, smaller and more natural

It combines complementary strengths of different optimization
techniques

Problem structure is more easily captured and exploited

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 5

Integration Continued

We are mostly interested in combining traditional OR techniques
(LP, MILP) with Constraint Programming

Some benefits of integration:

Models are simpler, smaller and more natural

It combines complementary strengths of different optimization
techniques

Problem structure is more easily captured and exploited

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 5

Integration Continued

We are mostly interested in combining traditional OR techniques
(LP, MILP) with Constraint Programming

Some benefits of integration:

Models are simpler, smaller and more natural

It combines complementary strengths of different optimization
techniques

Problem structure is more easily captured and exploited

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 5

Integration Continued

We are mostly interested in combining traditional OR techniques
(LP, MILP) with Constraint Programming

Some benefits of integration:

Models are simpler, smaller and more natural

It combines complementary strengths of different optimization
techniques

Problem structure is more easily captured and exploited

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 5

Integration Continued

We are mostly interested in combining traditional OR techniques
(LP, MILP) with Constraint Programming

Some benefits of integration:

Models are simpler, smaller and more natural

It combines complementary strengths of different optimization
techniques

Problem structure is more easily captured and exploited

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 5

Integration Continued

We are mostly interested in combining traditional OR techniques
(LP, MILP) with Constraint Programming

Some benefits of integration:

Models are simpler, smaller and more natural

It combines complementary strengths of different optimization
techniques

Problem structure is more easily captured and exploited

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 5

Constraint Programming (CP)

Originated from the AI and CS communities (80’s)

Concerned with Constraint Satisfaction Problems (CSPs):

I Given variables xi ∈ Di

I Given constraints ci : D1 × · · · ×Dn → {T, F}
I Assign values to variables to satisfy all constraints

Main Ideas:

I Constraints eliminate infeasible values: domain reduction
I Local inferences are shared: constraint propagation

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 6

Constraint Programming (CP)

Originated from the AI and CS communities (80’s)

Concerned with Constraint Satisfaction Problems (CSPs):
I Given variables xi ∈ Di

I Given constraints ci : D1 × · · · ×Dn → {T, F}
I Assign values to variables to satisfy all constraints

Main Ideas:

I Constraints eliminate infeasible values: domain reduction
I Local inferences are shared: constraint propagation

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 6

Constraint Programming (CP)

Originated from the AI and CS communities (80’s)

Concerned with Constraint Satisfaction Problems (CSPs):
I Given variables xi ∈ Di

I Given constraints ci : D1 × · · · ×Dn → {T, F}
I Assign values to variables to satisfy all constraints

Main Ideas:
I Constraints eliminate infeasible values: domain reduction
I Local inferences are shared: constraint propagation

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 6

Constraint Programming (CP)

Originated from the AI and CS communities (80’s)

Concerned with Constraint Satisfaction Problems (CSPs):
I Given variables xi ∈ Di

I Given constraints ci : D1 × · · · ×Dn → {T, F}
I Assign values to variables to satisfy all constraints

Main Ideas:
I Constraints eliminate infeasible values: domain reduction
I Local inferences are shared: constraint propagation

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 6

Constraint Programming (continued)

When compared to MILP models, CP models usually have

More informative (larger) variable domains:

I city ∈ { Atlanta, Boston, Miami, San Francisco }
I `i = location of facility i
I contrast with: xij = 1 if facility i is placed in location j

More expressive constraints:

I alldifferent: all variables from a set assume distinct values
I element: implements variable indices (Cx)
I cumulative: job scheduling with resource constraints
I etc.
I These are called global constraints

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 7

Constraint Programming (continued)

When compared to MILP models, CP models usually have

More informative (larger) variable domains:

I city ∈ { Atlanta, Boston, Miami, San Francisco }
I `i = location of facility i
I contrast with: xij = 1 if facility i is placed in location j

More expressive constraints:

I alldifferent: all variables from a set assume distinct values
I element: implements variable indices (Cx)
I cumulative: job scheduling with resource constraints
I etc.
I These are called global constraints

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 7

Constraint Programming (continued)

When compared to MILP models, CP models usually have

More informative (larger) variable domains:
I city ∈ { Atlanta, Boston, Miami, San Francisco }
I `i = location of facility i
I contrast with: xij = 1 if facility i is placed in location j

More expressive constraints:

I alldifferent: all variables from a set assume distinct values
I element: implements variable indices (Cx)
I cumulative: job scheduling with resource constraints
I etc.
I These are called global constraints

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 7

Constraint Programming (continued)

When compared to MILP models, CP models usually have

More informative (larger) variable domains:
I city ∈ { Atlanta, Boston, Miami, San Francisco }
I `i = location of facility i
I contrast with: xij = 1 if facility i is placed in location j

More expressive constraints:
I alldifferent: all variables from a set assume distinct values
I element: implements variable indices (Cx)
I cumulative: job scheduling with resource constraints
I etc.

I These are called global constraints

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 7

Constraint Programming (continued)

When compared to MILP models, CP models usually have

More informative (larger) variable domains:
I city ∈ { Atlanta, Boston, Miami, San Francisco }
I `i = location of facility i
I contrast with: xij = 1 if facility i is placed in location j

More expressive constraints:
I alldifferent: all variables from a set assume distinct values
I element: implements variable indices (Cx)
I cumulative: job scheduling with resource constraints
I etc.
I These are called global constraints

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 7

Previous Work

Existing modeling languages and programming libraries support
integration to a greater or lesser extent:

ECLiPSe, Rodošek, Wallace and Rajian 99

OPL, Van Hentenryck, Lustig, Michel and Puget 99

Mosel, Colombani and Heipcke 02

SCIP, Achterberg 04

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 8

Previous Work

Existing modeling languages and programming libraries support
integration to a greater or lesser extent:

ECLiPSe, Rodošek, Wallace and Rajian 99

OPL, Van Hentenryck, Lustig, Michel and Puget 99

Mosel, Colombani and Heipcke 02

SCIP, Achterberg 04

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 8

Previous Work

Existing modeling languages and programming libraries support
integration to a greater or lesser extent:

ECLiPSe, Rodošek, Wallace and Rajian 99

OPL, Van Hentenryck, Lustig, Michel and Puget 99

Mosel, Colombani and Heipcke 02

SCIP, Achterberg 04

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 8

Previous Work (continued)

Some relevant concepts and techniques:

Allowing information exchange among solvers: Rodošek, Wallace &
Hajian 99

Decomposition approaches: Benders 62, Eremin & Wallace 01,
Hooker & Ottosson 03, Hooker & Yan 95, Jain & Grossmann 01

Relaxation of global constraints as systems of linear inequalities:
Hooker 00, Refalo 00, Williams & Yan 01, Yunes 02

Propagation and variable fixing using relaxations: Focacci, Lodi &
Milano 99

Generation of cutting planes as a form of logical inference:
Bockmayr & Kasper 98, Bockmayr & Eisenbrand 00

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 9

Previous Work (continued)

Some relevant concepts and techniques:

Allowing information exchange among solvers: Rodošek, Wallace &
Hajian 99

Decomposition approaches: Benders 62, Eremin & Wallace 01,
Hooker & Ottosson 03, Hooker & Yan 95, Jain & Grossmann 01

Relaxation of global constraints as systems of linear inequalities:
Hooker 00, Refalo 00, Williams & Yan 01, Yunes 02

Propagation and variable fixing using relaxations: Focacci, Lodi &
Milano 99

Generation of cutting planes as a form of logical inference:
Bockmayr & Kasper 98, Bockmayr & Eisenbrand 00

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 9

Previous Work (continued)

Some relevant concepts and techniques:

Allowing information exchange among solvers: Rodošek, Wallace &
Hajian 99

Decomposition approaches: Benders 62, Eremin & Wallace 01,
Hooker & Ottosson 03, Hooker & Yan 95, Jain & Grossmann 01

Relaxation of global constraints as systems of linear inequalities:
Hooker 00, Refalo 00, Williams & Yan 01, Yunes 02

Propagation and variable fixing using relaxations: Focacci, Lodi &
Milano 99

Generation of cutting planes as a form of logical inference:
Bockmayr & Kasper 98, Bockmayr & Eisenbrand 00

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 9

Previous Work (continued)

Some relevant concepts and techniques:

Allowing information exchange among solvers: Rodošek, Wallace &
Hajian 99

Decomposition approaches: Benders 62, Eremin & Wallace 01,
Hooker & Ottosson 03, Hooker & Yan 95, Jain & Grossmann 01

Relaxation of global constraints as systems of linear inequalities:
Hooker 00, Refalo 00, Williams & Yan 01, Yunes 02

Propagation and variable fixing using relaxations: Focacci, Lodi &
Milano 99

Generation of cutting planes as a form of logical inference:
Bockmayr & Kasper 98, Bockmayr & Eisenbrand 00

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 9

Previous Work (continued)

Some relevant concepts and techniques:

Allowing information exchange among solvers: Rodošek, Wallace &
Hajian 99

Decomposition approaches: Benders 62, Eremin & Wallace 01,
Hooker & Ottosson 03, Hooker & Yan 95, Jain & Grossmann 01

Relaxation of global constraints as systems of linear inequalities:
Hooker 00, Refalo 00, Williams & Yan 01, Yunes 02

Propagation and variable fixing using relaxations: Focacci, Lodi &
Milano 99

Generation of cutting planes as a form of logical inference:
Bockmayr & Kasper 98, Bockmayr & Eisenbrand 00

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 9

Previous Work (continued)

Some relevant concepts and techniques:

Allowing information exchange among solvers: Rodošek, Wallace &
Hajian 99

Decomposition approaches: Benders 62, Eremin & Wallace 01,
Hooker & Ottosson 03, Hooker & Yan 95, Jain & Grossmann 01

Relaxation of global constraints as systems of linear inequalities:
Hooker 00, Refalo 00, Williams & Yan 01, Yunes 02

Propagation and variable fixing using relaxations: Focacci, Lodi &
Milano 99

Generation of cutting planes as a form of logical inference:
Bockmayr & Kasper 98, Bockmayr & Eisenbrand 00

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 9

Previous Work (continued)

Some relevant concepts and techniques:

Allowing information exchange among solvers: Rodošek, Wallace &
Hajian 99

Decomposition approaches: Benders 62, Eremin & Wallace 01,
Hooker & Ottosson 03, Hooker & Yan 95, Jain & Grossmann 01

Relaxation of global constraints as systems of linear inequalities:
Hooker 00, Refalo 00, Williams & Yan 01, Yunes 02

Propagation and variable fixing using relaxations: Focacci, Lodi &
Milano 99

Generation of cutting planes as a form of logical inference:
Bockmayr & Kasper 98, Bockmayr & Eisenbrand 00

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 9

SIMPL Objectives

High-level modeling language
I Concise and easily understandable models
I Natural specification of integrated models
I Allow user to reveal problem structure to the solver

Low-level integration
I Increased effectiveness when underlying technologies interact

at a micro level during the search

Modularity, flexibility, extensibility, efficiency
I Make it easy to add new types of constraints, relaxations,

solvers and search strategies

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 10

SIMPL Objectives

High-level modeling language
I Concise and easily understandable models
I Natural specification of integrated models
I Allow user to reveal problem structure to the solver

Low-level integration
I Increased effectiveness when underlying technologies interact

at a micro level during the search

Modularity, flexibility, extensibility, efficiency
I Make it easy to add new types of constraints, relaxations,

solvers and search strategies

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 10

SIMPL Objectives

High-level modeling language
I Concise and easily understandable models
I Natural specification of integrated models
I Allow user to reveal problem structure to the solver

Low-level integration
I Increased effectiveness when underlying technologies interact

at a micro level during the search

Modularity, flexibility, extensibility, efficiency
I Make it easy to add new types of constraints, relaxations,

solvers and search strategies

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 10

SIMPL Objectives

High-level modeling language
I Concise and easily understandable models
I Natural specification of integrated models
I Allow user to reveal problem structure to the solver

Low-level integration
I Increased effectiveness when underlying technologies interact

at a micro level during the search

Modularity, flexibility, extensibility, efficiency
I Make it easy to add new types of constraints, relaxations,

solvers and search strategies

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 10

Main Idea Behind SIMPL

CP and MILP are special cases of a general method, rather
than separate methods to be combined

Common solution strategy: Search-Infer-Relax

Search = enumeration of problem restrictions

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 11

Main Idea Behind SIMPL

CP and MILP are special cases of a general method, rather
than separate methods to be combined

Common solution strategy: Search-Infer-Relax

Search = enumeration of problem restrictions

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 11

Main Idea Behind SIMPL

CP and MILP are special cases of a general method, rather
than separate methods to be combined

Common solution strategy: Search-Infer-Relax

Search = enumeration of problem restrictions

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 11

Main Idea Behind SIMPL

CP and MILP are special cases of a general method, rather
than separate methods to be combined

Common solution strategy: Search-Infer-Relax

Search = enumeration of problem restrictions

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 11

The Ubiquity of Search, Inference, Relaxation

Solution
Method Restriction Inference Relaxation

MILP Branch on
fractional vars.

Cutting planes,
preprocessing

LP relaxation

CP Split variable
domains

Domain reduction,
propagation

Current domains

CGO Split intervals
Interv. propag.,
lagr. mult.

LP or NLP relaxation

Benders Subproblem
Benders cuts
(nogoods)

Master problem

DPL Branching Resolution and
confl. clauses

Processed
confl. clauses

Tabu Search
Current
neighborhood Tabu list Same as restriction

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 12

The Ubiquity of Search, Inference, Relaxation

Solution
Method Restriction Inference Relaxation

MILP Branch on
fractional vars.

Cutting planes,
preprocessing

LP relaxation

CP Split variable
domains

Domain reduction,
propagation

Current domains

CGO Split intervals
Interv. propag.,
lagr. mult.

LP or NLP relaxation

Benders Subproblem
Benders cuts
(nogoods)

Master problem

DPL Branching Resolution and
confl. clauses

Processed
confl. clauses

Tabu Search
Current
neighborhood Tabu list Same as restriction

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 12

Constraint-Based Control

Search: constraints direct the search
I Each constraint has a branching module
I This module creates new problem restrictions

Infer: constraints drive the inference
I Each constraint has a filtering/inference module
I This module creates new constraints to tighten the relaxations

Relax: constraints create the relaxations
I Each constraint has a relaxation module
I This module reformulates the constraint according to different

relaxations (LP, MILP, CP, etc.)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 13

Constraint-Based Control

Search: constraints direct the search
I Each constraint has a branching module
I This module creates new problem restrictions

Infer: constraints drive the inference
I Each constraint has a filtering/inference module
I This module creates new constraints to tighten the relaxations

Relax: constraints create the relaxations
I Each constraint has a relaxation module
I This module reformulates the constraint according to different

relaxations (LP, MILP, CP, etc.)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 13

Constraint-Based Control

Search: constraints direct the search
I Each constraint has a branching module
I This module creates new problem restrictions

Infer: constraints drive the inference
I Each constraint has a filtering/inference module
I This module creates new constraints to tighten the relaxations

Relax: constraints create the relaxations
I Each constraint has a relaxation module
I This module reformulates the constraint according to different

relaxations (LP, MILP, CP, etc.)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 13

Constraint-Based Control

Search: constraints direct the search
I Each constraint has a branching module
I This module creates new problem restrictions

Infer: constraints drive the inference
I Each constraint has a filtering/inference module
I This module creates new constraints to tighten the relaxations

Relax: constraints create the relaxations
I Each constraint has a relaxation module
I This module reformulates the constraint according to different

relaxations (LP, MILP, CP, etc.)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 13

Example 1: Production Planning

Manufacture several products at a plant of limited capacity

Products made in one of several production modes (e.g. small
scale, medium scale, etc.)

x = quantity of a product

Only certain ranges of quantities are possible: gaps in the
domain of x

Net income function f(x) is semi-continuous piecewise linear

Objective: maximize net income

Previous work: Refalo (1999), Ottosson, Thorsteinsson and
Hooker (1999, 2002)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 14

Example 1: Production Planning

Manufacture several products at a plant of limited capacity

Products made in one of several production modes (e.g. small
scale, medium scale, etc.)

x = quantity of a product

Only certain ranges of quantities are possible: gaps in the
domain of x

Net income function f(x) is semi-continuous piecewise linear

Objective: maximize net income

Previous work: Refalo (1999), Ottosson, Thorsteinsson and
Hooker (1999, 2002)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 14

Example 1: Production Planning

Manufacture several products at a plant of limited capacity

Products made in one of several production modes (e.g. small
scale, medium scale, etc.)

x = quantity of a product

Only certain ranges of quantities are possible: gaps in the
domain of x

Net income function f(x) is semi-continuous piecewise linear

Objective: maximize net income

Previous work: Refalo (1999), Ottosson, Thorsteinsson and
Hooker (1999, 2002)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 14

Example 1: Production Planning

Manufacture several products at a plant of limited capacity

Products made in one of several production modes (e.g. small
scale, medium scale, etc.)

x = quantity of a product

Only certain ranges of quantities are possible: gaps in the
domain of x

Net income function f(x) is semi-continuous piecewise linear

Objective: maximize net income

Previous work: Refalo (1999), Ottosson, Thorsteinsson and
Hooker (1999, 2002)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 14

Example 1: Production Planning

Manufacture several products at a plant of limited capacity

Products made in one of several production modes (e.g. small
scale, medium scale, etc.)

x = quantity of a product

Only certain ranges of quantities are possible: gaps in the
domain of x

Net income function f(x) is semi-continuous piecewise linear

Objective: maximize net income

Previous work: Refalo (1999), Ottosson, Thorsteinsson and
Hooker (1999, 2002)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 14

Example 1: Production Planning

Manufacture several products at a plant of limited capacity

Products made in one of several production modes (e.g. small
scale, medium scale, etc.)

x = quantity of a product

Only certain ranges of quantities are possible: gaps in the
domain of x

Net income function f(x) is semi-continuous piecewise linear

Objective: maximize net income

Previous work: Refalo (1999), Ottosson, Thorsteinsson and
Hooker (1999, 2002)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 14

Example 1: Production Planning

Manufacture several products at a plant of limited capacity

Products made in one of several production modes (e.g. small
scale, medium scale, etc.)

x = quantity of a product

Only certain ranges of quantities are possible: gaps in the
domain of x

Net income function f(x) is semi-continuous piecewise linear

Objective: maximize net income

Previous work: Refalo (1999), Ottosson, Thorsteinsson and
Hooker (1999, 2002)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 14

Example 1: Production Planning

Manufacture several products at a plant of limited capacity

Products made in one of several production modes (e.g. small
scale, medium scale, etc.)

x = quantity of a product

Only certain ranges of quantities are possible: gaps in the
domain of x

Net income function f(x) is semi-continuous piecewise linear

Objective: maximize net income

Previous work: Refalo (1999), Ottosson, Thorsteinsson and
Hooker (1999, 2002)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 14

Example 1: Production Planning
Shape of Net Income Function f(x)

f(x)

x

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 15

Example 1: Production Planning: MILP

xi = quantity of product i (continuous)

yik = whether or not product i is made in mode k (binary)

λik, µik = weights for mode k (convex combination)

MILP Model

max
∑

ik λikcik + µikdik∑
i xi ≤ C

xi =
∑

k λikLik + µikUik, ∀ i∑
k λik + µik = 1, ∀ i

0 ≤ λik ≤ yik, ∀ i, k

0 ≤ µik ≤ yik, ∀ i, k∑
k yik = 1, ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 16

Example 1: Production Planning: MILP

xi = quantity of product i (continuous)

yik = whether or not product i is made in mode k (binary)

λik, µik = weights for mode k (convex combination)

MILP Model

max
∑

ik λikcik + µikdik∑
i xi ≤ C

xi =
∑

k λikLik + µikUik, ∀ i∑
k λik + µik = 1, ∀ i

0 ≤ λik ≤ yik, ∀ i, k

0 ≤ µik ≤ yik, ∀ i, k∑
k yik = 1, ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 16

Example 1: Production Planning: MILP

xi = quantity of product i (continuous)

yik = whether or not product i is made in mode k (binary)

λik, µik = weights for mode k (convex combination)

MILP Model

max
∑

ik λikcik + µikdik∑
i xi ≤ C

xi =
∑

k λikLik + µikUik, ∀ i∑
k λik + µik = 1, ∀ i

0 ≤ λik ≤ yik, ∀ i, k

0 ≤ µik ≤ yik, ∀ i, k∑
k yik = 1, ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 16

Example 1: Production Planning: MILP

xi = quantity of product i (continuous)

yik = whether or not product i is made in mode k (binary)

λik, µik = weights for mode k (convex combination)

MILP Model

max
∑

ik λikcik + µikdik∑
i xi ≤ C

xi =
∑

k λikLik + µikUik, ∀ i∑
k λik + µik = 1, ∀ i

0 ≤ λik ≤ yik, ∀ i, k

0 ≤ µik ≤ yik, ∀ i, k∑
k yik = 1, ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 16

Example 1: Production Planning: MILP

xi = quantity of product i (continuous)

yik = whether or not product i is made in mode k (binary)

λik, µik = weights for mode k (convex combination)

MILP Model

max
∑

ik λikcik + µikdik∑
i xi ≤ C

xi =
∑

k λikLik + µikUik, ∀ i∑
k λik + µik = 1, ∀ i

0 ≤ λik ≤ yik, ∀ i, k

0 ≤ µik ≤ yik, ∀ i, k∑
k yik = 1, ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 16

Example 1: Production Planning: MILP

xi = quantity of product i (continuous)

yik = whether or not product i is made in mode k (binary)

λik, µik = weights for mode k (convex combination)

MILP Model

max
∑

ik λikcik + µikdik

∑
i xi ≤ C

xi =
∑

k λikLik + µikUik, ∀ i∑
k λik + µik = 1, ∀ i

0 ≤ λik ≤ yik, ∀ i, k

0 ≤ µik ≤ yik, ∀ i, k∑
k yik = 1, ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 16

Example 1: Production Planning: MILP

xi = quantity of product i (continuous)

yik = whether or not product i is made in mode k (binary)

λik, µik = weights for mode k (convex combination)

MILP Model

max
∑

ik λikcik + µikdik∑
i xi ≤ C

xi =
∑

k λikLik + µikUik, ∀ i∑
k λik + µik = 1, ∀ i

0 ≤ λik ≤ yik, ∀ i, k

0 ≤ µik ≤ yik, ∀ i, k∑
k yik = 1, ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 16

Example 1: Production Planning: MILP

xi = quantity of product i (continuous)

yik = whether or not product i is made in mode k (binary)

λik, µik = weights for mode k (convex combination)

MILP Model

max
∑

ik λikcik + µikdik∑
i xi ≤ C

xi =
∑

k λikLik + µikUik, ∀ i

∑
k λik + µik = 1, ∀ i

0 ≤ λik ≤ yik, ∀ i, k

0 ≤ µik ≤ yik, ∀ i, k∑
k yik = 1, ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 16

Example 1: Production Planning: MILP

xi = quantity of product i (continuous)

yik = whether or not product i is made in mode k (binary)

λik, µik = weights for mode k (convex combination)

MILP Model

max
∑

ik λikcik + µikdik∑
i xi ≤ C

xi =
∑

k λikLik + µikUik, ∀ i∑
k λik + µik = 1, ∀ i

0 ≤ λik ≤ yik, ∀ i, k

0 ≤ µik ≤ yik, ∀ i, k∑
k yik = 1, ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 16

Example 1: Production Planning: MILP

xi = quantity of product i (continuous)

yik = whether or not product i is made in mode k (binary)

λik, µik = weights for mode k (convex combination)

MILP Model

max
∑

ik λikcik + µikdik∑
i xi ≤ C

xi =
∑

k λikLik + µikUik, ∀ i∑
k λik + µik = 1, ∀ i

0 ≤ λik ≤ yik, ∀ i, k

0 ≤ µik ≤ yik, ∀ i, k∑
k yik = 1, ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 16

Example 1: Production Planning: MILP

xi = quantity of product i (continuous)

yik = whether or not product i is made in mode k (binary)

λik, µik = weights for mode k (convex combination)

MILP Model

max
∑

ik λikcik + µikdik∑
i xi ≤ C

xi =
∑

k λikLik + µikUik, ∀ i∑
k λik + µik = 1, ∀ i

0 ≤ λik ≤ yik, ∀ i, k

0 ≤ µik ≤ yik, ∀ i, k

∑
k yik = 1, ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 16

Example 1: Production Planning: MILP

xi = quantity of product i (continuous)

yik = whether or not product i is made in mode k (binary)

λik, µik = weights for mode k (convex combination)

MILP Model

max
∑

ik λikcik + µikdik∑
i xi ≤ C

xi =
∑

k λikLik + µikUik, ∀ i∑
k λik + µik = 1, ∀ i

0 ≤ λik ≤ yik, ∀ i, k

0 ≤ µik ≤ yik, ∀ i, k∑
k yik = 1, ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 16

Example 1: Production Planning: Integrated

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

Integrated Model

max
∑

i ui∑
i xi ≤ C

piecewise(xi, ui, Li, Ui, ci, di), ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 17

Example 1: Production Planning: Integrated

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

Integrated Model

max
∑

i ui∑
i xi ≤ C

piecewise(xi, ui, Li, Ui, ci, di), ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 17

Example 1: Production Planning: Integrated

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

Integrated Model

max
∑

i ui∑
i xi ≤ C

piecewise(xi, ui, Li, Ui, ci, di), ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 17

Example 1: Production Planning: Integrated

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

Integrated Model

max
∑

i ui∑
i xi ≤ C

piecewise(xi, ui, Li, Ui, ci, di), ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 17

Example 1: Production Planning: Integrated

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

Integrated Model

max
∑

i ui

∑
i xi ≤ C

piecewise(xi, ui, Li, Ui, ci, di), ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 17

Example 1: Production Planning: Integrated

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

Integrated Model

max
∑

i ui∑
i xi ≤ C

piecewise(xi, ui, Li, Ui, ci, di), ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 17

Example 1: Production Planning: Integrated

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

Integrated Model

max
∑

i ui∑
i xi ≤ C

piecewise(xi, ui, Li, Ui, ci, di), ∀ i

f(xi)

xiLik Uik

cik

dik

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 17

Example 1: Production Planning: SIMPL Model

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

SIMPL Model

OBJECTIVE
max sum i of u[i]

CONSTRAINTS
capacity means {

sum i of x[i] <= C
relaxation = { lp, cp } }

income means {
piecewise(x[i],u[i],L[i],U[i],c[i],d[i]) forall i
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = { income:most }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 18

Example 1: Production Planning: SIMPL Model

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

SIMPL Model

OBJECTIVE
max sum i of u[i]

CONSTRAINTS
capacity means {

sum i of x[i] <= C
relaxation = { lp, cp } }

income means {
piecewise(x[i],u[i],L[i],U[i],c[i],d[i]) forall i
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = { income:most }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 18

Example 1: Production Planning: SIMPL Model

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

SIMPL Model

OBJECTIVE
max sum i of u[i]

CONSTRAINTS
capacity means {

sum i of x[i] <= C
relaxation = { lp, cp } }

income means {
piecewise(x[i],u[i],L[i],U[i],c[i],d[i]) forall i
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = { income:most }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 18

Example 1: Production Planning: SIMPL Model

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

SIMPL Model

OBJECTIVE
max sum i of u[i]

CONSTRAINTS
capacity means {

sum i of x[i] <= C
relaxation = { lp, cp } }

income means {
piecewise(x[i],u[i],L[i],U[i],c[i],d[i]) forall i
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = { income:most }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 18

Example 1: Production Planning: SIMPL Model

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

SIMPL Model
OBJECTIVE

max sum i of u[i]
CONSTRAINTS

capacity means {
sum i of x[i] <= C
relaxation = { lp, cp } }

income means {
piecewise(x[i],u[i],L[i],U[i],c[i],d[i]) forall i
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = { income:most }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 18

Example 1: Production Planning: SIMPL Model

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

SIMPL Model
OBJECTIVE

max sum i of u[i]

CONSTRAINTS
capacity means {

sum i of x[i] <= C
relaxation = { lp, cp } }

income means {
piecewise(x[i],u[i],L[i],U[i],c[i],d[i]) forall i
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = { income:most }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 18

Example 1: Production Planning: SIMPL Model

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

SIMPL Model
OBJECTIVE

max sum i of u[i]
CONSTRAINTS

capacity means {
sum i of x[i] <= C
relaxation = { lp, cp } }

income means {
piecewise(x[i],u[i],L[i],U[i],c[i],d[i]) forall i
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = { income:most }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 18

Example 1: Production Planning: SIMPL Model

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

SIMPL Model
OBJECTIVE

max sum i of u[i]
CONSTRAINTS

capacity means {
sum i of x[i] <= C
relaxation = { lp, cp } }

income means {
piecewise(x[i],u[i],L[i],U[i],c[i],d[i]) forall i
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = { income:most }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 18

Example 1: Production Planning: SIMPL Model

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

SIMPL Model
OBJECTIVE

max sum i of u[i]
CONSTRAINTS

capacity means {
sum i of x[i] <= C
relaxation = { lp, cp } }

income means {
piecewise(x[i],u[i],L[i],U[i],c[i],d[i]) forall i
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = { income:most }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 18

Example 1: Production Planning: SIMPL Model

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

SIMPL Model
OBJECTIVE

max sum i of u[i]
CONSTRAINTS

capacity means {
sum i of x[i] <= C
relaxation = { lp, cp } }

income means {
piecewise(x[i],u[i],L[i],U[i],c[i],d[i]) forall i
relaxation = { lp, cp } }

SEARCH

type = { bb:bestdive }
branching = { income:most }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 18

Example 1: Production Planning: SIMPL Model

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

SIMPL Model
OBJECTIVE

max sum i of u[i]
CONSTRAINTS

capacity means {
sum i of x[i] <= C
relaxation = { lp, cp } }

income means {
piecewise(x[i],u[i],L[i],U[i],c[i],d[i]) forall i
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }

branching = { income:most }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 18

Example 1: Production Planning: SIMPL Model

xi = quantity of product i (continuous)

ui = net income from product i (continuous)

SIMPL Model
OBJECTIVE

max sum i of u[i]
CONSTRAINTS

capacity means {
sum i of x[i] <= C
relaxation = { lp, cp } }

income means {
piecewise(x[i],u[i],L[i],U[i],c[i],d[i]) forall i
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = { income:most }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 18

Example 1: Production Planning
Relaxation and Branching for piecewise

f(x)

x

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 19

Example 1: Production Planning
Relaxation and Branching for piecewise

f(x)

x

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 19

Example 1: Production Planning
Relaxation and Branching for piecewise

f(x)

x

x value OK, y value OK: no problem

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 19

Example 1: Production Planning
Relaxation and Branching for piecewise

f(x)

x

x value not OK: split domain

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 19

Example 1: Production Planning
Relaxation and Branching for piecewise

f(x)

x

child 1

child 2

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 19

Example 1: Production Planning
Relaxation and Branching for piecewise

f(x)

x

x OK, y not OK: 3-way branch on x

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 19

Example 1: Production Planning
Relaxation and Branching for piecewise

f(x)

x

child 1

child 2

child 3

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 19

Example 1: Production Planning
Computational Results: Number of Search Nodes

10 20 30 40 50

Number of Products

1

10

100

1000

10000

100000

No
de

s MILP
 Integrated

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 20

Example 1: Production Planning
Computational Results: Number of Search Nodes

10 20 30 40 50

Number of Products

1

10

100

1000

10000

100000

No
de

s MILP
 Integrated

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 20

Example 1: Production Planning
Computational Results: CPU Time (s)

10 20 30 40 50

Number of Products

0

2

4

6

8

10

12

14

Ti
m

e
(s

)

 MILP
 Integrated

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 21

Example 1: Production Planning
Computational Results: CPU Time (s)

10 20 30 40 50

Number of Products

0

2

4

6

8

10

12

14

Ti
m

e
(s

)

 MILP
 Integrated

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 21

Example 2: Product Configuration

A product (e.g. computer) is made up of several components
(e.g. memory, cpu, etc.)

Components come in different types

Type k of component i uses/produces aijk units of resource j

cj = unit cost of resource j

Lower and upper bounds on resource usage/production

Objective: minimize total cost

Previous work: Thorsteinsson and Ottosson (2001)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 22

Example 2: Product Configuration

A product (e.g. computer) is made up of several components
(e.g. memory, cpu, etc.)

Components come in different types

Type k of component i uses/produces aijk units of resource j

cj = unit cost of resource j

Lower and upper bounds on resource usage/production

Objective: minimize total cost

Previous work: Thorsteinsson and Ottosson (2001)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 22

Example 2: Product Configuration

A product (e.g. computer) is made up of several components
(e.g. memory, cpu, etc.)

Components come in different types

Type k of component i uses/produces aijk units of resource j

cj = unit cost of resource j

Lower and upper bounds on resource usage/production

Objective: minimize total cost

Previous work: Thorsteinsson and Ottosson (2001)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 22

Example 2: Product Configuration

A product (e.g. computer) is made up of several components
(e.g. memory, cpu, etc.)

Components come in different types

Type k of component i uses/produces aijk units of resource j

cj = unit cost of resource j

Lower and upper bounds on resource usage/production

Objective: minimize total cost

Previous work: Thorsteinsson and Ottosson (2001)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 22

Example 2: Product Configuration

A product (e.g. computer) is made up of several components
(e.g. memory, cpu, etc.)

Components come in different types

Type k of component i uses/produces aijk units of resource j

cj = unit cost of resource j

Lower and upper bounds on resource usage/production

Objective: minimize total cost

Previous work: Thorsteinsson and Ottosson (2001)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 22

Example 2: Product Configuration

A product (e.g. computer) is made up of several components
(e.g. memory, cpu, etc.)

Components come in different types

Type k of component i uses/produces aijk units of resource j

cj = unit cost of resource j

Lower and upper bounds on resource usage/production

Objective: minimize total cost

Previous work: Thorsteinsson and Ottosson (2001)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 22

Example 2: Product Configuration

A product (e.g. computer) is made up of several components
(e.g. memory, cpu, etc.)

Components come in different types

Type k of component i uses/produces aijk units of resource j

cj = unit cost of resource j

Lower and upper bounds on resource usage/production

Objective: minimize total cost

Previous work: Thorsteinsson and Ottosson (2001)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 22

Example 2: Product Configuration

A product (e.g. computer) is made up of several components
(e.g. memory, cpu, etc.)

Components come in different types

Type k of component i uses/produces aijk units of resource j

cj = unit cost of resource j

Lower and upper bounds on resource usage/production

Objective: minimize total cost

Previous work: Thorsteinsson and Ottosson (2001)

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 22

Example 2: Product Configuration: MILP

xik = whether or not type k is chosen for component i (binary)

qik = # units of component i of type k to install (integer)

rj = amount of resource j produced (continuous)

MILP Model

min
∑

j cjrj

rj =
∑

ik aijkqik, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

qik ≤ Mixik, ∀ i, k∑
k xik = 1, ∀ i

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 23

Example 2: Product Configuration: MILP

xik = whether or not type k is chosen for component i (binary)

qik = # units of component i of type k to install (integer)

rj = amount of resource j produced (continuous)

MILP Model

min
∑

j cjrj

rj =
∑

ik aijkqik, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

qik ≤ Mixik, ∀ i, k∑
k xik = 1, ∀ i

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 23

Example 2: Product Configuration: MILP

xik = whether or not type k is chosen for component i (binary)

qik = # units of component i of type k to install (integer)

rj = amount of resource j produced (continuous)

MILP Model

min
∑

j cjrj

rj =
∑

ik aijkqik, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

qik ≤ Mixik, ∀ i, k∑
k xik = 1, ∀ i

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 23

Example 2: Product Configuration: MILP

xik = whether or not type k is chosen for component i (binary)

qik = # units of component i of type k to install (integer)

rj = amount of resource j produced (continuous)

MILP Model

min
∑

j cjrj

rj =
∑

ik aijkqik, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

qik ≤ Mixik, ∀ i, k∑
k xik = 1, ∀ i

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 23

Example 2: Product Configuration: MILP

xik = whether or not type k is chosen for component i (binary)

qik = # units of component i of type k to install (integer)

rj = amount of resource j produced (continuous)

MILP Model

min
∑

j cjrj

rj =
∑

ik aijkqik, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

qik ≤ Mixik, ∀ i, k∑
k xik = 1, ∀ i

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 23

Example 2: Product Configuration: MILP

xik = whether or not type k is chosen for component i (binary)

qik = # units of component i of type k to install (integer)

rj = amount of resource j produced (continuous)

MILP Model

min
∑

j cjrj

rj =
∑

ik aijkqik, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

qik ≤ Mixik, ∀ i, k∑
k xik = 1, ∀ i

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 23

Example 2: Product Configuration: MILP

xik = whether or not type k is chosen for component i (binary)

qik = # units of component i of type k to install (integer)

rj = amount of resource j produced (continuous)

MILP Model

min
∑

j cjrj

rj =
∑

ik aijkqik, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

qik ≤ Mixik, ∀ i, k∑
k xik = 1, ∀ i

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 23

Example 2: Product Configuration: MILP

xik = whether or not type k is chosen for component i (binary)

qik = # units of component i of type k to install (integer)

rj = amount of resource j produced (continuous)

MILP Model

min
∑

j cjrj

rj =
∑

ik aijkqik, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

qik ≤ Mixik, ∀ i, k∑
k xik = 1, ∀ i

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 23

Example 2: Product Configuration: MILP

xik = whether or not type k is chosen for component i (binary)

qik = # units of component i of type k to install (integer)

rj = amount of resource j produced (continuous)

MILP Model

min
∑

j cjrj

rj =
∑

ik aijkqik, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

qik ≤ Mixik, ∀ i, k

∑
k xik = 1, ∀ i

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 23

Example 2: Product Configuration: MILP

xik = whether or not type k is chosen for component i (binary)

qik = # units of component i of type k to install (integer)

rj = amount of resource j produced (continuous)

MILP Model

min
∑

j cjrj

rj =
∑

ik aijkqik, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

qik ≤ Mixik, ∀ i, k∑
k xik = 1, ∀ i

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 23

Example 2: Product Configuration: Integrated

qi = # units of component i to install (integer)
ti = type chosen for component i (discrete)
rj = amount of resource j produced (continuous)

Integrated Model

min
∑

j cjrj

rj =
∑

i aijtiqi, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

zij = aijtiqi and element(ti, (aij1qi, . . . , aijnqi), zij)

∨
k∈Dti

(zij = aijkqi) → automatic and dynamic convex hull relax.

converted to

eq
uiv

ale
nt

to

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 24

Example 2: Product Configuration: Integrated

qi = # units of component i to install (integer)

ti = type chosen for component i (discrete)
rj = amount of resource j produced (continuous)

Integrated Model

min
∑

j cjrj

rj =
∑

i aijtiqi, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

zij = aijtiqi and element(ti, (aij1qi, . . . , aijnqi), zij)

∨
k∈Dti

(zij = aijkqi) → automatic and dynamic convex hull relax.

converted to

eq
uiv

ale
nt

to

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 24

Example 2: Product Configuration: Integrated

qi = # units of component i to install (integer)
ti = type chosen for component i (discrete)

rj = amount of resource j produced (continuous)

Integrated Model

min
∑

j cjrj

rj =
∑

i aijtiqi, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

zij = aijtiqi and element(ti, (aij1qi, . . . , aijnqi), zij)

∨
k∈Dti

(zij = aijkqi) → automatic and dynamic convex hull relax.

converted to

eq
uiv

ale
nt

to

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 24

Example 2: Product Configuration: Integrated

qi = # units of component i to install (integer)
ti = type chosen for component i (discrete)
rj = amount of resource j produced (continuous)

Integrated Model

min
∑

j cjrj

rj =
∑

i aijtiqi, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

zij = aijtiqi and element(ti, (aij1qi, . . . , aijnqi), zij)

∨
k∈Dti

(zij = aijkqi) → automatic and dynamic convex hull relax.

converted to

eq
uiv

ale
nt

to

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 24

Example 2: Product Configuration: Integrated

qi = # units of component i to install (integer)
ti = type chosen for component i (discrete)
rj = amount of resource j produced (continuous)

Integrated Model

min
∑

j cjrj

rj =
∑

i aijtiqi, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

zij = aijtiqi and element(ti, (aij1qi, . . . , aijnqi), zij)

∨
k∈Dti

(zij = aijkqi) → automatic and dynamic convex hull relax.

converted to

eq
uiv

ale
nt

to

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 24

Example 2: Product Configuration: Integrated

qi = # units of component i to install (integer)
ti = type chosen for component i (discrete)
rj = amount of resource j produced (continuous)

Integrated Model

min
∑

j cjrj

rj =
∑

i aijtiqi, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

zij = aijtiqi and element(ti, (aij1qi, . . . , aijnqi), zij)

∨
k∈Dti

(zij = aijkqi) → automatic and dynamic convex hull relax.

converted to

eq
uiv

ale
nt

to

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 24

Example 2: Product Configuration: Integrated

qi = # units of component i to install (integer)
ti = type chosen for component i (discrete)
rj = amount of resource j produced (continuous)

Integrated Model

min
∑

j cjrj

rj =
∑

i aijtiqi, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

zij = aijtiqi and element(ti, (aij1qi, . . . , aijnqi), zij)

∨
k∈Dti

(zij = aijkqi) → automatic and dynamic convex hull relax.

converted to

eq
uiv

ale
nt

to

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 24

Example 2: Product Configuration: Integrated

qi = # units of component i to install (integer)
ti = type chosen for component i (discrete)
rj = amount of resource j produced (continuous)

Integrated Model

min
∑

j cjrj

rj =
∑

i aijtiqi, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

zij = aijtiqi and element(ti, (aij1qi, . . . , aijnqi), zij)

∨
k∈Dti

(zij = aijkqi) → automatic and dynamic convex hull relax.

converted to

eq
uiv

ale
nt

to

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 24

Example 2: Product Configuration: Integrated

qi = # units of component i to install (integer)
ti = type chosen for component i (discrete)
rj = amount of resource j produced (continuous)

Integrated Model

min
∑

j cjrj

rj =
∑

i aijtiqi, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

zij = aijtiqi

and element(ti, (aij1qi, . . . , aijnqi), zij)

∨
k∈Dti

(zij = aijkqi) → automatic and dynamic convex hull relax.

converted to

eq
uiv

ale
nt

to

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 24

Example 2: Product Configuration: Integrated

qi = # units of component i to install (integer)
ti = type chosen for component i (discrete)
rj = amount of resource j produced (continuous)

Integrated Model

min
∑

j cjrj

rj =
∑

i aijtiqi, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

zij = aijtiqi and element(ti, (aij1qi, . . . , aijnqi), zij)

∨
k∈Dti

(zij = aijkqi) → automatic and dynamic convex hull relax.

converted to

eq
uiv

ale
nt

to

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 24

Example 2: Product Configuration: Integrated

qi = # units of component i to install (integer)
ti = type chosen for component i (discrete)
rj = amount of resource j produced (continuous)

Integrated Model

min
∑

j cjrj

rj =
∑

i aijtiqi, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

zij = aijtiqi and element(ti, (aij1qi, . . . , aijnqi), zij)

∨
k∈Dti

(zij = aijkqi)

→ automatic and dynamic convex hull relax.

converted to

eq
uiv

ale
nt

to

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 24

Example 2: Product Configuration: Integrated

qi = # units of component i to install (integer)
ti = type chosen for component i (discrete)
rj = amount of resource j produced (continuous)

Integrated Model

min
∑

j cjrj

rj =
∑

i aijtiqi, ∀ j

Lj ≤ rj ≤ Uj, ∀ j

zij = aijtiqi and element(ti, (aij1qi, . . . , aijnqi), zij)

∨
k∈Dti

(zij = aijkqi) → automatic and dynamic convex hull relax.

converted to

eq
uiv

ale
nt

to

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 24

Example 2: Product Configuration: SIMPL Model

OBJECTIVE min sum j of c[j]*r[j]
CONSTRAINTS

resource means {
r[j] = sum i of a[i][j][t[i]]*q[i] forall j
relaxation = { lp, cp } }

quant means {
q[1] >= 1 => q[2] = 0
relaxation = { lp, cp } }

types means {
t[1] = 1 => t[2] in {1, 2}
t[3] = 1 => (t[4] in {1, 3} and t[5] in {1, 3, 4, 6}

and t[6] = 3)
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = { quant, t:most, q:least:triple, types:most }
inference = { q:redcost }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 25

Example 2: Product Configuration: SIMPL Model

OBJECTIVE min sum j of c[j]*r[j]

CONSTRAINTS
resource means {

r[j] = sum i of a[i][j][t[i]]*q[i] forall j
relaxation = { lp, cp } }

quant means {
q[1] >= 1 => q[2] = 0
relaxation = { lp, cp } }

types means {
t[1] = 1 => t[2] in {1, 2}
t[3] = 1 => (t[4] in {1, 3} and t[5] in {1, 3, 4, 6}

and t[6] = 3)
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = { quant, t:most, q:least:triple, types:most }
inference = { q:redcost }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 25

Example 2: Product Configuration: SIMPL Model

OBJECTIVE min sum j of c[j]*r[j]
CONSTRAINTS

resource means {
r[j] = sum i of a[i][j][t[i]]*q[i] forall j
relaxation = { lp, cp } }

quant means {
q[1] >= 1 => q[2] = 0
relaxation = { lp, cp } }

types means {
t[1] = 1 => t[2] in {1, 2}
t[3] = 1 => (t[4] in {1, 3} and t[5] in {1, 3, 4, 6}

and t[6] = 3)
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = { quant, t:most, q:least:triple, types:most }
inference = { q:redcost }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 25

Example 2: Product Configuration: SIMPL Model

OBJECTIVE min sum j of c[j]*r[j]
CONSTRAINTS

resource means {
r[j] = sum i of a[i][j][t[i]]*q[i] forall j
relaxation = { lp, cp } }

quant means {
q[1] >= 1 => q[2] = 0
relaxation = { lp, cp } }

types means {
t[1] = 1 => t[2] in {1, 2}
t[3] = 1 => (t[4] in {1, 3} and t[5] in {1, 3, 4, 6}

and t[6] = 3)
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = { quant, t:most, q:least:triple, types:most }
inference = { q:redcost }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 25

Example 2: Product Configuration: SIMPL Model

OBJECTIVE min sum j of c[j]*r[j]
CONSTRAINTS

resource means {
r[j] = sum i of a[i][j][t[i]]*q[i] forall j
relaxation = { lp, cp } }

quant means {
q[1] >= 1 => q[2] = 0
relaxation = { lp, cp } }

types means {
t[1] = 1 => t[2] in {1, 2}
t[3] = 1 => (t[4] in {1, 3} and t[5] in {1, 3, 4, 6}

and t[6] = 3)
relaxation = { lp, cp } }

SEARCH

type = { bb:bestdive }
branching = { quant, t:most, q:least:triple, types:most }
inference = { q:redcost }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 25

Example 2: Product Configuration: SIMPL Model

OBJECTIVE min sum j of c[j]*r[j]
CONSTRAINTS

resource means {
r[j] = sum i of a[i][j][t[i]]*q[i] forall j
relaxation = { lp, cp } }

quant means {
q[1] >= 1 => q[2] = 0
relaxation = { lp, cp } }

types means {
t[1] = 1 => t[2] in {1, 2}
t[3] = 1 => (t[4] in {1, 3} and t[5] in {1, 3, 4, 6}

and t[6] = 3)
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }

branching = { quant, t:most, q:least:triple, types:most }
inference = { q:redcost }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 25

Example 2: Product Configuration: SIMPL Model

OBJECTIVE min sum j of c[j]*r[j]
CONSTRAINTS

resource means {
r[j] = sum i of a[i][j][t[i]]*q[i] forall j
relaxation = { lp, cp } }

quant means {
q[1] >= 1 => q[2] = 0
relaxation = { lp, cp } }

types means {
t[1] = 1 => t[2] in {1, 2}
t[3] = 1 => (t[4] in {1, 3} and t[5] in {1, 3, 4, 6}

and t[6] = 3)
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = {

quant,

t:most, q:least:triple

, types:most

}

inference = { q:redcost }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 25

Example 2: Product Configuration: SIMPL Model

OBJECTIVE min sum j of c[j]*r[j]
CONSTRAINTS

resource means {
r[j] = sum i of a[i][j][t[i]]*q[i] forall j
relaxation = { lp, cp } }

quant means {
q[1] >= 1 => q[2] = 0
relaxation = { lp, cp } }

types means {
t[1] = 1 => t[2] in {1, 2}
t[3] = 1 => (t[4] in {1, 3} and t[5] in {1, 3, 4, 6}

and t[6] = 3)
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = {

quant,

t:most, q:least:triple

, types:most

}
inference = { q:redcost }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 25

Example 2: Product Configuration: SIMPL Model

OBJECTIVE min sum j of c[j]*r[j]
CONSTRAINTS

resource means {
r[j] = sum i of a[i][j][t[i]]*q[i] forall j
relaxation = { lp, cp } }

quant means {
q[1] >= 1 => q[2] = 0
relaxation = { lp, cp } }

types means {
t[1] = 1 => t[2] in {1, 2}
t[3] = 1 => (t[4] in {1, 3} and t[5] in {1, 3, 4, 6}

and t[6] = 3)
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = {

quant,

t:most, q:least:triple

, types:most

}
inference = { q:redcost }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 25

Example 2: Product Configuration: SIMPL Model

OBJECTIVE min sum j of c[j]*r[j]
CONSTRAINTS

resource means {
r[j] = sum i of a[i][j][t[i]]*q[i] forall j
relaxation = { lp, cp } }

quant means {
q[1] >= 1 => q[2] = 0
relaxation = { lp, cp } }

types means {
t[1] = 1 => t[2] in {1, 2}
t[3] = 1 => (t[4] in {1, 3} and t[5] in {1, 3, 4, 6}

and t[6] = 3)
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = {

quant,

t:most, q:least:triple

, types:most

}
inference = { q:redcost }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 25

Example 2: Product Configuration: SIMPL Model

OBJECTIVE min sum j of c[j]*r[j]
CONSTRAINTS

resource means {
r[j] = sum i of a[i][j][t[i]]*q[i] forall j
relaxation = { lp, cp } }

quant means {
q[1] >= 1 => q[2] = 0
relaxation = { lp, cp } }

types means {
t[1] = 1 => t[2] in {1, 2}
t[3] = 1 => (t[4] in {1, 3} and t[5] in {1, 3, 4, 6}

and t[6] = 3)
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = { quant, t:most, q:least:triple

, types:most

}
inference = { q:redcost }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 25

Example 2: Product Configuration: SIMPL Model

OBJECTIVE min sum j of c[j]*r[j]
CONSTRAINTS

resource means {
r[j] = sum i of a[i][j][t[i]]*q[i] forall j
relaxation = { lp, cp } }

quant means {
q[1] >= 1 => q[2] = 0
relaxation = { lp, cp } }

types means {
t[1] = 1 => t[2] in {1, 2}
t[3] = 1 => (t[4] in {1, 3} and t[5] in {1, 3, 4, 6}

and t[6] = 3)
relaxation = { lp, cp } }

SEARCH
type = { bb:bestdive }
branching = { quant, t:most, q:least:triple, types:most }
inference = { q:redcost }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 25

Example 2: Product Configuration
Computational Results: Number of Search Nodes

2 4 6 8 10

Problem Instances (Thorsteinsson and Ottosson, 2001)

0

100

200

300

400

500

600

700

No
de

s

 MILP
 Integrated

1 3 5 7 9

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 26

Example 2: Product Configuration
Computational Results: Number of Search Nodes

2 4 6 8 10

Problem Instances (Thorsteinsson and Ottosson, 2001)

0

100

200

300

400

500

600

700

No
de

s

 MILP
 Integrated

1 3 5 7 9

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 26

Example 2: Product Configuration
Computational Results: CPU Time (s)

2 4 6 8 10

Problem Instances (Thorsteinsson and Ottosson, 2001)

0

5

10

15

20

Ti
m

e
(s

)

 MILP
 Integrated

1 3 5 7 9

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 27

Example 2: Product Configuration
Computational Results: CPU Time (s)

2 4 6 8 10

Problem Instances (Thorsteinsson and Ottosson, 2001)

0

5

10

15

20

Ti
m

e
(s

)

 MILP
 Integrated

1 3 5 7 9

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 27

Example 3: Job Scheduling on Parallel Machines

Given n jobs and m parallel (disjunctive) machines

cij and pij = processing cost and time of job i on machine j

Job i has release date ri and due date di

Objective: schedule all jobs and minimize total cost

Jain and Grossmann (2001)

I Hybrid MILP/CP Benders decomposition approach
I Required development of special purpose code
I Up to 1000 times faster than commercial solvers

In SIMPL we can get the same results with very little effort

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 28

Example 3: Job Scheduling on Parallel Machines

Given n jobs and m parallel (disjunctive) machines

cij and pij = processing cost and time of job i on machine j

Job i has release date ri and due date di

Objective: schedule all jobs and minimize total cost

Jain and Grossmann (2001)

I Hybrid MILP/CP Benders decomposition approach
I Required development of special purpose code
I Up to 1000 times faster than commercial solvers

In SIMPL we can get the same results with very little effort

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 28

Example 3: Job Scheduling on Parallel Machines

Given n jobs and m parallel (disjunctive) machines

cij and pij = processing cost and time of job i on machine j

Job i has release date ri and due date di

Objective: schedule all jobs and minimize total cost

Jain and Grossmann (2001)

I Hybrid MILP/CP Benders decomposition approach
I Required development of special purpose code
I Up to 1000 times faster than commercial solvers

In SIMPL we can get the same results with very little effort

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 28

Example 3: Job Scheduling on Parallel Machines

Given n jobs and m parallel (disjunctive) machines

cij and pij = processing cost and time of job i on machine j

Job i has release date ri and due date di

Objective: schedule all jobs and minimize total cost

Jain and Grossmann (2001)

I Hybrid MILP/CP Benders decomposition approach
I Required development of special purpose code
I Up to 1000 times faster than commercial solvers

In SIMPL we can get the same results with very little effort

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 28

Example 3: Job Scheduling on Parallel Machines

Given n jobs and m parallel (disjunctive) machines

cij and pij = processing cost and time of job i on machine j

Job i has release date ri and due date di

Objective: schedule all jobs and minimize total cost

Jain and Grossmann (2001)

I Hybrid MILP/CP Benders decomposition approach
I Required development of special purpose code
I Up to 1000 times faster than commercial solvers

In SIMPL we can get the same results with very little effort

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 28

Example 3: Job Scheduling on Parallel Machines

Given n jobs and m parallel (disjunctive) machines

cij and pij = processing cost and time of job i on machine j

Job i has release date ri and due date di

Objective: schedule all jobs and minimize total cost

Jain and Grossmann (2001)

I Hybrid MILP/CP Benders decomposition approach
I Required development of special purpose code
I Up to 1000 times faster than commercial solvers

In SIMPL we can get the same results with very little effort

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 28

Example 3: Job Scheduling on Parallel Machines

Given n jobs and m parallel (disjunctive) machines

cij and pij = processing cost and time of job i on machine j

Job i has release date ri and due date di

Objective: schedule all jobs and minimize total cost

Jain and Grossmann (2001)
I Hybrid MILP/CP Benders decomposition approach
I Required development of special purpose code
I Up to 1000 times faster than commercial solvers

In SIMPL we can get the same results with very little effort

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 28

Example 3: Job Scheduling on Parallel Machines

Given n jobs and m parallel (disjunctive) machines

cij and pij = processing cost and time of job i on machine j

Job i has release date ri and due date di

Objective: schedule all jobs and minimize total cost

Jain and Grossmann (2001)
I Hybrid MILP/CP Benders decomposition approach
I Required development of special purpose code
I Up to 1000 times faster than commercial solvers

In SIMPL we can get the same results with very little effort

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 28

Example 3: Job Scheduling: MILP Model

xij = whether or not job j is assigned to machine i (binary)
yjk = whether or not j precedes k on some machine (binary)
tj = start time of job j (continuous)

min
∑

ij cijxij

rj ≤ tj ≤ dj −
∑

i pijxij, ∀ j∑
i xij = 1, ∀ j

yjk + ykj ≤ 1, ∀ k > j

yjk + ykj ≥ xij + xik − 1, ∀ k > j, i

yjk + ykj + xij + xi′k ≤ 2, ∀ k > j, i′ 6= i

tk ≥ tj +
∑

i pijxij −M(1− yjk), ∀ k 6= j∑
j pijxij ≤ maxj{dj} −minj{rj}, ∀ i

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 29

Example 3: Job Scheduling: MILP Model

xij = whether or not job j is assigned to machine i (binary)

yjk = whether or not j precedes k on some machine (binary)
tj = start time of job j (continuous)

min
∑

ij cijxij

rj ≤ tj ≤ dj −
∑

i pijxij, ∀ j∑
i xij = 1, ∀ j

yjk + ykj ≤ 1, ∀ k > j

yjk + ykj ≥ xij + xik − 1, ∀ k > j, i

yjk + ykj + xij + xi′k ≤ 2, ∀ k > j, i′ 6= i

tk ≥ tj +
∑

i pijxij −M(1− yjk), ∀ k 6= j∑
j pijxij ≤ maxj{dj} −minj{rj}, ∀ i

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 29

Example 3: Job Scheduling: MILP Model

xij = whether or not job j is assigned to machine i (binary)
yjk = whether or not j precedes k on some machine (binary)

tj = start time of job j (continuous)

min
∑

ij cijxij

rj ≤ tj ≤ dj −
∑

i pijxij, ∀ j∑
i xij = 1, ∀ j

yjk + ykj ≤ 1, ∀ k > j

yjk + ykj ≥ xij + xik − 1, ∀ k > j, i

yjk + ykj + xij + xi′k ≤ 2, ∀ k > j, i′ 6= i

tk ≥ tj +
∑

i pijxij −M(1− yjk), ∀ k 6= j∑
j pijxij ≤ maxj{dj} −minj{rj}, ∀ i

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 29

Example 3: Job Scheduling: MILP Model

xij = whether or not job j is assigned to machine i (binary)
yjk = whether or not j precedes k on some machine (binary)
tj = start time of job j (continuous)

min
∑

ij cijxij

rj ≤ tj ≤ dj −
∑

i pijxij, ∀ j∑
i xij = 1, ∀ j

yjk + ykj ≤ 1, ∀ k > j

yjk + ykj ≥ xij + xik − 1, ∀ k > j, i

yjk + ykj + xij + xi′k ≤ 2, ∀ k > j, i′ 6= i

tk ≥ tj +
∑

i pijxij −M(1− yjk), ∀ k 6= j∑
j pijxij ≤ maxj{dj} −minj{rj}, ∀ i

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 29

Example 3: Job Scheduling: MILP Model

xij = whether or not job j is assigned to machine i (binary)
yjk = whether or not j precedes k on some machine (binary)
tj = start time of job j (continuous)

min
∑

ij cijxij

rj ≤ tj ≤ dj −
∑

i pijxij, ∀ j∑
i xij = 1, ∀ j

yjk + ykj ≤ 1, ∀ k > j

yjk + ykj ≥ xij + xik − 1, ∀ k > j, i

yjk + ykj + xij + xi′k ≤ 2, ∀ k > j, i′ 6= i

tk ≥ tj +
∑

i pijxij −M(1− yjk), ∀ k 6= j∑
j pijxij ≤ maxj{dj} −minj{rj}, ∀ i

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 29

Example 3: Job Scheduling on Parallel Machines
Benders Decomposition Approach

Master Problem
I Assign jobs to machines at minimum cost
I “Ignore” release dates and due dates
I xij = 1 if job i assigned to machine j

Subproblem for machine j
I Try to find feasible schedule with given set of jobs Ij

I If infeasible, generate Benders cut∑
i∈Ij

xij ≤ |Ij| − 1

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 30

Example 3: Job Scheduling on Parallel Machines
Benders Decomposition Approach

Master Problem
I Assign jobs to machines at minimum cost
I “Ignore” release dates and due dates
I xij = 1 if job i assigned to machine j

Subproblem for machine j
I Try to find feasible schedule with given set of jobs Ij

I If infeasible, generate Benders cut∑
i∈Ij

xij ≤ |Ij| − 1

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 30

Example 3: Job Scheduling on Parallel Machines
Benders Decomposition Approach

Master Problem
I Assign jobs to machines at minimum cost
I “Ignore” release dates and due dates
I xij = 1 if job i assigned to machine j

Subproblem for machine j
I Try to find feasible schedule with given set of jobs Ij

I If infeasible, generate Benders cut

∑
i∈Ij

xij ≤ |Ij| − 1

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 30

Example 3: Job Scheduling on Parallel Machines
Benders Decomposition Approach

Master Problem
I Assign jobs to machines at minimum cost
I “Ignore” release dates and due dates
I xij = 1 if job i assigned to machine j

Subproblem for machine j
I Try to find feasible schedule with given set of jobs Ij

I If infeasible, generate Benders cut∑
i∈Ij

xij ≤ |Ij| − 1

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 30

Example 3: Job Scheduling: Integrated Benders

xij = whether or not job j is assigned to machine i (binary)

yj = machine assigned to job j (integer)

tj = start time of job j (continuous)

Integrated Benders Model

min
∑

ij cijxij∑
i xij = 1, ∀ j

(xij = 1) ⇔ (yj = i), ∀ i, j

rj ≤ tj ≤ dj − pyjj, ∀ j

cumulative((tj, pij, 1 |xij = 1), 1), ∀ i

Need to tell the solver how to decompose the model

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 31

Example 3: Job Scheduling: Integrated Benders

xij = whether or not job j is assigned to machine i (binary)

yj = machine assigned to job j (integer)

tj = start time of job j (continuous)

Integrated Benders Model

min
∑

ij cijxij∑
i xij = 1, ∀ j

(xij = 1) ⇔ (yj = i), ∀ i, j

rj ≤ tj ≤ dj − pyjj, ∀ j

cumulative((tj, pij, 1 |xij = 1), 1), ∀ i

Need to tell the solver how to decompose the model

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 31

Example 3: Job Scheduling: Integrated Benders

xij = whether or not job j is assigned to machine i (binary)

yj = machine assigned to job j (integer)

tj = start time of job j (continuous)

Integrated Benders Model

min
∑

ij cijxij∑
i xij = 1, ∀ j

(xij = 1) ⇔ (yj = i), ∀ i, j

rj ≤ tj ≤ dj − pyjj, ∀ j

cumulative((tj, pij, 1 |xij = 1), 1), ∀ i

Need to tell the solver how to decompose the model

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 31

Example 3: Job Scheduling: Integrated Benders

xij = whether or not job j is assigned to machine i (binary)

yj = machine assigned to job j (integer)

tj = start time of job j (continuous)

Integrated Benders Model

min
∑

ij cijxij∑
i xij = 1, ∀ j

(xij = 1) ⇔ (yj = i), ∀ i, j

rj ≤ tj ≤ dj − pyjj, ∀ j

cumulative((tj, pij, 1 |xij = 1), 1), ∀ i

Need to tell the solver how to decompose the model

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 31

Example 3: Job Scheduling: Integrated Benders

xij = whether or not job j is assigned to machine i (binary)

yj = machine assigned to job j (integer)

tj = start time of job j (continuous)

Integrated Benders Model

min
∑

ij cijxij∑
i xij = 1, ∀ j

(xij = 1) ⇔ (yj = i), ∀ i, j

rj ≤ tj ≤ dj − pyjj, ∀ j

cumulative((tj, pij, 1 |xij = 1), 1), ∀ i

Need to tell the solver how to decompose the model

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 31

Example 3: Job Scheduling: Integrated Benders

xij = whether or not job j is assigned to machine i (binary)

yj = machine assigned to job j (integer)

tj = start time of job j (continuous)

Integrated Benders Model

min
∑

ij cijxij

∑
i xij = 1, ∀ j

(xij = 1) ⇔ (yj = i), ∀ i, j

rj ≤ tj ≤ dj − pyjj, ∀ j

cumulative((tj, pij, 1 |xij = 1), 1), ∀ i

Need to tell the solver how to decompose the model

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 31

Example 3: Job Scheduling: Integrated Benders

xij = whether or not job j is assigned to machine i (binary)

yj = machine assigned to job j (integer)

tj = start time of job j (continuous)

Integrated Benders Model

min
∑

ij cijxij∑
i xij = 1, ∀ j

(xij = 1) ⇔ (yj = i), ∀ i, j

rj ≤ tj ≤ dj − pyjj, ∀ j

cumulative((tj, pij, 1 |xij = 1), 1), ∀ i

Need to tell the solver how to decompose the model

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 31

Example 3: Job Scheduling: Integrated Benders

xij = whether or not job j is assigned to machine i (binary)

yj = machine assigned to job j (integer)

tj = start time of job j (continuous)

Integrated Benders Model

min
∑

ij cijxij∑
i xij = 1, ∀ j

(xij = 1) ⇔ (yj = i), ∀ i, j

rj ≤ tj ≤ dj − pyjj, ∀ j

cumulative((tj, pij, 1 |xij = 1), 1), ∀ i

Need to tell the solver how to decompose the model

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 31

Example 3: Job Scheduling: Integrated Benders

xij = whether or not job j is assigned to machine i (binary)

yj = machine assigned to job j (integer)

tj = start time of job j (continuous)

Integrated Benders Model

min
∑

ij cijxij∑
i xij = 1, ∀ j

(xij = 1) ⇔ (yj = i), ∀ i, j

rj ≤ tj ≤ dj − pyjj, ∀ j

cumulative((tj, pij, 1 |xij = 1), 1), ∀ i

Need to tell the solver how to decompose the model

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 31

Example 3: Job Scheduling: Integrated Benders

xij = whether or not job j is assigned to machine i (binary)

yj = machine assigned to job j (integer)

tj = start time of job j (continuous)

Integrated Benders Model

min
∑

ij cijxij∑
i xij = 1, ∀ j

(xij = 1) ⇔ (yj = i), ∀ i, j

rj ≤ tj ≤ dj − pyjj, ∀ j

cumulative((tj, pij, 1 |xij = 1), 1), ∀ i

Need to tell the solver how to decompose the model

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 31

Example 3: Job Scheduling: Integrated Benders

xij = whether or not job j is assigned to machine i (binary)

yj = machine assigned to job j (integer)

tj = start time of job j (continuous)

Integrated Benders Model

min
∑

ij cijxij∑
i xij = 1, ∀ j

(xij = 1) ⇔ (yj = i), ∀ i, j

rj ≤ tj ≤ dj − pyjj, ∀ j

cumulative((tj, pij, 1 |xij = 1), 1), ∀ i

Need to tell the solver how to decompose the model

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 31

Example 3: Job Scheduling: SIMPL Model

OBJECTIVE min sum i,j of c[i][j]*x[i][j]
CONSTRAINTS
assign means {
sum i of x[i][j] = 1 forall j
relaxation = { ip:master } }

xy means {
x[i][j] = 1 <=> y[j] = i forall i, j
relaxation = { cp:sub } }

tbounds means {
r[j] <= t[j] <= d[j] - p[y[j]][j] forall j
relaxation = { ip:master, cp:sub } }

machinecap means {
cumulative({t[j],p[i][j],1} forall j | x[i][j]=1, 1) forall i
relaxation = { ip:master, cp:sub:decomp } }
inference = { feasibility } }

SEARCH
type = { benders }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 32

Example 3: Job Scheduling: SIMPL Model

OBJECTIVE min sum i,j of c[i][j]*x[i][j]

CONSTRAINTS
assign means {

sum i of x[i][j] = 1 forall j
relaxation = { ip:master } }

xy means {
x[i][j] = 1 <=> y[j] = i forall i, j
relaxation = { cp:sub } }

tbounds means {
r[j] <= t[j] <= d[j] - p[y[j]][j] forall j
relaxation = { ip:master, cp:sub } }

machinecap means {
cumulative({t[j],p[i][j],1} forall j | x[i][j]=1, 1) forall i
relaxation = { ip:master, cp:sub:decomp } }
inference = { feasibility } }

SEARCH
type = { benders }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 32

Example 3: Job Scheduling: SIMPL Model

OBJECTIVE min sum i,j of c[i][j]*x[i][j]
CONSTRAINTS

assign means {
sum i of x[i][j] = 1 forall j
relaxation = { ip:master } }

xy means {
x[i][j] = 1 <=> y[j] = i forall i, j
relaxation = { cp:sub } }

tbounds means {
r[j] <= t[j] <= d[j] - p[y[j]][j] forall j
relaxation = { ip:master, cp:sub } }

machinecap means {
cumulative({t[j],p[i][j],1} forall j | x[i][j]=1, 1) forall i
relaxation = { ip:master, cp:sub:decomp } }
inference = { feasibility } }

SEARCH
type = { benders }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 32

Example 3: Job Scheduling: SIMPL Model

OBJECTIVE min sum i,j of c[i][j]*x[i][j]
CONSTRAINTS
assign means {
sum i of x[i][j] = 1 forall j
relaxation = { ip:master } }

xy means {
x[i][j] = 1 <=> y[j] = i forall i, j
relaxation = { cp:sub } }

tbounds means {
r[j] <= t[j] <= d[j] - p[y[j]][j] forall j
relaxation = { ip:master, cp:sub } }

machinecap means {
cumulative({t[j],p[i][j],1} forall j | x[i][j]=1, 1) forall i
relaxation = { ip:master, cp:sub:decomp } }
inference = { feasibility } }

SEARCH
type = { benders }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 32

Example 3: Job Scheduling: SIMPL Model

OBJECTIVE min sum i,j of c[i][j]*x[i][j]
CONSTRAINTS
assign means {
sum i of x[i][j] = 1 forall j
relaxation = { ip:master } }

xy means {
x[i][j] = 1 <=> y[j] = i forall i, j
relaxation = { cp:sub } }

tbounds means {
r[j] <= t[j] <= d[j] - p[y[j]][j] forall j
relaxation = { ip:master, cp:sub } }

machinecap means {
cumulative({t[j],p[i][j],1} forall j | x[i][j]=1, 1) forall i
relaxation = { ip:master, cp:sub:decomp } }
inference = { feasibility } }

SEARCH
type = { benders }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 32

Example 3: Job Scheduling: SIMPL Model

OBJECTIVE min sum i,j of c[i][j]*x[i][j]
CONSTRAINTS
assign means {
sum i of x[i][j] = 1 forall j
relaxation = { ip:master } }

xy means {
x[i][j] = 1 <=> y[j] = i forall i, j
relaxation = { cp:sub } }

tbounds means {
r[j] <= t[j] <= d[j] - p[y[j]][j] forall j
relaxation = { ip:master, cp:sub } }

machinecap means {
cumulative({t[j],p[i][j],1} forall j | x[i][j]=1, 1) forall i
relaxation = { ip:master, cp:sub:decomp } }
inference = { feasibility } }

SEARCH
type = { benders }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 32

Example 3: Job Scheduling: SIMPL Model

OBJECTIVE min sum i,j of c[i][j]*x[i][j]
CONSTRAINTS
assign means {
sum i of x[i][j] = 1 forall j
relaxation = { ip:master } }

xy means {
x[i][j] = 1 <=> y[j] = i forall i, j
relaxation = { cp:sub } }

tbounds means {
r[j] <= t[j] <= d[j] - p[y[j]][j] forall j
relaxation = { ip:master, cp:sub } }

machinecap means {
cumulative({t[j],p[i][j],1} forall j | x[i][j]=1, 1) forall i
relaxation = { ip:master, cp:sub:decomp } }
inference = { feasibility } }

SEARCH
type = { benders }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 32

Example 3: Job Scheduling: SIMPL Model

OBJECTIVE min sum i,j of c[i][j]*x[i][j]
CONSTRAINTS
assign means {
sum i of x[i][j] = 1 forall j
relaxation = { ip:master } }

xy means {
x[i][j] = 1 <=> y[j] = i forall i, j
relaxation = { cp:sub } }

tbounds means {
r[j] <= t[j] <= d[j] - p[y[j]][j] forall j
relaxation = { ip:master, cp:sub } }

machinecap means {
cumulative({t[j],p[i][j],1} forall j | x[i][j]=1, 1) forall i
relaxation = { ip:master, cp:sub:decomp } }
inference = { feasibility } }

SEARCH
type = { benders }

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 32

Example 3: Job Scheduling on Parallel Machines
Computational Results

Instances from Jain and Grossmann (2001)

Long Processing Times

MILP Integrated Benders
Jobs Machines Nodes Time (s) Iterations Cuts Time (s)

3 2

1 0.00 2 1 0.00

7 3

1 0.02 12 14 0.09

12 3

11060 16.50 26 37 0.58

15 5

3674 14.30 22 31 0.96

20 5

159400 3123.34 30 52 3.21

22 5

> 5.0M > 48h 38 59 6.70

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 33

Example 3: Job Scheduling on Parallel Machines
Computational Results

Instances from Jain and Grossmann (2001)

Long Processing Times

MILP Integrated Benders
Jobs Machines Nodes Time (s) Iterations Cuts Time (s)

3 2

1 0.00 2 1 0.00

7 3

1 0.02 12 14 0.09

12 3

11060 16.50 26 37 0.58

15 5

3674 14.30 22 31 0.96

20 5

159400 3123.34 30 52 3.21

22 5

> 5.0M > 48h 38 59 6.70

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 33

Example 3: Job Scheduling on Parallel Machines
Computational Results

Instances from Jain and Grossmann (2001)

Long Processing Times

MILP Integrated Benders
Jobs Machines Nodes Time (s) Iterations Cuts Time (s)

3 2 1 0.00

2 1 0.00

7 3 1 0.02

12 14 0.09

12 3 11060 16.50

26 37 0.58

15 5 3674 14.30

22 31 0.96

20 5 159400 3123.34

30 52 3.21

22 5 > 5.0M > 48h

38 59 6.70

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 33

Example 3: Job Scheduling on Parallel Machines
Computational Results

Instances from Jain and Grossmann (2001)

Long Processing Times

MILP Integrated Benders
Jobs Machines Nodes Time (s) Iterations Cuts Time (s)

3 2 1 0.00 2 1 0.00
7 3 1 0.02 12 14 0.09
12 3 11060 16.50 26 37 0.58
15 5 3674 14.30 22 31 0.96
20 5 159400 3123.34 30 52 3.21
22 5 > 5.0M > 48h 38 59 6.70

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 33

Example 3: Job Scheduling on Parallel Machines
Computational Results (continued)

Instances from Jain and Grossmann (2001)
Shorter processing times make the problem easier to solve

Short Processing Times

MILP Integrated Benders
Jobs Machines Nodes Time (s) Iterations Cuts Time (s)

3 2

1 0.00 1 0 0.00

7 3

1 0.01 1 0 0.01

12 3

4950 1.98 1 0 0.01

15 5

14000 19.80 1 0 0.03

20 5

140 5.73 3 3 0.12

22 5

> 16.9M > 48h 5 4 0.38

25 5

> 4.5M > 48h 16 22 0.86

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 34

Example 3: Job Scheduling on Parallel Machines
Computational Results (continued)

Instances from Jain and Grossmann (2001)
Shorter processing times make the problem easier to solve

Short Processing Times

MILP Integrated Benders
Jobs Machines Nodes Time (s) Iterations Cuts Time (s)

3 2

1 0.00 1 0 0.00

7 3

1 0.01 1 0 0.01

12 3

4950 1.98 1 0 0.01

15 5

14000 19.80 1 0 0.03

20 5

140 5.73 3 3 0.12

22 5

> 16.9M > 48h 5 4 0.38

25 5

> 4.5M > 48h 16 22 0.86

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 34

Example 3: Job Scheduling on Parallel Machines
Computational Results (continued)

Instances from Jain and Grossmann (2001)
Shorter processing times make the problem easier to solve

Short Processing Times

MILP Integrated Benders
Jobs Machines Nodes Time (s) Iterations Cuts Time (s)

3 2 1 0.00

1 0 0.00

7 3 1 0.01

1 0 0.01

12 3 4950 1.98

1 0 0.01

15 5 14000 19.80

1 0 0.03

20 5 140 5.73

3 3 0.12

22 5 > 16.9M > 48h

5 4 0.38

25 5 > 4.5M > 48h

16 22 0.86

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 34

Example 3: Job Scheduling on Parallel Machines
Computational Results (continued)

Instances from Jain and Grossmann (2001)
Shorter processing times make the problem easier to solve

Short Processing Times

MILP Integrated Benders
Jobs Machines Nodes Time (s) Iterations Cuts Time (s)

3 2 1 0.00 1 0 0.00
7 3 1 0.01 1 0 0.01
12 3 4950 1.98 1 0 0.01
15 5 14000 19.80 1 0 0.03
20 5 140 5.73 3 3 0.12
22 5 > 16.9M > 48h 5 4 0.38
25 5 > 4.5M > 48h 16 22 0.86

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 34

Future Work

Regarding SIMPL itself...

I Support other integrated approaches, e.g. local search, B&P
I More features: non-linear solver, cutting planes, more

constraints
I More powerful language in SEARCH section (like OPL)
I More intelligent model compilation (e.g. detect special

structures)
I Improve performance (code optimization)
I etc.

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 35

Future Work

Regarding SIMPL itself...

I Support other integrated approaches, e.g. local search, B&P
I More features: non-linear solver, cutting planes, more

constraints
I More powerful language in SEARCH section (like OPL)
I More intelligent model compilation (e.g. detect special

structures)
I Improve performance (code optimization)
I etc.

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 35

Future Work

Regarding SIMPL itself...
I Support other integrated approaches, e.g. local search, B&P

I More features: non-linear solver, cutting planes, more
constraints

I More powerful language in SEARCH section (like OPL)
I More intelligent model compilation (e.g. detect special

structures)
I Improve performance (code optimization)
I etc.

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 35

Future Work

Regarding SIMPL itself...
I Support other integrated approaches, e.g. local search, B&P
I More features: non-linear solver, cutting planes, more

constraints

I More powerful language in SEARCH section (like OPL)
I More intelligent model compilation (e.g. detect special

structures)
I Improve performance (code optimization)
I etc.

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 35

Future Work

Regarding SIMPL itself...
I Support other integrated approaches, e.g. local search, B&P
I More features: non-linear solver, cutting planes, more

constraints
I More powerful language in SEARCH section (like OPL)

I More intelligent model compilation (e.g. detect special
structures)

I Improve performance (code optimization)
I etc.

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 35

Future Work

Regarding SIMPL itself...
I Support other integrated approaches, e.g. local search, B&P
I More features: non-linear solver, cutting planes, more

constraints
I More powerful language in SEARCH section (like OPL)
I More intelligent model compilation (e.g. detect special

structures)

I Improve performance (code optimization)
I etc.

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 35

Future Work

Regarding SIMPL itself...
I Support other integrated approaches, e.g. local search, B&P
I More features: non-linear solver, cutting planes, more

constraints
I More powerful language in SEARCH section (like OPL)
I More intelligent model compilation (e.g. detect special

structures)
I Improve performance (code optimization)

I etc.

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 35

Future Work

Regarding SIMPL itself...
I Support other integrated approaches, e.g. local search, B&P
I More features: non-linear solver, cutting planes, more

constraints
I More powerful language in SEARCH section (like OPL)
I More intelligent model compilation (e.g. detect special

structures)
I Improve performance (code optimization)
I etc.

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 35

Future Work (continued)

Regarding SIMPL’s availability...

I Distribute source code?
I Distribute executable?
I Add it to NEOS? COIN-OR?
I We are still thinking about it...
I Whichever way we go, we still need to clean it up a bit...

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 36

Future Work (continued)

Regarding SIMPL’s availability...

I Distribute source code?
I Distribute executable?
I Add it to NEOS? COIN-OR?
I We are still thinking about it...
I Whichever way we go, we still need to clean it up a bit...

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 36

Future Work (continued)

Regarding SIMPL’s availability...
I Distribute source code?

I Distribute executable?
I Add it to NEOS? COIN-OR?
I We are still thinking about it...
I Whichever way we go, we still need to clean it up a bit...

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 36

Future Work (continued)

Regarding SIMPL’s availability...
I Distribute source code?
I Distribute executable?

I Add it to NEOS? COIN-OR?
I We are still thinking about it...
I Whichever way we go, we still need to clean it up a bit...

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 36

Future Work (continued)

Regarding SIMPL’s availability...
I Distribute source code?
I Distribute executable?
I Add it to NEOS? COIN-OR?

I We are still thinking about it...
I Whichever way we go, we still need to clean it up a bit...

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 36

Future Work (continued)

Regarding SIMPL’s availability...
I Distribute source code?
I Distribute executable?
I Add it to NEOS? COIN-OR?
I We are still thinking about it...

I Whichever way we go, we still need to clean it up a bit...

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 36

Future Work (continued)

Regarding SIMPL’s availability...
I Distribute source code?
I Distribute executable?
I Add it to NEOS? COIN-OR?
I We are still thinking about it...
I Whichever way we go, we still need to clean it up a bit...

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 36

Conclusion

Many theoretical and technological breakthroughs over the last few
decades have helped OR become more accessible and popular

Many important problems are still hard for traditional methods

Recent literature shows integrated methods can succeed when
traditional methods fail

SIMPL is

I a step toward making integrated methods more accessible to a
larger group of users

I a very useful research tool

We still have a long way to go, but important steps have been taken
and initial results are encouraging

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 37

Conclusion

Many theoretical and technological breakthroughs over the last few
decades have helped OR become more accessible and popular

Many important problems are still hard for traditional methods

Recent literature shows integrated methods can succeed when
traditional methods fail

SIMPL is

I a step toward making integrated methods more accessible to a
larger group of users

I a very useful research tool

We still have a long way to go, but important steps have been taken
and initial results are encouraging

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 37

Conclusion

Many theoretical and technological breakthroughs over the last few
decades have helped OR become more accessible and popular

Many important problems are still hard for traditional methods

Recent literature shows integrated methods can succeed when
traditional methods fail

SIMPL is

I a step toward making integrated methods more accessible to a
larger group of users

I a very useful research tool

We still have a long way to go, but important steps have been taken
and initial results are encouraging

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 37

Conclusion

Many theoretical and technological breakthroughs over the last few
decades have helped OR become more accessible and popular

Many important problems are still hard for traditional methods

Recent literature shows integrated methods can succeed when
traditional methods fail

SIMPL is

I a step toward making integrated methods more accessible to a
larger group of users

I a very useful research tool

We still have a long way to go, but important steps have been taken
and initial results are encouraging

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 37

Conclusion

Many theoretical and technological breakthroughs over the last few
decades have helped OR become more accessible and popular

Many important problems are still hard for traditional methods

Recent literature shows integrated methods can succeed when
traditional methods fail

SIMPL is

I a step toward making integrated methods more accessible to a
larger group of users

I a very useful research tool

We still have a long way to go, but important steps have been taken
and initial results are encouraging

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 37

Conclusion

Many theoretical and technological breakthroughs over the last few
decades have helped OR become more accessible and popular

Many important problems are still hard for traditional methods

Recent literature shows integrated methods can succeed when
traditional methods fail

SIMPL is

I a step toward making integrated methods more accessible to a
larger group of users

I a very useful research tool

We still have a long way to go, but important steps have been taken
and initial results are encouraging

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 37

Conclusion

Many theoretical and technological breakthroughs over the last few
decades have helped OR become more accessible and popular

Many important problems are still hard for traditional methods

Recent literature shows integrated methods can succeed when
traditional methods fail

SIMPL is

I a step toward making integrated methods more accessible to a
larger group of users

I a very useful research tool

We still have a long way to go, but important steps have been taken
and initial results are encouraging

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 37

Conclusion

Many theoretical and technological breakthroughs over the last few
decades have helped OR become more accessible and popular

Many important problems are still hard for traditional methods

Recent literature shows integrated methods can succeed when
traditional methods fail

SIMPL is

I a step toward making integrated methods more accessible to a
larger group of users

I a very useful research tool

We still have a long way to go, but important steps have been taken
and initial results are encouraging

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 37

That’s All Folks!

Thank you!

Any Questions?

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 38

Constraint Programming Example

x ∈ {1, 3}
y ∈ {1, 2, 3}
z ∈ {1, 2, 3}
w ∈ {1, 2, 4}

element(z, [1, 3, 5], x) (x is the zth element of [1, 3, 5])

alldifferent(x, y, z, w) (all variables take distinct values)

2z − w ≥ 0

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 39

Constraint Programming Example

x ∈ {1, 3}
y ∈ {1, 2, 3}
z ∈ {1, 2, 3}
w ∈ {1, 2, 4}

element(z, [1, 3, 5], x) (x is the zth element of [1, 3, 5])

alldifferent(x, y, z, w) (all variables take distinct values)

2z − w ≥ 0

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 39

Constraint Programming Example

x ∈ {1, 3}
y ∈ {1, 2, 3}
z ∈ {1, 2, 3}
w ∈ {1, 2, 4}

element(z, [1, 3, 5], x) (x is the zth element of [1, 3, 5])

alldifferent(x, y, z, w) (all variables take distinct values)

2z − w ≥ 0

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 39

Constraint Programming Example

x ∈ {1, 3}
y ∈ {1, 2, 3}
z ∈ {1, 2, 3}
w ∈ {1, 2, 4}

element(z, [1, 3, 5], x) (x is the zth element of [1, 3, 5])

alldifferent(x, y, z, w) (all variables take distinct values)

2z − w ≥ 0

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 39

Constraint Programming Example

x ∈ {1, 3}
y ∈ {1, 2, 3}
z ∈ {1, 2, 3}
w ∈ {1, 2, 4}

element(z, [1, 3, 5], x) (x is the zth element of [1, 3, 5])

alldifferent(x, y, z, w) (all variables take distinct values)

2z − w ≥ 0

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 39

Constraint Programming Example

x ∈ {1, 3}
y ∈ {1, 2, 3}
z ∈ {1, 2, 3}
w ∈ {1, 2, 4}

element(z, [1, 3, 5], x) (x is the zth element of [1, 3, 5])

alldifferent(x, y, z, w) (all variables take distinct values)

2z − w ≥ 0

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 39

Constraint Programming Example

x ∈ {1, 3}
y ∈ {1, 2, 3}
z ∈ {1, 2, 3}
w ∈ {1, 2, 4}

element(z, [1, 3, 5], x) (x is the zth element of [1, 3, 5])

alldifferent(x, y, z, w) (all variables take distinct values)

2z − w ≥ 0

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 39

Constraint Programming Example

x ∈ {1, 3}
y ∈ {1, 2, 3}
z ∈ {1, 2, 3}
w ∈ {1, 2, 4}

element(z, [1, 3, 5], x) (x is the zth element of [1, 3, 5])

alldifferent(x, y, z, w) (all variables take distinct values)

2z − w ≥ 0

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 39

Constraint Programming Example

x ∈ {1, 3}
y ∈ {1, 2, 3}
z ∈ {1, 2, 3}
w ∈ {1, 2, 4}

element(z, [1, 3, 5], x) (x is the zth element of [1, 3, 5])

alldifferent(x, y, z, w) (all variables take distinct values)

2z − w ≥ 0

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 39

Constraint Programming Example

x ∈ {1, 3}
y ∈ {1, 2, 3}
z ∈ {1, 2, 3}
w ∈ {1, 2, 4}

element(z, [1, 3, 5], x) (x is the zth element of [1, 3, 5])

alldifferent(x, y, z, w) (all variables take distinct values)

2z − w ≥ 0

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 39

Constraint Programming Example

x ∈ {1, 3}
y ∈ {1, 2, 3}
z ∈ {1, 2, 3}
w ∈ {1, 2, 4}

element(z, [1, 3, 5], x) (x is the zth element of [1, 3, 5])

alldifferent(x, y, z, w) (all variables take distinct values)

2z − w ≥ 0

Aron, Hooker and Yunes An Integrated Solver for Optimization Problems 39

