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Part I

Introduction and Literature Review
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A Motivation in Integer
Programming

Observation 1: Solving linear integer programs efficiently is often
related to the ability of creating tight (LP) relaxations.

Observation 2: In linear integer programming, tight relaxations
can be obtained
1. By reformulating the problem in a higher dimensional space
2. By adding cutting planes in the space of original variables

Observation 3: In linear unstructured integer programming, the
above two tightenings can be obtained through

1. Disjunctive Arguments
2. Lifting

MIP 2006, Thursday June 8th
2006



A Motivation in Integer
Programming

Observation 1: Solving nonlinear integer programs efficiently is
often related to the ability of creating tight convex relaxations.

Observation 2: For MINLP, tight convex relaxations can be
obtained

1. By reformulating the problem in a higher dimensional space
2. By adding ‘“‘convex’” cuts in the space of original variables

Observation 3: For MINLP,

1. Disjunctive Arguments have been used to obtained tighter
formulation

2. Lifting has not been used!

MIP 2006, Thursday June 8th
2006



What is MIP Lifting?

For a set
S={zxeZ" xR" ™| Ax < b}
And a restriction of this set
S(T,u) ={z e S|x; =u;VjeT}

Lifting is the process by which a valid inequality of S(7T,u) of the

form
Z 5T 5 S )

FJEN\T
iSs converted into a valid inequality of S of the form

Zaja;j <d+ Zajuj

JEN JET
MIP 2006, Thursday June 8th 6
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Some Literature on MIP lifting

Lifting has a relatively long history:

1. Integer variables: ~ 1970’s
(a) Padberg; Wolsey; Balas & Zemel;

(b) Se Wolsey; Gu, Nemhauser & Savels-
bergh; Atamtiurk; ...

2. Continuous variables: ~ 2000’s

(a) Marchand and Wolsey; R., de
Farias & Nemhauser

(b) R., de Farias & Nemhauser; R.

MIP 2006, Thursday June 8th
2006



What is Hard about MINLP Lifting*

- Consider the set S = {x € {0,1}*|20z1 + 152> + 1223 +
10z4 < 22}

— The cover inequality x> 4+ 3 + x4 < 2 is valid for S(x1,0).
= To obtain the lifted inequality, we just need to guess the
coefficient in front of z1, 221 + a2 + 23+ 24 < 2

> Consider the set S = {z € [0,1]3|2zy + 2z > 1}.
> The convex hull of feasible solutions is given by /2xzy +

(1-+/Dz>1

MIP 2006, Thursday June 8th
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Overview & Goal of Our Work

Our goal is to extend lifting techniques to nonlinear mixed
integer programs

The main difference with existing techniques for constraints
generation in MINLP is that cuts are generated in the original
space of variables

We will proceed in two steps

(a) Obtaining valid linear cuts for MINLP sets
(b) Obtaining valid nonlinear cuts for MINLP sets

Some isolated use of lifting for MINLP: de Farias, Lin & Van-
denbussche

MIP 2006, Thursday June 8th
2006



Some Nice Features of MINLP
Lifting

MINLP lifting is capable of producing

1. Strong nonlinear (convex) inequalities for
NLP and MINLP

2. Linear inequalities that are difficult to ob-
tain through linearizations

MIP 2006, Thursday June 8th 10
2006



Part II:

Example 1: Single Constraint

Nonlinear Sets

MIP 2006, Thursday June 8th
2006
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Goal of Part |l

Illustrate that:

Although it iIs sometimes possible to study
nonlinear sets through linearizations, stronger
results might be obtained by focusing directly

on the nonlinear formulation

MIP 2006, Thursday June 8th 12
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Part II.1:

A General Single Constraint Mixed

Integer Nonlinear Knapsack Set

MIP 2006, Thursday June 8th
2006
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Mixed Integer Nonlinear Knapsack

Problem Definition: We consider the set

8 = conv{(z,y) € {0,1}" x [0,1]"| Y _ fi(w;,y;) < d}

j=1
where
fi :{0,1} x [0,1] - R
deR

Remark: S is generalization of

1. Linear Mixed Integer Knapsack Polytopes:
— take fj(atj,yj) = ajx; + bjy; for aj,b; € R.
2. Single Node Fixed Charge Flow Models:
— take fj(a:j,yj) = a;Y; if Y < Z;j and fj(a:j,yj) = oo Ootherwise.

3. Bilinear Mixed Integer Knapsack Sets:
— take f;(z;,y;) = a;x,v; 1;%56%'7 b, € R.



Mixed Integer Nonlinear Knapsack

Notation:

Given the mixed integer nonlinear knapsack set S, we let PS =
conv{S} be the convex hull of S.

Remarks:
1. PS is usually not a polyhedron.
2. We want to derive ‘strong’ valid inequalities for PS.
3. We will use lifting to obtain these inequalities.

4. Most of the results we describe next also apply when f; is a
function of more than 2 variables.

MIP 2006, Thursday June 8th 15
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Generating Valid Inequalities for PS

Definition: Given S and T'C N, we define
S(T)={(z,y) € S|z; =y; =0,Vj € T}
and define PS(T) = conv(S(T)).

Definition: Let 2 € N, given a linear inequality

that is valid for PS({i + 1,...,n}), we define the lifting function
associated with (*) to be

gbz(a) = Jd— max {Z QX5 -+ Z ﬁjyj}
j=1 j=1

s.t. ij(:cj,yj) <d-— Z f;(0,0)

j=i+1

16



A General Lifting Result for PS

Proposition: Assume that

o1zl + Piyr <0

is valid for PS({2,...,n}). For ¢ = 2,...,n, also assume that the
lifting coefficients «; and 3; are chosen such that

a; + B0 < ¢ H(fi(1,0) — £:(0,0)) VO<H<1
Bi0 < ¢ 1(f:(0,0) — £;(0,0))  VO<O<1

Then the inequality

MIP 2006, Thursday June 8th 17
2006



Advantages and Limitations of the
Lifting Scheme

Advantages:

1. Systematic and constructive method to generate
cuts.

2. If performed “exactly,” this scheme generates “strong”
inequalities.

Limitations:

1. The computation of each single function ¢* might
be difficult and/or computationally prohibitive.

2. All functions ¢* need to be computed.
3. All inequalities generated are linear.

MIP 2006, Thursday June 8th 18
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A Superadditive Lifting Result for PS

Proposition: Assume that

orz1 + Pryr <9

is valid for PS({2,...,n}). Also assume that ¢!(a) is superadditive,
i.e. ot(a)+¢1(b) < dl(a+d), VYa,b € R. Then if the lifting coefficient
«; and B; are chosen such that

ai + Bi0 < o' (£i(1,0) — £;(0,0)) VO<0<1
B0 < ¢'(£:(0,0) — £i(0,0))  VO<6H<1

Then the inequality

is valid for PS({<+1,...,n})

MIP 2006, Thursday June 8th 19
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A Superadditive Lifting Result for PS

Proof: [Sketch]

o Note first that ®'(a) < P 1(a), Vi=2,...,n—1
¢ The rest of the proof is by induction.

¢ Use dynamic programming to prove that

| d1(a)
®'(a) = min ¢ infocpc1 {P"1(a+ f;(0,0%) — f;(0,0) — B:6*)}
infocp<1{P" " (a+ £;(1,0%) — £:(0,0) — a; — Bi0*)}

o Use inductively proved superadditivity of ®*~! to argue

| '~ 1(a) |
®'(a) > min < D1(a) + infocg<1 {P"1(fi(0,0*) — f;(0,0) — B:6*)}
' (a) + infocp<1 {P"1(fi(1,0) — £i(0,0) — a; — B;0*)}

¢ Note that the conditions dictating the choice of «;, 8; imply
P'(a) > " (a)

o Conclude that @i(a) = ®1(a)

2UUb



A Superadditive Lifting Result for PS

Comments

1. This theorem generalizes sequence independent lift-

ing for particular forms of nonlinear mixed integer
programs

2. It can be used even if the f; have different expres-
sions

3. Provided that the lifting coefficients a; and 3; can
be derived quickly from ¢, it provides an efficient
way to generate constraints for MINLP

MIP 2006, Thursday June 8th
2006

21



Part 11.2:

A Single Constraint Mixed Integer

Bilinear Knapsack Set

MIP 2006, Thursday June 8th
2006
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Application: Bilinear Mixed Integer
Knapsack Problem (BMIKP)

We now apply the previous result on the set

T = conv{(x,y) € {0,1}" x [0, 1]"| Za,ja:jyj < d}

JEN
where

l. a; >0,Vj€eN

2. d>0
This set can appear as a relaxation of

1. Outsourcing problems

2. Environment problems

3. ...

MIP 2006, Thursday June 8th 23
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BMIKP: Comments

Remarks

1. PT = conv(T) is a polytope

2. We will investigate the facets of PT
We proceed in two steps

(a) Derive the inequalities of the convex hull of PT’, the con-
tinuous relaxation of PT.

(b) Derive some facets of PT using the superadditive theory.

MIP 2006, Thursday June 8th 24
2006



The Convex Hull of PT  is a
Polyhedron

Proposition Let PT" be defined as

PT' = conv{(z,y) € [0,1]" x [0,1]"| > ajajy; < d}
j=1

Then
1. PT’is a polytope
2. PT" = {(z,y) €[0,1]" x [0, 1]"|

D ier @i+ pay; <d+ Y a;, VT C N}

MIP 2006, Thursday June 8th
2006
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Obtaining Facets of PT using
Superadditive Lifting

Definition: Given C C N, we say that C is a cover for PT if
jecC

for some u > 0.

Definition: We say that C' is a nontrivial cover if maX;cc a; > u.

Proposition: Let C C N and Tp,T1 be a partition of N\C. As-

sume that C is a nontrivial cover in PT(N\C,0,0, N\C), then the
inequality

Z min{a;, p}ae; + Z a;Y;j < Z min{a;, u} + Z aj —
jel jel jel jel

is a facet of PT(N\C, 0,0, N\C).

[<AVAVAV)



Obtaining Facets of PT using
Superadditive Lifting

Proposition: Let ¢ C N and Ty, 71 be a partition of N\C. As-
sume that C is a nontrivial cover in PT(N\C, 0,0, N\C), then the
inequality

Z min{a;, pyz; + Z T + E a;y; + Z Biyi

jec FJEN\C jec JEN\C
< Z(min{%ﬂ}' +aj) —p+ Z B;
jeC JEN\C
with
[ ®(ay) for jemn o, _ [ by for jeT
oy = { 0 for €Ty and 3; = 57 tor ey
where
— if a<—pu
CD({L) — (—1 -+ i);,{, — (,Ag_]_ — G:) it A1 — pu<a< A1
' (=14 Dpu if A 1<a<A —p
o0 if A,—p<a

where A; is the I largest coefficient of the cover and

(a) = . 0 it el A —p
oY= max{c|P(a—o)} =P(a)} if a>A1—p

is facet-defining for P7T.

(A4 VAVV)



Example

Consider
19x1y1 + 17x2y2 + 1523y3 + 10x4y4 < 20
The set C = {1,3} is a cover with excess 14. The cover inequality
14x7 4+ 14x3 + 19y; 4+ 15y3 < 48

is facet-defining for PS(C,0,T,T) where C = N\C, TUT = C and
TNT = (. This cover inequality can be lifted into the following
inequalities

14z + 1423 + 19y1 + 15y3 + 0 < 48 +

14x1 + 14x3 + 19y1 + 15y3 + <48 +
14x1 + 1423 + 19y1 + 15y3 + <48+
14z + 1423 + 19y + 15y3 + <48 +

which are facet-defining for PS.

MIP 2006, Thursday June 8th 28
2006



Obtaining Facets of PT using
Superadditive Lifting

Comments

1. The function ® given above is the lifting function and is su-
peradditive.

2. It is possible to build an exponential family of inequalities from
this lifted cover inequality
(a) The choices of «; and 3; given is one choice that give two

additional tight points.

3. This result can also be used to derive approximate lifting
schemes

MIP 2006, Thursday June 8th
2006
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Another Family of Strong
Inequalities for PT

Definition: Given K C N, we say that K is a clique for PT' if
a; t+a; >d, Vi Zj€ K

Proposition: Let K C N. Assume that K is a clique in
PT(N\K,(), N\K, K), then the inequality

IS
jeK
is a facet of PT'(N\K, ), N\K, K).

MIP 2006, Thursday June 8th 30
2006



Another Family of Strong
Inequalities for PT

Using lifting for y; for j € K and lifting for (z;,y;) € N\ K, we obtain:
Proposition:

Let K € N. Assume that K is a clique in PT(N\K,0, N\K, K.
Then the inequality

a .

. a; , j
Zajj_I_Zaj—al—l—minK{a|a75613-})'%S 1+€2Kaj—d+minf<{a|a7ﬁaj})
j

jeK jeK
is facet-defining for PT.

Remark:

1. Note that the function F(a;) = a‘_d+mini{a|a#a‘} is superlinear

2. Some form of superlinearity also holds for nonlinear programs

MIP 2006, Thursday June 8th 31
2006



Example

Consider
1921y1 + 17x2y> + 15x3y3 + 10x4y4 < 20
The set K = {1,2,3,4} is a clique. The clique inequality
1+ x2+ 23+ 724 <1

is facet-defining for PS(0,0,0,N). This clique inequality can be
converted by lifting the continuous variables into the following in-
equality

1+ T2+ 3+ T4 + <1l+

or equivalently

6371 + 6372 + 6323 + 6374 + 133y1 + 153y» + 189y3 + 12644 < 664

which is facet-defining for PS.

MIP 2006, Thursday June 8th 32
2006



Was there any point to this superadditive
lifting?

MIP 2006, Thursday June 8th 33
2006



Part 11.3:

The Strengh of Lifted Inequalities for
Single Constraint Mixed Integer

Bilinear Knapsack Set

MIP 2006, Thursday June 8th
2006

34



An Equivalent Integer
Programming Formulation for PT

Linearization 1
Let T be the bilinear mixed integer knapsack set defined above.
Then

T = pTOj(:r:,y){(xa Y, Z) S {07 1}n X [07 1]?”& X [07 1]7”0 |

n

Zajzj <d

j=1
ity —1<2,Vj=1,...,n}

Linearization 2
Let T be the bilinear mixed integer knapsack set defined above.
Then

T ={(x,y) € {0,1}" x [0,1]"|

Zajxj—l—Zajyj Sd—l—Zaj,‘v’Tg N}

JeET ogeT JeET



An Equivalent Integer
Programming Formulation for PT

Comments

1. Linearization 2 is a 0-1 mixed integer program with many con-
straints. Inequalities could be obtained through aggregation
of the rows.

2. Assume that we consider creating all valid inequalities from
each row and/or aggregation of rows of this formulation. Can
the lifted cover cuts be obtained this way, i.e. is it in the
“aggregation’ -closure?

3. This closure is not directly related to Chvatal-Gomory and
split closures

MIP 2006, Thursday June 8th 36
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Strong Rank-1 Inequalities

Definition:
Let U be the feasible region of a mixed integer program:

U={zxeZ" xR"|Ax < b}
and an inequality

m-+n

Z ajry < 6(*)
j=1

valid for U. We say that (*) is a strong rank-1 inequality if there
exist u € Rﬁr such that

n+m

> o=

j=1
such that (*) is a valid inequality for

P(u) = conv{x € Z™ x R" |uAx < ub}



High Rank Certificate

Definition: We say that a set of points {z'};=1, x € Z™ x R™ form
a high-rank certificate for (*) if

1. Zm—l—n OéjZC;? > 0

2. Yu € Rm+” such that Zm+n .= 1 then there exists k(u) €
{1,. k} such that

wAzF(u) < ub

Proposition: {z'};=1..x € Z™ x R" is a high-rank certificate for (*)
if and only if

1. Zm—i—n aj$§ > 0

2. conv{zl,..., "} N LPrelaxz(U) # 0

MIP 2006, Thursday June 8th 38
2006



Lifted Cover Cuts for BMIKP are
not Strong Rank-1

Example : Consider

3

PT = {(wvy) € {07 1}3 X [07 1]3 | Zajxjy] S a _I— az — :u}
j=1
where (i) a1 > a> > az > pu > 0, (ii) a1 < ap» + a3 — . Then the
inequality
ai

an as a2 as
1+ x2 + 23 + y1+—y2+—y3 <1+ + =+
p+ a1 — a2 v v ptar—a2 @ p

ai

is a facet of PT that does have high rank-1 since the following two
points

1.

2.

form a high-rank certificate for € > 0 sufficiently small.



Towards the Next Step...

Remarks:

1. We have derived methods to generate linear cuts for mixed
integer nonlinear programs

2. Some of these cuts cannot be obtained easily using lineariza-
tions.

3. For most problems, it might be necessary to add nonlinear
constraints

4. We want to describe methods to use the results on linear cuts
to generate nonlinear cuts

MIP 2006, Thursday June 8th 40
2006



Part IlI.

Example 2: Nonlinear Disjunctive Sets

MIP 2006, Thursday June 8th 41
2006



Goal of Part Il

Illustrate that:
It Is possible to derive nonlinear cutting
planes

Illustration on:
Simple Disjunctive Sets (why7?)

MIP 2006, Thursday June 8th
2006
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A General Procedure

Steps

1. Reduce the dimension of the set studied by fixing some of
the variables so that the convex hull of the restriction can be
described by a parameterized (in 6) family of linear inequalities

2. Lift this family of linear inequalities to reintroduce the fixed
variables

3. For the obtained family of linear inequalities, determine for
each point of the set studied, the value of 8 that create the
tighest constraint. Doing so, 6 is expressed as a function of
the variables of the set studied, 6(x)

4. Substitute that function 0(x) in the parameterized family of
inequalities to obtain a nonlinear cut.

MIP 2006, Thursday June 8th
2006
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Deriving Nonlinear Cuts for Mixed
Integer Programs: Applications

Advantages
1. Can be applied to many problems
2. Only require the derivation of linear inequalities

3. Systematic way to obtain convex hulls in the initial space of
variables

Limitations
1. Might be difficult to solve the lifting problems analytically

Illustrations
1. We derive the convex hull of a 3D nonpolyhedral BKP
2. We derive the convex hull of two disjunctive sets

MIP 2006, Thursday June 8th 44
2006



Obtaining the Convex Hull of a
Simple Bilinear Knapsack Set

We now consider the set
V ={(z,y,2) € [0,1]° |azy + bz > 1}

where (i) a > 1 and (ii) b < 1.

Proposition:
The convex hull PV of V is given by

PV = {(z,y,2) € [0,1]° | Jazy + (1 — /1 = b)z > 1(x)}

Remark:
For the case a = 2, b = %, the point (1,1,1) satisfies both the
relaxations
2y + lz >1
5% 2
2x + lz > 1.
5% 2

However, it does not satisfy (*).

MIP 2006, Thursday June 8th 45
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Obtaining the Convex hull of a
Simple Bilinear Knapsack Set

Methodology:

1.

2.

Fix z =0 and x = 0 where § > 1. We obtain afy > 1(x)

Lift the inequality (*) with respect to x to obtain the inequal-
ities 1z 4 afy > 2 for all 0 € [, 1]

Lift all of these inequalities with respect to z to obtain
2 — %ax — aby

z
s.t. axzy+bz>1,2>0

1
5:5 + aby +~vz>2 where ~ = max

We obtain, for all ¢ € [1,1],

%az—l—a@y—l—Q[l—\/l—b]zZQ

MIP 2006, Thursday June 8th 46
2006



Obtaining the Convex hull of a
Simple Bilinear Knapsack Set

Methodology:

1. We obtain, for all 6 € [%,1],
1
5" + aby + 2[1 — /1 — b]z > 2(*x*)

2. For any given (x,vy, z), the strongest of these inequality is the
one for which the value of

1
—x + ab
7 + aby
IS mMinimum.
3. Using KKT conditions, we obtain that 6(z,y,2) = /=

ay

4. Subsituting in (**), we obtain the result.



Obtaining the Convex hull of a
Simple Bilinear Knapsack Set

MIP 2006, Thursday June 8th
2006
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Obtaining Convex Hulls of
Disjunctive Sets: An Example

Example: Consider the disjunctive set

SZ{(x,y,z)ERi | >0
z>1/x when y =20
z > max{5 —4x,4 — 2z} when y =1}

The convex hull of S is given by

1+ y? —2y+ 5xy

conv(S) = {(z,y, z) ER?"_ | =z if 20 +9y <1
x

4 —4x+yif2r+y > 1&x < 0.5

2 — 4y 4 6zy — y?

2z — vy

AVARRLY,

z

IV

if x> 0.5&y + ar <«

z

2> 22— 2z — By ify—l—ozx>cv&y—§x21—ﬁ

1 — 2
z>( y) ify—éac<1—ﬁ}
T — 2y 2

where a = J\fl, B =(2vV2—-4)

MIP 2006, Thursday June 8th
2006
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Obtaining Convex Hulls of
Disjunctive Sets: An Example

MIP 2006, Thursday June 8th
2006
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Obtaining Convex Hulls of
Disjunctive Sets: An Example

MIP 2006, Thursday June 8th
2006
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Obtaining the Convex Hull of
Disjunctive Sets: A Result

Proposition: Let F(z),G(x) : Ry — R be convex differentiable de-
creasing function. Also assume that their derivatives f(x) and g(x)
are invertible. Define the set

S ={(x,y,2) ER‘:’_ | z> F(x) when y =0
z > G(x) when y =1}

Then the convex hull of S

conv(S) = {(z,y,2) € R} | 22>0(x—f1(0)(1—-y)—g " (0)y)
+ F(f7H0) (1 —y) + G(g~ (0)y)}

where 6 is a solution to z = f~1(0)(1 —y) + ¢ *(O)y

MIP 2006, Thursday June 8th 52
2006



Obtaining the Convex Hull of
Disjunctive Sets: An Example

Example: Consider the disjunctive set

S ={(x,vy, 2) ER?I— | z>e *when y=20
z > e % when y = 1}

The convex hull of S is given by

conv($) ={(z.y.2) €R} | 2= (1—3)e ¥ )

Proof: From previous Proposition, we have
o F(z) =€ %, f(z) = —e7, f 1 (z) =—-In(—z)
o G(z) =e 22, g(z) = —2e72%, g7 1(z) = —Lin(%)

n2,
2 Y%
]_i

Nl

o 0= —e
MIP 2006, Thursday June 8th
2006
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Obtaining the Convex Hull of
Disjunctive Sets: An Example

MIP 2006, Thursday June 8th 54
2006



Some Comments

Comments:

1.

The same ideas carry over to disjunctive sets over more than
two disjunctions

2. Similar results can be obtained starting from nonconvex or
from nondifferentiable functions

3. When the dimension of the domain of the disjunctive sets is
larger than one, we can extend theoretically extend the results

. But the analytical derivation become hard
Futures:
1. Investigate how to derive numerical variants of the approach
2. Investigate how to derive symbolic variants of the approach

MIP 2006, Thursday June 8th
2006
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Part IV:

Some T heoretical

MIP 2006, Thursday June 8th
2006

Results
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Goal of Part IV

Illustrate that:
There is a set of common concepts that
relate all of these results

MIP 2006, Thursday June 8th 57
2006



Generalizing the Theory...

f(x)
Conjugate:

f*(s) == supzs{< s,z > —f(x)}

MIP 2006, Thursday June 8th
2006
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Generalizing the Superadditive
Lifting Theory...

In Integer Programming, superadditive lifting guarantees that
sequence independence is obtained

Lifting functions are closely related to conjugate functions

T herefore, sequence independent lifting should have an inter-
pretation in terms of conjugates

In order to obtain independence, the values of the conjugate
should be driven mainly by its value on the axes

This naturally leads to superadditivity of a function related to
the conjugate

MIP 2006, Thursday June 8th 59
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Application: Sequence Independent
lifting for single-constraint problems

Consider S = {(xo,- .., xm) | f(xo, ..., Tm) < a}
Define y(x1,...,xm) = —sup,,{< ao,x0 > |f(x0,...,zm) < a}

Then apxo < 3 is valid for S where x; =0 for:=1,...,m if
B8 =~(0,...,0)

Define the perturbation (“lifting”) function
P(’U)) :B_Squo{anO|f(x0707°°'70) < a—w}

O(x1, ..., zm) = P(g(xo, ..., Tm)).

MIP 2006, Thursday June 8th 60
2006



Application: Sequence Independent
lifting for single-constraint problems

T heorem:
If there exists h1 and h, such that

1. g(zo,...,zm) > h1(N™,9(z0,0,...,0,2;0,...,0))
2. P(hl(n 1g(£UO, . O x% . O))
> hQ(I_I — P(g(m07 . O ml) . O))))

where ho IS monotone convex. Then the convex set

S={(xo,...,zm) | B—aoxo>ho(z1,...,2m)
zi2@(0,...,0,:@,0,...,0) forizl,...,m}

outer approximates S if 6;(0,...,0,z;,0,...,0) is a convex underes-
timator for 6(0,...,0,z;,0,...,0)

MIP 2006, Thursday June 8th 61
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Part V.

Conclusion

MIP 2006, Thursday June 8th
2006
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Conclusion & Future Work

We showed that MIP lifting techniques can be fruitful in non-
linear programming

We introduced techniques that can be used to make them
computationally efficient

For mixed integer polyhedral sets, these techniques can be
used to obtain quickly inequalities that cannot be obtained
directly from linear IP reformulations

Although originally designed for linear cuts, the theory can be
used to generate nonlinear cuts and convex hulls in the space
of the original variables

We presented a generalization of superadditive lifting to non-
linear programs

This is only the tip of the iceberg, much more need to be
done to make the approach practical
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