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Abstract. We propose a solution method for a water-network opti-
mization problem using a nonconvex continuous NLP relaxation and
an MINLP search. We report successful computational experience us-
ing available MINLP software on problems from the literature and on
difficult real-world instances.

Introduction

The optimal design of a WDN (Water Distribution Network) consists, in its
classical formulation, of the choice of a diameter for each pipe, while other design
properties are considered to be fixed (e.g., the topology and pipe lengths). From
a mathematical viewpoint, we can cast the optimal design problem of a WDN
as a MINLP (Mixed Integer NonLinear Programming) problem in which the
discrete variables select from a set of commercially-available diameters, water
flows must respect the hydraulic constraints, and we seek to minimize the cost
function which only depends on the selected diameters.

Recently there has been renewed interest in optimal WDN design, due to
emerging issues related to water distribution systems; in particular, the gradual
deterioration of network pipes and the need for a more rational use of water
resources has lead to very costly renovation activities.

Approaches in the literature use various combinations of linearization and
relaxation, which lead to MILP (Mixed Integer Linear Programming), NLP
NonLinear Programming) and meta-heuristic algorithms. We survey these ap-
proaches in §3. In this paper we are interested to approaches exploiting mathe-
matical-programming formulations, and we consider two cases.

The MILP approach to our problem relies on using piecewise-linear approxi-
mations. If tractable, solution of such a model would provide the global optimum
of an approximation to the real system. If accurate models are desired for a large
network, we are lead to using a large number of binary variables (to manage the
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linear pieces). This tends to lead to a very poor relaxation and ultimately an
intractable model.

With an MINLP approach, we are lead to a more natural model. Our view
is that by accurately modeling the nonlinear phenomena, we will have a model
that will provide an MINLP search with a good NLP relaxation. While foregoing
any hope of verifying global optimality of the best solution encountered, we are
able to find very good solutions to large real-world instances.

Our experiments were carried out using AMPL [9] as an interface to two
MINLP codes. We are using Sven’s Leyffer’s code MINLP_BB [12], (available from
the University of Dundee) as well as the new CMU/IBM open-source MINLP
code Bon-min [2,3] (to be available from COIN-OR [4]). Our modeling and
solution methods are worked out with the target software in mind.

In Section §1, we formally set the notation for specifying instances of the
problem. In §2, we describe the problem more fully, through a preliminary con-
tinuous model. In §3, we survey earlier approaches, and we describe an NLP
model in which we make a smooth (approximate) relaxation of the preliminary
model described in §2; so that we can apply methods of smooth optimization.
In §4, so as to decrease the nonlinearity, we describe a reparameterization of
pipes by (cross-sectional) area, rather than diameter. In §5, we describe how we
incorporate binary variables for the purposes of then applying different MINLP
codes. In §6, we describe the results of computational experiments.

1 Notation

The network is oriented for the sake of making a careful formulation, but flow
on each pipe is not constrained in sign (i.e., it can be in either direction). The
network consists of pipes (arcs) and junctions (nodes). In the optimization, the
pipes are to have their diameters sized.

Sets:

E = set of pipes.

N = set of junctions.

v = source junction (v is a fixed element of N).
04 (1) = set of pipes with tail at junction 4.

0_ (1) = set of pipes with head at junction .

Parameters:

len(e) = length of pipe e (e € E).

k(e) = physical constant depending on pipe material (e € E).
dem(i) = demand at junction ¢ (i € N).

elev(i) = physical elevation of junction i (i € N).

Pmin (1) = minimum pressure at junction i (i € N).

Pmaz (1) = maximum pressure at junction ¢ (i € N).

dpmin(e) = minimum diameter of pipe e (e € E).



dmas(€) = maximum diameter of pipe e (e € E).
Umaz(€) = maximum speed of pipe e (e € E).

Pipes are only available from a discrete set of r. diameters. For e € E:
dmin(e) :=D(e,1) < D(e,2) < - <D(e,re) =: dmaz(e).

For each pipe e € E, there is a cost function C,() having a discrete specifica-
tion as a (typically rapidly) increasing function of diameter. That is, €(e,r) :=
C.(®D(e,r)), r=1,...,r., where

Cle,1) < €e,2) < -+ < Cle,re).

2 A preliminary continuous model
In this section, we fully describe the problem, and at the time we develop a
preliminary NLP relaxation.

Variables:

Q(e) = flow in pipe e (e € E).
D(e) = diameter of pipe e (e € E).
H (i) = hydraulic head of junction ¢ (i € N).

Simple bounds [Linear]:

dmin < D(€) < dpmar (Ve € E).
DPmin (1) + elev(i) < H(i) < pmax(t) +elev(i) (Vi€ N).

Flow bounds (dependent on cross-sectional area of pipe) [Smooth but noncon-
vex]:

—ZUmaz(€)D?(e) < Q(€) < Zvmas(e)D?*(e) (Ve € E).

Flow conservation [Linear]:
Yeco_ (i) Q€) = Xees, () Qle) = dem(i)  (Vie N\{v}).

Head loss across links [Nonsmooth and nonconvex]:

H(i) — H(j) = sign(Q(e))|Q(e)[*** - 10.7 - len(e) - k(e)~+%2/D(e)**
(Ve=(ij) € E).
This constraint models friction loss in water pipes using the empirical Hazen-
Williams equation. This is an accepted model for fully turbulent flow in water

networks. Diameter is bounded away from 0, so the only nondifferentiability is
when the flow is 0.

Objective to be minimized [Discrete]:



2 cer Ce(D(e)) len(e)

Since we only have discretized cost data, within AMPL we are fitting a
polynomial to the input discrete cost data to make a working continuous cost
function C¢().

We have experimented with different fits: [y, I and l.; with and without
requiring that the fit under or over approximates the discrete points. Requiring
an under approximation makes our formulation a true relaxation — in the sense
that the global minimum of our relaxation is a lower bound on the discrete
optimum. We use and advocate weighted fits to minimize relative error. For
example, our least-squares fit for arc e minimizes
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3 Models and algorithms

Optimal design of a WDN has already received considerable attention. Artina
and Walker [1] linearize and use an MILP approach. Savic and Walters [14]
and Cunha and Sousa [6] work within an accurate mathematical model, but
they use meta-heuristic approaches for the optimization, and they work with
the constraints by numerical simulation. Fujiwara and De Silva [10] employ a
“split-pipe model” in which each pipe e is split into r. stretches with unknown
length where 7. is the number of possible choices of the diameter of pipe e
and the variables become the length of the stretches. It is not difficult to see
that models of this type have the disadvantage of allowing solutions with many
changes in the diameter along the length of a pipe, and the hydraulic behavior
of which is not accurately modeled. Using this type of model, they employ a
meta-heuristic approach for the optimization, working with the constraints by
numerical simulation. Eiger et al. [7] also work with a split-pipe model, but they
use NLP methods for calculating a solution. Xu and Goulter [15] and Lansey
and Mays [11] also employ an NLP approach, but they use an approximation of
the split-pipe methodology (using just 2 discrete pipe sections).

In what follows, we develop an MINLP approach and compare it to the more
standard MILP approach. The MILP approach has the advantage of correctly
modeling the choices of discrete diameters with binary indicator variables x.
representing the assignment of diameter (e, r) to arc e. In this way we can also
easily incorporate costs for the chosen diameters. There is still the nonlinearity
of the flow terms in the head-loss constraints. Piecewise-linear approximation
of these nonlinear constraints is the standard MILP approach here. Unfortu-
nately, the resulting MILPs are typically very difficult to solve. The difficulty



of the MILP models is related to the fact that once the diameters have been
fixed, the objective function is set, and a feasibility problem associated with the
piecewise-linear approximation must be solved, without any guidance from the
objective function. It turns out that linear-programming tools in such a context
are not effective at all. Good feasible solutions to the models are not always
obtainable for even networks of moderate size. Often one is lead to using very
coarse piecewise-linear approximations to get some sort of solution, but these
tend to not be accurate enough to be truly feasible. Indeed, especially with few
linearization points, the MILP may (i) generate flows that are infeasible, and
(ii) cut off some feasible (and potentially optimal) solutions. §6 includes some of
these rather negative computational results with the MILP approach.

Instead, our preferred starting point is a fully-continuous nonconvex NLP
model as described in §2. The main difficulty, besides giving up on global opti-
mality, is to deal algorithmically with the absolute value term in the head-loss
constraints. This term is nondifferentiable (at 0) but not badly. One possibility
is to ignore the nondifferentiability issue, and just use a solver that will either
get stuck or will handle it in its own way. This has the advantage of straight-
forward implementation from AMPL and access to many NLP solvers (e.g., via
NEOS [13]). But since we ultimately wish to employ available MINLP solvers,
and these solvers count on being given smooth NLP subproblems, we look for a
more promising approach.

We suggest smoothing away the mild nondifferentiability as follows: Let
f(z) = 2P (p = 1.852) when z is nonnegative, and f(z) = —f(—z) when z
is negative (z is standing in for @(e)). This function misbehaves at 0 (the sec-
ond derivative does not exist there). Choose a small positive § and replace f
with g on [—d, 4+4]. Outside of the interval, we leave f alone. We will choose g to
be of the following form: g(x) = ax + bz + ca®. In this way, we can choose a, b, ¢
(uniquely) so that f and g agree in value, derivative and second derivative, at
x = |d]. So we end up with a nice smooth-enough anti-symmetric function. It
agrees in value with f at 0 and outside [—4d, +4]. It agrees with f in the first two
derivatives outside of (=4, +¢). Some simple calculations yields

3675 1 3
= — _ p—5 _ < p—>5 5
g(z) ( gt 8(:0 1)pé gPo ) x

56P—3 1 5
_ = -1 p—3 C o Ssp—3 3
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Note that f/(0) = 0, while ¢’(0) is slightly positive.

As can be seen in Figure 1, this seems to work pretty well on a micro level
since the function f is not so bad near x = 0. In the figure, we have taken
0 = 0.01. Indeed the quintic curve fits very well in (—d,+d), and of course
it matches up to second order with the true function f at +4. This is all no
surprise since we are operating in a small interval of 0, and the function that we




approximate is not pathological. The NLP solvers that we have tested appear to
respond well to this technique.
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Fig. 1. Smoothing f near z =0

Piecewise constraints can be modeled in AMPL (see §18.3 of [9]), so we have
the advantage of then utilizing a variety of NLP solvers as well as a path to
using Bon-min as well as MINLP_BB, both of which are interfaced with AMPL.
There is already some accuracy lost in allowing the diameter variables to be
continuous, and of course in that we will only find local optima of the NLP
due to the nonconvexity of the model. Our experience is that the additional
inaccuracy in using this smoothed function is minimal compared to the other
inaccuracies mentioned.

4 Parameterizing by area rather than diameter

We can use variables
A(e) = cross-sectional area of pipe e (e € E),

rather than the diameter variables D(e) (e € E). This makes the model less
nonlinear. In particular, we have the now linear flow bounds:

—Umaz(€)A(e) < Q(e) < Umaz(e)Ale) (Ve € E),



the still linear simple bounds:

&2, < Ale) < Td%,. (Ve € E),

min —

and the less nonlinear head loss across links constraints:
. . . _ £\ 2435
H(i)—H(j) = sign(Q(e))|Q(e)["352-10.7-len(e)-k(e) =152 (§) 77 JA(e)> 4%
(Ve=(ij) € E).

Finally, there is the possibility that the cost function may be well modeled
by a function that is nearly quadratic in diameter — this means nearly linear in
area, which would be very nice.

We have tried out this area parameterization with different NLP solvers, and
it seems to work well, presumably due to the fact that the model is less nonlinear.

5 Discretizing the diameters

With an eye toward using Bon-min as well as MINLP_BB, we discretized the
diameters in a certain way. Specifically, we defined additional binary variables

Xep, T7=1,...,7c—1; VeeE.

These variables are used to represent diameter increments. That is, we have the
linking equations

D(e) =D(e, 1) + 2 (D(e,r) —D(e,r — 1)) Xe o1, VYeeE.

r=2

and
Xep > Xepy1, forr=1,...,r.—2; VecFE.

The advantage of this incremental modeling is that branching D(e) < D(e,r)
vs D(e) > D(e,r + 1) can be realized by ordinary 0/1 branching on the single
binary variable X, ,, without requiring any special solver handling of so-called
SOS of Type 1.

If we wish to work with the area parameterization instead (see §4), we employ
precisely the same discretization. That is, we keep the same 0/1 variables, but
we employ the still linear linking equations:

Ale) = % (@2(6, 1)+ i: (©2<€,’I‘) —D%(e,r — 1)) XE’T1> , Ve € E.



6 Some computational results

The area parameterization seems to be better behaved than the diameter one, so
we confine our reported experimental results to the area parameterization. For
convenience, we define the discrete areas (e, r) := ZD(e,r)?, for r =1,... 7.

For the computational results, for approximating the cost function (see §2),
we used rather high-degree polynomials, ls approximation, and we required that
the fitted curve be a lower approximation of the discrete points.

We created an AMPL model that first fits the cost function, and then solves
the continuous problem instances using a variety of NLP solvers (notably, we
experimented with the Dundee solver filterSQP and the open-source COIN-
OR solver Ipopt). This seems to give decent local minima without any special
starting points needed. On all of our data sets, filterSQP and Ipopt, using the
AMPL interface, have been able to find good local optimua rather easily.

We first solve the NLP relaxation to get continuous areas A(e). Then, to-
ward using the MINLP solvers MINLP_BB and Bon-min, we are setting branching
priorities as follows. If A(e) is between say (e, r’) and (e, r’ 4+ 1), then we let

prio(Xe,) = 100.5 — |r" —r + 0.5],

so that prio(Xe,) = prio(Xe,+1) = 100, prio(Xe,—1) = prio(Xe+2) = 99,
prio(Xer—2) = prio(Xe,43) = 98,. ..

Our data sets are shamir, hanoi and foss. For foss, we have three varia-
tions: foss_poly_0, foss_iron, and foss_poly_1. Summary statistics and com-
putational results using MINLP for the data sets are in Table 1. For comparison,
Table 2 contains results using an MILP model.

For the small network shamir, we obtain an MINLP solution equal to the
previously best known (and almost certainly optimal) one.

For hanoi, which is a significantly harder problem, we also perform well. We
obtain an MINLP solution that is only slightly worse that the best known one.
Previously computed solution values that we know of are:

6.073 x 108, Savic and Walters [14];
6.056 x10°, Cunha and Sousa [6];
6.327 x 105, MILP (see Table 2).

In particular, we do significantly better than the solution that we obtained by
MILP. Possibly the value of our NLP relaxation can be compared (somewhat
favorably) with the “split-pipe” designs obtained in the literature:

6.319 x 105, Fujiwara and Khang [10];
6.027 x10°, Eiger et al. [7].

The foss data is from a real problem of the Fossolo neighborhood of Bologna.
In Figure 2, we have a diagram of the Fossolo network made with EPANET 2.0
[8]. EPANET is free software distributed by the US Environmental Protection
Agency. It is commonly used to model the hydraulic and water quality behavior
of water distribution piping systems.
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Fig. 2. Fossolo network

We have three concrete instances for this network. Instance foss_poly_0
consists of the original data provided to us for this network. The pipe material
for that instance is polyethylene. Our solution compares quite favorably with
the solution obtained using MILP. Not only is the objective value poor for the
solution obtained by MILP, the piecewise-linear approximation is very coarse,
and so the solution obtained can not really be considered as feasible. Instance
foss_iron is for the same network, but with almost twice as many choices of
pipe diameters and with the material being cast iron. Instance foss_poly_1, a
polyethylene instance, is a much harder instance than the other two, with even
more choices for the pipe diameters. Note that for instance foss_poly_1, there is
a larger relative discrepancy between the value of the continuous optimum and
the value of the MINLP solution that we were able to find. This suggests that
there is a good possibility that we may be able to obtain a significantly better
MINLP solution for this instance.

We note that the MILP model is entirely too difficult to work with for the
foss_iron and foss_poly_1 data sets.

The cost data for foss_poly_0 is out of date, and so the solution values
can not be directly compared to that of foss_poly_1 and foss_iron, which
can be reasonably compared. The value of the solution that we obtained for



foss_poly_1 is much lower than for foss_iron. At first this seems surprising,
but this is explained by comparing the costs of the varying diameters of pipe.
We see in Figure 3 that for small diameters, polyethylene is much cheaper than
cast iron, and we note that the data is such that there are feasible solutions
with very low flows. Although polyethylene is generally a much cheaper material
than cast iron, its life is rather limited, and so cast iron is strongly preferred as
a long-term solution.

The MINLP results were obtained under the following computing environ-
ment: Windows XP, Pentium M, 1.70 GHz, 1 GB RAM. The instance shamir
required just a few seconds, and each of the other instances took 3-4 minutes for
the solutions obtained. The MILP results were obtained with CPLEX 9.0.3 [5] un-
der the following computing environment: Windows XP, Pentium IV, 1.70 GHz,
512 MB RAM. The MILP run times for shamir (resp., hanoi, foss_poly_0)
were 262 (91,730, 176,960) seconds.

300

250

200 +

+ polyethylene
= castiron

€150

100

50 7

0 0.2 04 06 08
meters

Fig. 3. Cast iron vs. polyethylene

We have experimented with restricting the range of discrete diameters to
ones nearby the diameters chosen in the continuous optimum; this seems to be
a very useful approach for difficult instances like foss_poly_1.



# # # NLP MINLP | MINLP | Previously
Network|junctions|pipes|diameters| (fitted obj) | (fitted obj) | (actual obj)| best known
shamir 7 8 14 425,103.06| 443,295.95| 419,000.00{ 419,000.00
hanoi 32 34 6 6,013,430.03|6,109,620.90(6,109,620.90{6,056,000.00
foss_poly_-0 37 58 7 35,403.19| 36,503.44| 36,503.44| (46,533.38)*
foss_iron 37 58 13 178,829.52| 180,373.35| 178,673.70 —
foss_poly_1 37 58 22 27,827.06| 31,442.21 31,178.89 —

Table 1. Computational results for the MINLP model

Best MILP LP Lower | Gap # # nodes | # lineariz-

Network| solution solution bound | (%) ‘ nodes |remaining|ation points
shamir| 419,000.0 307,897.7| 419,000.0| 0.00| 35,901 0 15
hanoi|6,327,613.3 |5,508,664.4(6,117,905.6| 3.31|4,532,718|2,592,716 7
foss_poly 0| (46,533.4)*%| 33,882.7| 34,851.8/25.10|1,845,254|1,299,426 3

Table 2. Computational results for MILP model

*piecewise-linearization is too coarse for us to rely on this solution as being truly
feasible to the MINLP as discussed in detail in Section 3

7 Conclusions

We are able to get good solutions to practical instances of water-network opti-
mization problems, with very low development time. We attribute our success

to:

. The availability of software for finding good solutions to MINLP problems.

2. The easy interface to such software via the modeling language AMPL.

. The natural framework of MINLP allows for an easy-to-develop and close
model of the real system — to some extent we give up on a MILP model
that seeks a globally-optimal solution, so that we can get a close MINLP
model of the system which is tractable for finding good local solutions.

. Smoothing mild nonlinearities (of the head-loss constraints) makes for good
behavior of typical codes that solve the NLP subproblems.

. Reparameterizing (by cross-sectional area rather than diameter) leads to a
less nonlinear and more convex model.

. Modeling discrete choices (of pipes) by (cross-sectional area) increments,
and then setting appropriate branching priorities, enables us to mimic SOS
branching while using only simple single-variable branching of the MINLP
solvers.



Our belief is that much of this wisdom (omitting the parenthetical remarks
above) applies to other instances of optimization problems with significant dis-
crete and nonlinear aspects.
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