Treewidth and
Integer Programming

U Z= 3

Mixed Integer Programming workshop
June 5, 2006, Miami

shus Arie Koster Zuse Institute Berlin (ZIB)

7/[][33 koster@zib.de http://www.zib.de/koster

Contents

= Treewidth vs. Integer Programming
= Treewidth by Integer Programming

= Experiments

;
Tree Decomposition

= A tree decomposition: a g
= Tree with a vertex set b<|c
associated with every e f
node

= For all edges {v,w}:
there is a set

containing both v and @ @ @ @
w

= For every v: the nodes @
that contain v form a

connected subtree

;
Tree Decomposition

= A tree decomposition: 9 g

= Tree with a vertex set b
associated with every
node

= For all edges {v,w}:
there is a set

containing both v and @ @ @ @
W

= For every v: the nodes @
that contain v form a

connected subtree

s
Tree Decomposition

= A tree decomposition: a g
= Tree with a vertex set b<|c
associated with every e f

node

= For all edges {v,w}:
there is a set
containing both v and
W

= For every v: the nodes
that contain v form a
connected subtree

:

Treewidth
= Width of tree decomposition:
a & h
max,_, | X. -1 bJe
d c

maximum bag size - 1

= Treewidth of graph G: tw(G)= minimum
width over all tree decompositions of G.

a b @@@@
C

d e

g

f

: &

;
First observations

Each clique has to be part of at least one node

Cligue number - 1 is a lower bound for treewidth

Trees have treewidth 1

;
Branchwidth, Treewidth, Pathwidth

Robertson and Seymour [106]: For a graph G=(V,E),
max{ bw(G), 2 } <tw(G) + 1 < max{ [3/2 bw(G)], 2}

Graphs with bounded treewidth have bounded branchwidth and
vice versa

Given a branch decomposition, we can construct a tree
decomposition with TD-width at most 3/2 times the BD-width

—>Illya Hicks

> Pathwidth: T is restricted to be a path; tw(G) < pw(G)

Trees do not have bounded pathwidth

Algorithms using tree

decompositions

= Step 1: Find a tree decomposition of width bounded by
some small 4.

= Heuristics.

= O(f(K)n) in theory.

= Fast O(n) algorithms for k=2, k=3.

= By construction, e.qg., for trees, series-parallel-graphs.

= Step 2. Use dynamic programming, bottom-up on the
tree.

= Let Y,=uX over all descendants of il

= Compute optimal solution in G[Y;] for each set S c X,, based on
the solutions for the children

10

Maximum weighted independent et
on graphs with treewidth k

= For node /in tree decomposition, 5 c X; write

= R(/ S5) = maximum weight of independent set Sof G[Y;] with S
X;= 5, — o« if such Sdoes not exist

= Compute for each node /, a table with all values R(;, ...).

= Each such table can be computed in O(2%) time when
treewidth at most k.

= Gives O(n) algorithm when treewidth is (small) constant.

> Many problems can be solved in polynomial time given a graph of
bounded treewidth
= Probabilistic networks

* Frequency assignment

1
Minimum Interference FAP

= Graph G=(V,E)

= Vertices correspond to
bi-directional connections

= Edges indicate interference
between two connections

For every vertex v, set of A'
frequency pairs D(v) is specified

= Interference quantified by edge penalties p(v,f ,w,g)
= Preferences for frequencies quantified by penalties q(v,f)

= QObjective: Select for each vertex exactly one frequency,
such that the total penalty is minimized.

2
Does it work in practice ?

= Only with (pre)processing techniques

= Graph reduction
= Vertices with degree 1 can be removed
= Vertices with degree 2 can be removed

= Domain reduction
= Upper bounding

= Dominance of domain elements

s
Computational Results

1E+22

1E+20
1E+18

1E+16 / \
1E+14 - /

1E+12

| / N |,
_/

10000 -

assignments

100

subsets during dynamic programming algorithm

—computed —theoretical

14

How do we get a tree
decomposition all small width?

TREEWIDTH:
Given k > 0 and G a graph, is the treewidth of G <k ?

> Computing TREEWIDTH is NP-hard Arnborg et al.[13]

Linear time algorithm for TREEWIDTH if k not part of the input
Bodlaender [25]

= Exponential in k
= Not practical, even for k as small as 4

> Several exponential time algorithms

= O(2" poly(n)) Arnborg et al.[13]
= O(1.9601" poly(n)) Fomin et al.[57]
= poly(n) denotes a polynomial in n

References refer to Tutorials 2005 chapter

s
Exact & approx. algorithms

> O(log k) approximation algorithm Amir [9], Bouchitté et al. [41]

Computational approaches

Branch-and-Bound algorithm Gogate and Dechter [63]
O(2¢+2) algorithm Shoikhet and Geiger [117]

Experiments with Bodlaender et al., ESA 2006
O(2" poly(n)) time+memory algorithm

> Experiments with integer programming formulation (B&C)

References refer to Tutorials 2005 chapter

r
Other approaches

—>Heuristic algorithms based on chordal graphs
—->Minimum separating set heuristic [83]

- Metaheuristics
= Tabu Search [45]
= Simulated Annealing [79]
= Genetic algorithm [92]

- Preprocessing
= Reduction rules [39]
= Safe Separators [32]

References refer to Tutorials 2005 chapter

17
Treewidth Lower Bounds

Lemma 7he minimum degree of a graph is a lower bound for
treewidth

0(G) <tw(G)

Corollary 7he degeneracy of a graph is a lower bound for
treewidth

oD(G) = max O(H) <tw(G)

Corollary 7he contraction degeneracy of a graph is a lower
bound for treewidth

oC(G)= max o(H) <tw(G)

See [36,37,38,88], Tutorials 2005 chapter

18

Contents

= Treewidth vs. Integer Programming
= Treewidth by Integer Programming

= Experiments

19

Treewidth by IP ? Chordal graphs

Chordal graph:
Every cycle of size at least 4 contains a chord

Gavril (1974): A graph G =(V,E) is chordal if and only if
there exists a tree 7 =(/ F) such that one can associate with
each vertex ve Va subtree 7, =(Z,F,) of 7, such that v e Eif
andonly if ,n 1+ .

> There exists a chordalization # =(V,E UF) of G with maximum
clique size k+1 if and only if the treewidth of G'is k.

Let H(G) be the set of all chordalizations of G.

w(G)= min o(H)-1

HeH(G)

> Select best #and compute maximum clique size!

20

Related questions

Fill-in:
Minimum #edges to be added to obtain a chordal graph.

> There exists a chordalization #=(V,EUF) of G
with | F| = k& if and only if the fill-in of G'is k.

i(G)= min |E,|—|E

JG) HeH(G)‘ H‘ ‘ G‘

Weighted treewidth (weights c(v)):

Minimum over all tree decompositions of the maximum product
[T, . xc(v) over all bags & 1.

> There exists a chordalization # =(V,E UF) of G with maximum
clique product «if and only if the weighted treewidth of Gis £.

log(wtw(G)) = min o(H,log(c))

HeH(G)

21

Chordalization polytope (1)

> All three problems need chordalization of G

Chordalization polytope:
Convex hull of all chordalizations H of G.

> How to identify whether a graph is chordal or not?

Simplicial vertex:
A vertex is simplicial if all its neighbors are mutually adjacent

Perfect Elimination Scheme s = [v,,...,v]:
Ordering of the vertices such that for all i, v, is a simplicial
vertex of the induced graph Glv,,...,v,]

22

Chordalization polytope (2)

vw

_ |1 ifvwe EUFandn(v) < m(w)
|0 otherwise

Existence of edges
x,+x, =1 vwekE

x,+x, <1 wvwe¢lFE

Simplicity of vertices
y,+y., <l+y +y uv,weV

Ordering of vertices

-t
(Z yp(i)p(i+1) + yp(\C\)p(l) < ‘C‘ -1 VC - V,
SR i=1

C‘ >3,p:{L,...,

Cl}—>cC

23

Objectives

Treewidth
min Z

s.t. zZZva veV

W#V

Fill-in
min f

st. = Z(va +y..)

wwe E

Weighted Treewidth
min w

st. w2 log(CV)Zlog(CW)va veV

W#V

MA=KOIl Chordalization polytope

24

Contents

= Treewidth vs. Integer Programming
= Treewidth by Integer Programming

= EXperiments

25

Separation of ordering inequalities

C‘ >3,p:{lL,...,

C|-1
(Z yp(i)p(i+1)J+ yp(\c\)p(l) < ‘C‘ -1 VC cV, C‘} —C
i=1

> Inequality for every subset & every order of the subset

Implicit consideration by separation
C|-1
(Z (y p(Dp(i+l) 1)] T (y p(Chp() — 1) <-1
i=1

¢l

X, =1=y, :> [z 'xp(i)p(i+l)J + Xo(chp) 21

i=l

> Separation by shortest path computation in auxiliary digraph

26

Simplicity of vertices

y,+y., <l+y +y uv,weV

> Inequality for every triple of vertices

> Always satisfied if vwe £

Other implicitly handled by separation (lazy cuts)

27

Cliques

> Ordering represents a chordal graph

Dirac (1961): Every non-complete chordal graph has two
nonadjacent simplicial vertices

> Without loss of generality, we can put an arbitrary vertex at the
end of the ordering

Tarjan & Yannakakis (1984): Ordering can be build from
the back, selecting recursively vertex with highest number of
ordered neighbors

> Without loss of generality, we can put a (maximal/maximum)
cligue in G at the end of the ordering

28

Instances

> Randomly generated partial-k-trees (Shoiket&Geiger,1998)

= Generate k-tree

= Randomly remove p% of the edges
—>treewidth at most k

->n=100, k=10, p=30/40/50

> Instances from frequency assignment, probabilistic networks, ...

Computational framework

> SCIP (http://scip.zib.de/) with CPLEX 10.0 as LP solver

29

Petersen graph

Objective | Strategy | CPU time (s) | B&C nodes | Gap (%)

Treewidth | none 449.18 278018 0

Treewidth | maximum 0.43 57 0
clique

Fill-in none >3600 >886765 41.18

Fill-in maximum 1.27 379 0
clique

> Maximum clique breaks symmetries(?); simplifies computation

> Fill-in more difficult than treewidth???

30

Results partial k-trees: treewidth

Treewidth

> 30%: 4 out of 10 solved within 1 hour CPU time
40%: 1 out of 10 solved within 1 hour CPU time

10.20

I
NN e N e
970 \/ 9.20 ~

9.00

300/I0 8.80 400/0

T T T T T 8.60
6 7 8 9 10

—— LP —=—end of root —+—LP —=a—end of root

> Very good lower bound, difficult to find optimal solution

31

Fill-in

145.00

140.00 -

135.00

130.00

125.00

120.00 -

115.00 -

110.00 -

105.00

100.00

> Relatively easy to solve

170.00

160.00

150.00

140.00

130.00

120.00

110.00

100.00

> 30%: On average solved in 1085 seconds
40%: 8 out of 10 solved within 1 hour of CPU time

Results partial-k-trees: fill-in

AN LN N
NN
C4A0%

——LP —=—end of root

32

Results realistic instances

minors of link-pp selected; «(G)=9, tw(G)=13

o

—— treewidth fil-in ——combined

treewidth fill-in Combined
instance V] | |[E] | fi(G) | CPU(s) | #nodes | CPU(s) | #nodes | CPU(s) | #nodes
link-pp-minor-020 | 20 | 125 | 29 23.42 9680 0.86 2 4.88 1307
link-pp-minor-021 | 21 | 130 | 35 29.91 7238 1.29 9| 13.15 2767
link-pp-minor-022 | 22 | 137 | 38 37.82 5858 1.33 1 7.88 349
link-pp-minor-023 | 23 | 144 | 40 128.21 16131 2.25 2| 15.22 986
link-pp-minor-024 | 24 | 151 |43 399.61 27125 1.93 2| 103.50 8568
link-pp-minor-025 | 25 | 156 | 48 1875.24 | 94369 3.61 3| 133.67 6861
00 A
2 .—’—-—/‘/
g) //‘\\./// min z + In(n-1)-m+1 /

33

Concluding remarks

> Treewidth is moving from theory to practice; IP can help

Chordalization polytope can tackle three problems:
treewidth, minimum fill-in, and weighted treewidth

More knowledge on chordalization polytope required, in particular
for (weighted) treewidth

= To test treewidth of graphs from applications, contact me:
koster@zib.de
= Publications: http://www.zib.de/koster/

= Overview of most treewidth computations: TreewidthLIB at
http://www.cs.uu.nl/people/hansb/treewidthLIB/

